
Proceedings

PANDA Workshop
on

Pattern-Base Management Systems

April 10th, 2003
Villa Olmo, Como, Italy

Scientific Coordinators:
Yannis Theodoridis (CTI and University of Piraeus, Greece)
Michalis Vazirgiannis (Athens Univ. of Economics and Business, Greece)

Organizing Committee:
Barbara Catania (University of Milan, Italy)
Stefano Rizzi (University of Bologna, Italy)

Supported by the Commission of the European Communities under the
Information Society Technologies (IST) Programme – Future and Emerging
Technologies (FET), Project IST-2001-33058 PANDA

TTTTaaaabbbblllleeee ooooffff CCCCoooonnnntttteeeennnnttttssss

PANDA Workshop on Pattern-Base Management Systems
April, 10th 2003

Como, Italy

Motivating Pattern Management...1
M. Vazirgiannis, E. Vrachnos, M. Halkidi

Current Issues in Modeling Data Mining Processes and Results............................11
I. Ntoutsi, Y. Theodoridis

Architecture for Pattern-Base Management Systems...21
M. Terrovitis, P. Vassiliadis

A Logical Framework for Pattern Representation ...31
S. Rizzi, E. Bertino, B. Catania, M. Golfarelli

Patterns in Hypermedia ..39
M. Vaitis, M. Tzagarakis, G. Gkotsis

What’s new in Querying, Query Processing and Optimization in PBMS?47
I. Bartolini, P. Ciaccia, M. Patella, Y. Theodoridis

Correct Algorithms for the Comparison of Complex Patterns55
I. Bartolini, P. Ciaccia, M. Patella

Pattern Visualization by Pixel Validity Plots...63
A. Amir, R. Kashi, D. Keim, M. Wawryniuk

Using Pattern-base Management Systems – Requirements and Applications75
M. Nelke

Mining Patent Databases for Monitoring Technological Trends............................83
K. Markellou, P. Markellos, G. Mavritsakis, K. Perdikouri, S. Sirmakessis,
A. Tsakalidis

Motivating Pattern Management

M. Vazirgiannis, E. Vrachnos and M.Halkidi

Department of Informatics
Athens University of Economics & Business
Patision 76, 10434, Athens, Greece (Hellas)
e-mail: {mvazirg, evry , mhalk}@aueb.gr

Abstract. As the amount of data produced by data processing systems
increases, it has become clear that users of decision support systems do not
want massive volumes of data, but are more interested in informative patterns
buried within data. The patterns that emerge from data intensive applications
have to be stored in a way so that they can be queried effectively and
efficiently. Thus, we need to create pattern repositories where the knowledge
artefacts known as patterns will reside, as primitive data reside in Data Base
Management Systems (DBMSs). In this paper we present some representative
pattern application domains that call for integrated and efficient pattern base
support, along with the corresponding types of the patterns they produce. We
also motivate research towards a pattern base management system by
abstracting common features of patterns and management requirements

1 Introduction

The technological advances in databases have made it easy to produce and store
huge volumes of data. The challenge of 21st century is the efficient and effective
manipulation of these data and the extraction and management of useful knowledge
from them. Sophisticated data processing tools, based on data mining, pattern
recognition and other advanced knowledge extraction techniques produce huge
volumes of knowledge artifacts such as association rules, clustering schemes, decision
tree rules, frequent parts of a signal or text and many others. We call these artifacts
patterns. A pattern represents huge volumes of information in an effective way and
constitutes the cornerstone of our approach. In other words, it can be seen as a concise
representation of a large set of raw data.

The patterns that emerge from data intensive applications have to be stored in a

way so that they can be queried effectively and efficiently. Thus, we need to create
pattern repositories where the knowledge artefacts known as patterns will reside, as
primitive data reside in Data Base Management Systems (DBMSs). We call this new
class of DBMS Pattern Base Management Systems (PBMS) and we address in this
paper some representative application domains where PBMS may be used and
produce some extraordinary results.

Another important issue when we have to manage huge volumes of data is their
quality, which is critical in data analysis. In [GAN99] Ganti et al. develop a
framework for quantifying the difference, between data sets in terms of the models
they induce. Thus, by comparing two patterns we actually compare the (interesting)
data characteristics of the data sets they represent. The question here is how we
compare two patterns. The answer lies in the pattern representation we adopt in this
paper and is called measure component of a pattern. The measure component
constitutes a way of computing the quality of a pattern and consequently the quality
of the data set it represents. In that way we can draw conclusions about the properties
of the data set and “label” the data set as an important data set with respect to the
information that is buried in it.

The volume of extracted patterns from various knowledge discovery applications is

increasing rapidly and so does the need for effective and efficient pattern
management. There are no tools or systems that are designed to deal exclusively with
this problem. All current efforts for modelling patterns build an additional layer on
top of a DBMS or extend a pre-existing DBMS to support patterns. This approach
doesn’t take advantage of the special properties of patterns and treats them just like
primitive data. If we consider raw data as facts then a pattern constitutes the rules that
hold for these facts, or in other words the knowledge that is hidden in the data. Thus,
an ordinary DBMS is not adequate for the management of this kind of information not
only because of its special structure and properties, but furthermore because of its
diversity. Patterns can be clustering schemes, association rules, classification rules,
probabilistic rules and many others. Moreover patterns can be found in images,
signals, text, music and of course in the world wide web.

The first objective of this paper is to convince for the necessity of pattern

management and the design and development of Pattern Base Management Systems.
The second objective is to present certain categories of patterns in various application
domains and examine their structure. Understanding the structure of patterns is
essential for the design of a PBMS since a general model should be developed for the
representation of all these artefacts in both logical and physical level of a PBMS.

2 Application domains generating patterns

In this section we will briefly outline application domains dealing with voluminous
and heterogeneous data (further called raw data). Pattern extraction algorithms
(pexas) applied to these data generate potentially large quantities of patterns that
essentially represent the knowledge hidden in the raw data and due to their volume
and diversity call for efficient management.

a. Data Mining

Data Mining is mainly concerned with methodologies for extracting patterns from
large data repositories. The extracted patterns are evaluated based on some
interestingness measures that identify patterns representing interesting knowledge,
i.e., interesting patterns. Then, we could adopt a broader view of data mining
functionality, considering data mining as the process of discovering interesting
knowledge from large amounts of data stored in databases, data warehouses or other
information repositories. There are many different data mining algorithms that
produce a variety of patterns for a certain data set. We give a brief description of the
patterns that are produced by these algorithms.

Clustering

Clustering is the process of partitioning a given data set into groups (clusters) such
that the data points in a cluster are more similar to each other than points in different
clusters [GRS98]. The clustering process may result in different partitions of a data
set, depending on the criterions used for clustering. Then we may evaluate the quality
of each clustering scheme and make the selection that meets our needs. Clustering is
valuable in many fields.

Classification – Decision Making

The classification problem has been studied extensively in statistics, pattern
recognition and machine learning community as a possible solution to the knowledge
acquisition or knowledge extraction problem [RS98]. A number of classification
techniques have been developed and are available in bibliography. Among these, the
most popular are: Bayesian classification, Neural Networks and Decision Trees. As
we have already discussed classification is a form of data analysis that can be used to
define data models describing data classes or predict data trends. It can be used for
making intelligent bases decisions in business and science.

Association Rules

Association rules reveal underlying interactions between attributes in the data set.
These interactions can be presented with the following form: A B, where A, B refer
to sets of attributes' values in underlying data. More specifically, A and B are selected
so as to be frequent item sets. A formal statement of the problem can be found in
[AS94]. The intuitive meaning of such a rule is that records in the dataset, which
contain the attributes in A, tend also to contain the attributes in B [SA95]. We note
also that the extracted rules have to satisfy some user-defined thresholds related with
association rules measures (such as support, confidence, leverage, lift). A typical
application of association rule mining is market basket analysis. This process analyses
customer-buying habits by finding associations between the different items that
customers place in their “shopping baskets”. The discovery of such associations can
help retailers develop marketing strategies by finding which items are frequently
purchased together by customers.

b. Sequential Patterns- Time Series Analysis

Sequential pattern mining is the mining of frequently occurring patterns related to
time or other sequences. Most studies on sequential pattern mining concentrate on
symbolic patterns. The problem of mining sequential patterns can be stated as
follows:

Given a potentially large pattern (string) S, we are interested in sequential patterns
of the form a b, where a, b are substrings inside S, such that the frequency of ab is
not less than some minimum support and the probability that a is immediately
followed by b is not less than minimum confidence.In daily and scientific life
sequential data are available and used everywhere. Some representative examples are
text, music notes, weather data, satellite data streams, business transactions,
telecommunications records, experimental runs, DNA sequences, histories of medical
records. In [WAN97] we find a motivation for sequential pattern databases: Since the
underlying database is usually large, dealing with changing data and patterns is a
challenge for research and application in knowledge discovery and data mining, and
incremental methods for updating the patterns are possible solutions.

c. Signal Processing: Content-Based Music Retrieval [V+02]

Large-scale storage of sound and music has only become possible in the last
decade. In addition, the new possibility for wide-area distribution of multimedia over
the Internet has given rise to new requirements for flexible and powerful databases for
musical and audio data. One of these requirements is the complexity of a selection
query upon a database that contains massive amounts of musical data [PAC00]. For
example consider the following question: “I want to browse through Bach Fugues
recorded in C minor and performed with a clavichord”. It is clear that this kind of
queries address information hidden in the content of the music signal and raise the

following challenges related to content-based music retrieval: instrument recognition,
melody spotting, musical key extraction, musical pattern recognition, composer
recognition, music structure extraction and music segmentation, to name but a few.

d. Patterns in Information Retrieval [V+02]

Another research field where patterns are apparent is that of Information Retrieval.
In a retrieval setting we have a collection of discourse material, also called corpus,
and users submit queries to the system in order to retrieve information that suits their
interest. Queries are often vaguely defined, in contrast to traditional database systems,
due to lack of a query language or algebra. A query consisting of only a few words
does not always reflect the user’s actual interest; therefore users often experience
frustration from a retrieval system. The Latent Semantic Indexing (LSI) [DDF+90,
BDO95], a retrieval model, unveiling patterns in terms’ usage, seems to produce more
effective information retrieval.

e. Mathematics

Mathematics is the science of patterns. Patterns arise in the form self correlation
mappings in a data set (i.e. consider the Fibonacci equation: yn+1 = yn yn-1 , y0 =0,
y0=1) or in the form the analytical polynomial expressions bounding independent
variables others (i.e. y=ax2+bx+c). As we advance, we experience number patterns
again through the huge concept of functions in mathematics. But patterns are much
broader. They can be sequential [AS95], spatial [ST99], temporal [DLM+98][SB98],
and even linguistic [FFK+98][LAS97]. Sometimes it is very useful to collect number
patterns so as to be able to learn the behaviour of numbers collected by
telecommunication data for example [BCH00] or by equation solving [SB99].

Shape patterns

The concept in this case is that the majority of geometrical shapes share a structural
similarity. For example the number of vertices constituting a polygon etc. The
existence of such patterns can help us in recognizing familiar shapes in image
processing [NPP00] or even for reconstructing polygonal images [CN95].

Patterns in Cryptography

Cryptography is one of the main subjects in which mathematics rays supreme. In
cryptography, every cryptographic system could be considered as a pattern itself. For
example, if we have many sets of raw data and in each set we enforce a specific
encryption, then these sets would share the similarity of their encryption attribute. We
can find many such cases in cryptography, like Vigenere Cipher, Caesar Cipher,
Gronsfeld cipher etc. Such Cryptographic patterns are widely used in word
processors, electronic commerce systems, spreadsheets, databases and security
systems [BRD99].

3 Need for pattern management – a wish list…

In this section we will attempt an abstraction of facts and notions common among
the previously mentioned application domains. The pattern extraction phase results in
patterns extracted from a raw data set using one or more pexas. It is clear that from a
raw data set A multiple a. types and b. instances of a pattern type can be extracted.
Different types, as a result of different pexa type exploitation (i.e. both clusters and
association rules can be extracted from A). Different instances because of i. the usage
of different pexas of the same type (i.e. different clustering algorithms on A result in
different partitioning schemes of the same dataset) or ii. because of the application of
the same pexa with different input parameters (again, the example arising is for a
clustering algorithm multiple sessions on the same data set each time with different
input parameters potentially resulting in different partitions).

In all cases the pexa forms a mapping between the raw data space and the pattern

space. In most of the cases the pattern is either:
- a repeating subset of the raw data set either in a. terms of structure (i.e. a record

structure {name, address, salary}) or in terms of values (i.e. the association rule
buys(beer, diapers)->buys(snacks), or the constraint: <salary <=4000 Euro >.

- or a repeating relationship between parts of the raw dataset. Such are a. the
analytical form of a polynomial constraint holding true in a subset of the raw data set,
b. grouping together multiple raw dataset points under a cluster label as result of a
clustering algorithm.

Patterns are grouped into pattern types. A pattern type usually involves a i.

structure (representing its syntactic form), ii. a source description, representing the
raw dataset specification iii. a set of measures, representing the instantiation of its
structure with regards to a raw data set (conforming to the source description) and iv.
an algorithm type, representing the pexa type and bearing the semantics of the pattern.

It is clear that from a raw dataset multiple pattern types can be extracted due to the
application of diverse pexas. For instance from a music score both pitch and rhythm
patterns can be extracted. Assuming thus a wealth of pattern types and instances
(forming the pattern base of the specific raw dataset) that are extracted from the raw
dataset A and given the important resources consumed for the extraction of these
patterns one would argue that it would be necessary to:

- store and reuse these patterns in order to fulfill requirements of the users for
later decision making

- define a valid mapping between the pattern base and the raw data in order to
be able to switch between raw data and their pattern base.

In order to achieve these objectives it is necessary to define a pattern base
management system that will efficiently represent, store and retrieve patterns and
communicate with the raw data repository. One would argue that mature

relational/object-relational or object oriented approaches could facilitate these
requirements. We will confront this argument:

- Patterns are fundamentally different to the usual alphanumeric databases as

their structure can be much more complex as well as diverse (i.e. compare
the structure and semantics if time series patterns to clusters or association
rules).

- Pattern semantics are much richer than the raw dataset ones and are usually
implied by the knowledge of the pexa.

- Patterns’ behavior/functionality is significantly more complex (i.e. treating a
polynomial constraint). This involves also the similarity issue that is
becoming much more complex and involves multiples dimensions of
similarity, such as i. intra-pattern vs. inter-pattern similarity ii. structural vs.
value based similarity etc.

As it is clear from the previous, the diversity of patterns in terms of structure,

values and behavior call for a fundamentally different approach on representation
storage and management both in logical and physical level. This implies the definition
of appropriate modeling structures that will be mapped to appropriate physical ones.
Also there is a clear need for a proper set of operators that represent the semantics of
the pattern behavior and manipulation (the limited SQL manipulation actions are
apparently inadequate here). These operators will populate the envisaged Pattern
Query Language (PQL) that will deal both with definition and manipulation.
Consequently, in order to make pattern based queries efficient, the appropriate pattern
indexing structures should be designed.

4 Conclusion

In this paper we briefly reviewed some of the application domains that need pattern
base support and motivate the need for a PBMS. In all these fields various pexas are
applied on potentially huge and diverse data repositories. The knowledge artefacts
that being produced, constitute a concise representation of the repository known as its
pattern base. These artefacts that we call patterns need to be treated as persistent
objects that can be stored, accessed and queried effectively and efficiently. All the
approaches that have been proposed and implemented so far, build an additional level
on top of a DBMS, and don’t take advantage of the special properties of patterns such
as the fact that they constitute compact and rich in semantics representations of raw
data.

The efficient and effective manipulation of pattern bases imposes a new class of

DBMSs, namely Pattern Base Management Systems that treat patterns just like
DBMS treat raw data. Thus, patterns are modelled both in logical and physical level,
they are stored, visualized, indexed and queried.

References

[WAN97] Wang K. “Discovering Patterns from Large and Dynamic Sequential
Data”, in Journal of Intelligent Information Systems 9, 33-56 (1997).

[AS94] Rakesh Agrawal, Ramakrishnan Srikant. “Fast Algorithms for Mining
Association Rules”. Proc. of the 20th VLDB Conference, 1994.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant: Mining Sequential
Patterns, IBM Almaden Research Center, 1995.

[BRD99] Alexandre M. Braga, Cecilia M.F. Rubira and Ricardo Dahab: Tropyc:
A Pattern Language for Cryptographic Software, Brazil, 1999.

[CN95] Peter Clifford and Geoff Nichols: A Metropolis Sampler for Polygonal
Image Reconstruction, UK, 1995.

[DDF+90] S. Deerwester, S. T. Dumais, G. Furnas, Th. K. Landauer, R. Harshman,
Indexing by Latent Semantic Analysis, Journal of the Society for
Information Science, 41(6): 391-407, 1990.

[DLM+98] Gautan Das, King-Le Lin, Heikki Mannila, Gopal Renganathan and
Padhraic Smith: Rule discovery from time series, USA, 1998.

[FFK+98] Roner Feldman, Moshe Fresko, Yakkov Kihar, Yehuda Lindell, Orly
Liphstat, Mrtin Rajman, Yonatan Schler, Oren Zamiv: Text Mining at
the Term Level, 1998.

[FPSU96] U. Fayyad, G. Piatesky-Shapiro, P. Smuth & R. Uthurusamy(editors).
"From DataMining to Knowledge Discovery: An Overview". Advances
in Knowledge Discovery and Data Mining. AAAI Press, 1996.

[GAN99] Ganti V, Ramakrishnan R., Gehrke J., and Loh W.Y. “A Framework for
Measuring Differences in Data Characteristics”. PODS, 1999.

[GRS98] Sudipto Guha, Rajeev Rastogi, Kyueseok Shim. "CURE: An Efficient
Clustering Algorithm for Large Databases", Published in the
Proceedings of the ACM SIGMOD Conference, 1998.

[NPP00] Chicahito Nakajima, Massimiliano Pontil and Tomaso Pogio: People
Recognition and Pose Estimation in Image Sequences, JAPAN, 2000.

[PAC00] F. Pachet, P. Roy, D. Cazaly, “A Combinatorial approach to content-
based music selection”, IEEE Multimedia, Vol 1, 2000.

[REI01] J. Reiss, J. Aucouturier, M. Sandler, "Efficient Multi-dimensional
searching routines for music information retrieval", Proceedings of
ISMIR 2001.

[RS98] R. Rastori, K. Shim. "PUBLIC: A Decision Tree Classifier that
Integrates Building and Pruning". Proceeding of the 24th VLDB
Conference, New York, USA, 1998.

[SA95] Ramakrishnan Srikant, Rakesh Agrawal. “Mining Generalized
Association Rules”. Proc. of the 21st VLDB Conference, 1995.

[SB98] Neil Sumpter and Andrew J. Bulpitt: Learning Spatio-Temporal
Patterns for predicting Object behaviour, UK, 1998.

[SB99] Stephan Schulz and Felix Brandt: Using Term Space Maps to Capture
Search Control Knowledge in Equational Theorem Proving, Germany,
1999.

[ST99] Ayman A. Abel-Samad and Ahmed H. Tewfik: Search Strategies for
radar Target localization, University of Minnesota, Minneapolis, 1999.

[V+02] M. Vazirgiannis et. Al., “Pattern Apllication Domains, A survey”, PANDA
Technical report available at: http://dke.cti.gr/panda

Current Issues in Modeling Data Mining Processes and Results

Irene Ntoutsi1,2 and Yannis Theodoridis1,2

 1 Computer Technology Institute, Greece
2 University of Piraeus, Greece

E-mail: {ntoutsi, ytheod}@cti.gr

Abstract.

So far, research and industrial community has recognized the need for standards in order to create, store and
manage data mining results. These standards should be independent of the underlying data mining systems and
should allow the communication between different vector applications. In this paper we address the current and
evolving efforts towards this aim. As we will see there are a lot of standards and tools, with PMML being the most
prominent one, however most of them deal with patterns in a traditional manner (usually with relational tables). As
the amount of data produced by data processing systems increases, it has become clear the need for a system,
similar to DBMS, for efficient pattern management.

1. Introduction

In this paper, we address the current and evolving efforts on modeling data mining processes and their
results.

The outline of the paper is as follows: In section 2 we introduce the Predictive Model Markup
Language (PMML) developed by the Data Mining Group (DMG). In section 3 we give an overview of
the SQL/MM Part 6, a standard that has been developed under ISO. In section 4 we give an overview
of the Common Warehouse Model and the Data Mining MetaModel that are standards supported by
OMG. In section 5 we introduce the efforts of individual vendors such as Oracle, IBM, SPSS, etc. in
developing the Java Data Mining API. In section 6 we provide an overview of the Oracle 9i Data
Mining componentts. In section 7 with present the Pattern Query Language (PQL) used by the
Information Discovery DataMining Suite. In section 8 we provide an overview of the Microsoft work
on data mining. We conclude in section 9 giving a comparative presentation of the overviewed data
mining standards and tools.

2. Data Mining Group / Predictive Model Markup Language

PMML - Predictive Model Markup Language [DMG] is an XML-based language, developed by DMG
– Data Mining Group, which provides a quick and easy way for companies to define predictive
models and share models between compliant vendors' applications. PMML provides applications a
vendor-independent method of defining models so that proprietary issues and incompatibilities are no
longer a barrier to the exchange of models between applications. It allows users to develop models
within one vendor's application, and use other vendors' applications to visualize, analyze, evaluate or
otherwise use the models.

2.1. PMML Data Flow

PMML defines a variety of specific mining models such as for tree classification, neural networks,
regression, etc. Equally important there are also definitions which are common to all models, in order
to describe the input data itself, and generic transformations which can be applied to the input data
before the model itself is evaluated. In the following schema the basic blocks of a mining model as
well as the data flow of such operation are shown:

Figure 1. The data flow in PMML

− Data Dictionary: The DataDictionary describes the data 'as is', that is the raw input data. The

DataDictionary refers to the original data and defines how the mining model interprets the data,
e.g., as categorical, or numerical, and the range of valid values may be restricted. The raw data are
not included in a PMML document and they are hosted in external sources. The DataDictionary
only defines the mappings between the source attributes and the model’s local field names.

− MiningSchema: The MiningSchema defines an interface to the user of PMML models. It lists all
fields that are used as input to the computations in the mining model. The mining model may
internally require further derived values that depend on the input values, but these derived values
are not part of the MiningSchema. The derived values are defined in the transformations block.
The MiningSchema also defines which values are regarded as outliers, which weighting is applied
to a field, e.g., for clustering. Input fields as specified in the MiningSchema refer to fields in the
data dictionary but not to derived fields because a user of a model is not required to perform the
normalizations.

− Transformations: Various types of transformations are defined such as normalization of numbers
to a range [0..1] or discretization of continuous fields. These transformations convert the original
values to internal values as they are required by the mining model such as an input neuron of a
network model. If a PMML model contains transformations a user is not required to take care of
these normalizations. The MiningSchema lists the input fields that refer to the non-normalized
original values, the user presents these fields as input to the model. If a PMML model contains
transformations a user is not required to take care of these normalizations. The MiningSchema list
the input fields which refer to the non-normalized original values, the user presents these fields as
input to the model. The transformations in PMML are intended to cover expressions that were
generated by a mining technique. A complete mining project usually needs many other
preprocessing steps which may have to be defined manually. PMML 2.0 does not provide a
complete language for this full preprocessing. These data preparations steps must be performed
before feeding the values into a PMML consumer.

− Model: PMML defines a variety of specific mining models such as for tree classification, neural
networks, regression, etc. The specific definitions of may refer to fields listed in the MiningSchema
or to derived fields which can be computed from the MiningSchema-fields.

− Output: The output of a model always depends on the specific kind of model, e.g. it may by
defined by a leaf node in a tree or by output neurons in a neural network.

− Result: The final result, such as a predicted class and a probability, are computed from the output
of the model. If a neural network is used for predicting numeric values then the output value of the

network usually needs to be denormalized into the original domain of values. Fortunately, this
denormalization can use the same kind of transformation types. The PMML consumer system will
automatically compute the inverse mapping.

Since PMML is an XML basedstandard, the specification comes in the form of an XML Document
Type Definition (DTD). In the next sections we will present the main features of the PMML.

2.2. General Structure of a PMML Document

As we already mentioned PMML uses XML to represent mining models. The structure of the models is
described by a DTD which is called the PMML DTD. One or more mining models can be contained in
a PMML document. A PMML document is an XML document with a root element of type PMML.The
DTD that all PMML documents must conform is:

<?xml version="1.0"?>

 <!DOCTYPE PMML PUBLIC "PMML 2.0" "http://www.dmg.org/PMML2.0/pmml-2-0.dtd">

 <PMML version="2.0">

 ...

 </PMML>

For PMML version 2.0 the attribute version must have the value 2.0.
A PMML document is not required to have a declaration. If there is one then a PMML document

must not depend on external parameters. Although a PMML document must be valid with respect to
the PMML DTD, a document must not require a validating parser, which would load external entities.
In addition to being a valid XML document, a valid PMML document must obey a number of further
rules which are described in the PMML specification. The root element of a PMML document must
have type PMML.

<!ENTITY % A-PMML-MODEL '(TreeModel | NeuralNetwork | ClusteringModel |

 RegressionModel | GeneralRegressionModel |

 NaiveBayesModels | AssociationModel |

 SequenceMiningModel)' >

 <!ELEMENT PMML (Header, Settings?, DataDictionary,

 TransformationDictionary, (%A-PMML-MODEL;)+, Extension*)>

 <!ATTLIST PMML version CDATA #REQUIRED>

 <!ELEMENT Settings (Extension*) >

 <!ELEMENT TransformationDictionary (DerivedValues*, Extension*) >

The basic elements of an PMML document are: Header, Settings, Data Dictionary and Transformation
Dictionary (Derived Values).

3. SQL/MM

SQL/MM (MM for MultiMedia) [SQL/MM] is a standard based on SQL that has been developed by
the International Organization for Standardization (ISO). It is divided into the following parts: Part 1
(Framework), Part 2 (Full Text), Part 3 (Spatial), Part 5 (Still Image), Part 6 (Data Mining).

The structured types defined in SQL/MM are first-class SQL types that can be accessed through
SQL:1999 base syntax. These accesses also include invocation of the routines (methods) associated
with the structured types. In the following, we focus on the basic features of Part 6, Data Mining.

3.1. SQL/MM Data Mining

The standard supports four different data mining techniques. The term model is used throughout the
standard and it actually stands for data mining technique. The four models are: Rule model, Clustering
model, Regression model and Classification model.

Every model has a corresponding SQL structured user-defined type. A set of predefined types
completes the full definition of each model. The basic type is named DM_*Model where “*” is
replaced by ‘Class’ for a classification model, ‘Rule’ for a rule model, ‘Clustering’ for a clustering
model and ‘Regression’ for a regression model.

The predefined types are the following (the same naming schema is used as in the case of the
DM_*Model):

− DM_*Settings: Instances of that type are used for storing various parameters of the data mining
model, such as the maximum number of clusters or the depth of a decision tree.

− DM_*TestResult: Instantiations of that type hold the results of the testings during the training
phase of the data mining models.

− DM_*Result: The running of a data mining model against real data creates instances of that type.

− DM_*Task: Instances of that type store metadata that describe the process and control of testings
and of the actual runnings.

4. Common Warehouse MetaModel

The CWM™ - Common Warehouse Metamodel [CWM] is a specification that describes metadata
interchange among data warehousing, business intelligence, knowledge management and portal
technologies. The main purpose of CWM is to enable easy interchange of warehouse and business
intelligence metadata between warehouse tools, warehouse platforms and warehouse metadata
repositories in distributed heterogeneous environments.

CWM is based on three key industry standards:

− UML - Unified Modeling Language, an OMG modeling standard.

− MOF - Meta Object Facility, an OMG metamodeling and metadata repository standard that bridges
the gap between dissimilar meta-models by providing a common basis for meta-models. If two
different meta-models are both MOF-conformant, then models based on them can reside in the
same repository.

− XMI - XML Metadata Interchange, an OMG metadata interchange standard.

The CWM provides a framework for representing metadata about data sources, data targets,
transformations and analysis, and the processes and operations that create and manage warehouse data
and provide lineage information about its use.The CWM Metamodel constists of a number of sub-
metamodels which represent common warehouse metadata in major areas of interest to data
warehousing and business intelligence, icluding Data Resources, Data Analysis and Warehouse
Management.

The CWM is designed to maximize the reuse of Object Model (a subset of UML) and the sharing
of common modeling constructs where possible. The most prominent example is that CWM
reuses/depends on Object Model for representing object-oriented data resources.

Bellow we give an overview of the Data Mining sub-metamodel.

4.1. Data Mining Metamodel

The CWM Data Mining sub-metamodel represents three conceptual areas: the overall Model
description itself, Settings and Attributes.

The Model conceptual area consists of a generic representation of a data mining model (that is, a
mathematical model produced or generated by the execution of a data mining algorithm). This consists
of:

− MiningModel, a representation of the mining model itself

− MiningSettings, which drive the construction of the model

− ApplicationInputSpecification, which specifies the set of input attributes for the model

− MiningModelResult, which represents the result set produced by the testing or application of a
generated model.

The Settings conceptual area elaborates further on the Mining Settings and their usage
relationships to the attributes of the input specification. Mining Settings has four subclasses
representing settings for:

− StatisticsSettings

− ClusteringSettings

− SupervisedMiningSettings

− AssociationRulesSettings.

The SupervisedMiningSettings are further subclassed as ClassificationSettings and
RegressionSettings, and a CostMatrix is defined for representing cost values associated with
misclassifications.

The Attributes conceptual area defines two subclasses of Mining Attribute:

− NumericAttribute

− CategoricalAttribute. A categorical attribute might possess some Category property and might be
associated with some kind of taxonomy with a CategoryHierarchy.

5. Java DM API

Java DM API (JDMAPI) [JDMAPI] follows SUN’s Java Community Process as a Java Specification
Request (JSR). It addresses the need for an independ of the underlying data mining system API that
will support the creation, storage, access and maintenance of data and metadata supporting data mining
models, data scoring, data mining results, and data transformations.

Refering to the underlying technologies the JDMAPI will be based on a highly-generalized,
object-oriented, data mining conceptual model leveraging emerging data mining standards such
Common Warehouse Metamodel (CWM), ISO’s SQL/MM for Data Mining, and DMG's PMML.

The JDMAPI model will support four conceptual areas that are generally of key interest to users of
data mining systems: settings, models, transformations, and results. The JDMAPI specification does
not prescribe any particular implementation strategy. Vendors will decide if they will implement
JDMAPI as the native API of their product or if they will develop a driver/adapter that mediates
between a core JDMAPI layer and multiple vendor products.

JDMAPI has three logical components that may be implemented as one executable or in a
distributed environment:

− Application Programming Interface (API) - The API is the end-user-visible compo-nent of a
JDMAPI implementation that allows access to services provided by the data mining engine (DME).

− Data Mining Engine (DME) – The DME provides the infrastructure that offers a set of data mining
services to its API clients. When implemented as a server of a client-server architecture, it is
referred to as a data mining server (DMS).

− Metadata Repository (MR) - The DME uses a metadata repository which serves to persist data
mining objects. This repository can be based on the CWM framework, specifically leveraging the

CWM Data Mining metamodel, or implemented using a vendor proprietary representation. The MR
may exist in a file-based environment, or in a relational database.

The ultimate goal of JDMAPI is to provide for data mining systems what JDBC did for relational
databases. The version 0.91 of the JDMAPI has been released for public review since November 2002.

6. Oracle9i Data Mining

Oracle9i Data Mining [Oracle9i] provides comprehensive data mining functionality that is embedded
in the Oracle9i Database.

Oracle9i Data Mining has two main components:

− Oracle9i Data Mining API. The ODM API provides an early look at concepts and approaches
being proposed for JDMAPI (Section 5). Ultimately, Oracle9i Data Mining will comply with the
JDMAPI standard after it is published.

− Data Mining Server (DMS). The Data Mining Server (DMS) is the server-side, in-database
component that accepts requests from programs written using the ODM API, process these requests
and delivers results to the client applications. It also provides a metadata repository consisting of
mining input objects and result objects, along with the namespaces within which these objects are
stored and retrieved.

Oracle9i Data Mining supports the following data mining functions: Classification (supervised
learning), Clustering (unsupervised learning), Association Rules (unsupervised learning), Attribute
Importance / Feature selection (supervised learning)

Oracle9i Data Mining supports the following data mining algorithms: Adaptive Bayes Network
supporting decision trees (classification), Naive Bayes (classification), Model Seeker (classification),
k-Means (clustering), O-Cluster (clustering), Predictive variance (attribute importance), Apriori
(association rules)

Every model has characteristics similar to those addressed in PMML and SQL/MM Data Mining.
Models are build and stored in the DMS and the users can refer to them using a user-specified unique
name. Every step in the model building process creates persistent objects that can be used from
multiple applications. After a model is build, model testing estimates the accuracy of a model’s
predictions and test results are stored in a mining test result object.

The most important object, in context of storing data mining results, is the mining result object.
The mining result object contains the end products of one of the following mining tasks: build, test,
compute lift, or apply. ODM supports the persistence of mining results as independent, named entities
(relational tables) in the DMS. A mining result object contains the operation start time and end time,
the name of the model used, input data location, and output data location for the data mining operation.

Oracle intends to provide full support of SQL/MM and PMML in future versions.

7. Information Discovery DataMining Suite

Information Discovery has developed a set of tools and systems for data mining and knowledge
extraction [IDMS]. The output of the Data Mining Suite is stored within a pattern-base and is
accessible trough PQL: The Pattern Query LanguageTM, a new language specifically designed by the
company for business user decision support. PQL is a pattern-oriented query language specifically
designed to provide business users access to refined information, just as SQL provides access to data.
PQL resembles SQL, but is implemented above SQL with additional C constructs. The PQL Pattern
Kernel consistently merges and manages multiple pattern-types.

Figure 2. The IDMS approach (figure taken from [IDMS])

Patterns discovered by the Data Mining Suite are rule-based. Discovery takes place simultaneously
along multiple dimensions on the server and the results are delivered to the user in plain English,
accompanied by tables and graphs that highlight the key patterns.

No other information is available (at least through their web site) about the syntax or the semantics
of the language, neither about the way patterns are stored in the pattern-base. However, its notion is
very close to the motive of the PANDA project [PANDA] and that is the reason for mentioning it in
this paper.

8. Microsoft Data Mining

Microsoft introduced Data Mining in SQL Server™ 2000 Analysis Services and initiated the OLE DB
API for Data Mining [Microsoft1]. OLE DB for Data Mining serves as a standard that external product
vendors can use for delivering their data-mining functionality in the Microsoft environment. This API
is supported by a number of leading data mining providers including Megaputer Intelligence Inc, SPSS
Inc etc.

The OLE DB API for Data Mining encapsulates the idea of a universal data-access mechanism
that allows the sharing of data and data-mining results through heterogeneous environments with
multiple applications.

Some of the basic OLE DB API features include:

− Data-mining model. The data-mining model is like a relational table, except that its columns can be
used to derive the patterns and relationships that characterize the data mining results. These
columns can also be used for predictions; the data-mining model serves as the core functionality
that both creates a prediction model and generates predictions. Unlike a standard relational table,
which stores raw data, the data-mining model stores the patterns discovered by the data-mining
algorithm.

A data mining model is created throughn a CREATE statement, similarly to the SQL CREATE TABLE
statement. A data data mining model is populated by using the INSERT INTO statement, just as in the
case of a table population. The client application issues a SELECT statement to make predictions
through the data-mining model. After the mining engine defines the important fields (traing phase) and
stores them in the data-mining model, the model can use the same pattern to classify new data in which
the outcome is unknown. The trained pattern, or structure, is saved in the data-mining model.

CREATE MINING MODEL [Age Prediction]

(

 [Customer ID] LONG KEY,

 [Gender] TEXT DISCRETE,

 [Age] DOUBLE DISCRETIZED() PREDICT,

 [Product Purchases] TABLE

 (

 [Product Name] TEXT KEY,

 [Quantity] DOUBLE NORMAL CONTINUOUS,

 [Product Type] TEXT DISCRETE RELATED TO [Product Name]

)

)

USING [Decision Trees]

− Prediction join operation. The OLE DB API defines a data mining query language based on SQL
syntax. This operation is mapped to a join query between a data-mining model (which contains the
trained pattern from the original data) and the designated new input data.

− Predictive Model Markup Language (PMML). The OLE DB for Data Mining specification
incorporates the PMML standards of the Data Mining Group (see Section 2).

Microsoft SQL Server 2000 Analysis Services supports two data mining tasks: classification (with
decision trees) and clustering (with k-Means) [Microsoft2]. However, the coming version of SQL
Server is expected to include more data mining algorithms.

9. A comparison of data mining standards and tools and conclusions

In Tables 1 and 2, we compare the data mining standards and tools, respectively, overviewed so far.

Comparatively, PMML looks to be a step ahead from the rest standards and, since it is XML-based, it
could be more easily adopted by big ‘players’. On the other hand, storage in relational tables is an
inherent shortcoming (like for any XML database stored in relational DBMS).

 The questionmarks in both tables indicate that vendors’ work is in progress with several issues
being still open as well as that details of their work are not public at this time.

 To our opinion, two issues make clear that the road is still far from the efficient pattern
management:

− Storage structure for mining results: all proposals converge in using relational tables for storing
mining results. This could be a straightforward solution for vendors of commercial relational or
object-relational DBMS but definitely needs to be revisited since mining results are far from
traditional.

− Extensibility for novel mining models: a user is restricted to choose among supported mining
models (a limited number in any of the above tools) and no support is given when he/she asks for
a novel model. This might be very restrictive in several applications.

 Concluding, the need for efficient pattern management is obvious and drives the data mining
community research and applications domain. So far, there have been a lot of efforts towards this aim,
with PMML being the most popular approach. However all these efforts follow the traditional object-
relational approach and do not offer a complete solution to the problem of efficient pattern
manipulation.

Table 1. Comparison of data mining standards

 PMML SQL/MM CWM JDMAPI Microsoft OLE
DB API

Based on XML SQL UML

MOF

XMI - XML

CWM

SQL/MM

PMML

SQL

PMML

Programming
language

XML like SQL like UML like Java like SQL like

Querying
mining results

XML like SQL like ? ? SQL like

Table 2. Comparison of data mining tools

 Oracle9i Data Mining Information
Discovery

DataMining Suite

Microsoft SQL Server
Analysis Services

Supported
standards

JDMAPI

PMML

SQL/MM

? OLE DB API for Data Mining

PMML

Storage
structure for

mining results

Relational tables Relational tables Relational tables

Querying
mining results

? PQL – Pattern Query
Language (resembles

SQL)

SQL-based data mining query
language

Supported
mining

operations
(algorithms)

Classification (Adaptive / Naïve
Bayes, Model Seeker)

Clustering (k-Means, O-Cluster)

Association Rules (Apriori)

? Classification (Decision Trees)

Clustering (k-Means)

Building mining
models

The user defines the input data
and the mining function settings (a

user is allowed to specify the
desired types of results from

existing algorithms)

? The user defines the structure
(keys, columns) and properties

(specific algorithm and
parameters) of the model

Import/export
facilities

Imports/ exports PMML for Naïve
Bayes Classification and

Association Rules

? ?

References

[CWM] Common Warehouse Metamodel (CWM), available at http://www.omg.org/cwm/ (valid
as on April 2, 2003).

[DMG] DMG, Predictive Model Markup Language (PMML), available at http://www.dmg.org/
pmmlspecs_v2/pmml_v2_0.html (valid as on April 2, 2003).

[IDMS] Information Discovery DataMining Suite, available at http://www.patternwarehouse.com/
dmsuite.htm (valid as on April 2, 2003).

[JDMAPI] Java Data Mining API, available at http://www.jcp.org/aboutJava/communityprocess/
review/jsr073/ (valid as on April 2, 2003).

[Microsoft1] Data Mining in SQL Server 2000, available at http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dnsqlmag01/html/datamining.asp (valid as on April
2, 2003).

[Microsoft2] Microsoft SQL Server - Performance Study of Microsoft Data Mining Algorithms,
available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsql2k/html/ sql2k_analysisdm.asp (valid as on April 2, 2003).

[Oracle9i] Oracle9i Data Mining Concepts, available at http://otn.oracle.com/docs/products/oracle9i/
doc_library/release2/datamine.920/a95961/1concept.htm (valid as on April 2, 2003).

[PANDA] Patterns for Next-generation Database Systems, IST/FET Project. Project’s web site
available at http://dke.cti.gr/panda (valid as on April 2, 2003).

[SQL/MM] ISO SQL/MM Part 6, available at http://www.wiscorp.com/SQLStandards.html#
sqlmmreadings (valid as on April 2, 2003).

eirini
Text Box
Acknowledgment:
This research is partially supported by the Greek Ministry of Education and the European Union under a grant of the "Heracletos" EPEAEK II Programme (2003-06)

�

Architecture�for�Pattern-Base�Management�Systems�

Manolis�Terrovitis� Panos�Vassiliadis�

National�Technical�University�of�Athens,��

Dept.�of�Electrical�and�Computer�Eng.,�

Athens,�Hellas�

mter@dbnet.ece.ntua.gr�

University�of�Ioannina,��

Dept.�of�Computer�Science,��

Ioannina,�Hellas�

pvassil@cs.uoi.gr�

Abstract.�In�many�modern�applications�we�have�to�deal�with�huge�volumes�
of�data.�Many�techniques�have�been�developed�on�how�to�extract�knowledge,�
statistical�usually,�from�them,�especially�in�the�context�of�data�mining.�The�
results� of� such�operations� are� abstract� and� compact� representations�of� the�
original�data,�which�we�name�patterns.�Still,�these�patterns�have�to�be�further�
elaborated� to� be� used� in� an� effective� way.� In� this� paper� we� present� the�
architecture� of� a� Pattern� Base� Management� System� that� can� be� used� to�
efficiently�store,�and�query�patterns.�We�present�its�logical�structure�and�we�
comment� on� the� criteria� of� whether� the� existing� systems� for� storing� and�
manipulating� data� can� cover� the� special� user� requirements� that� patterns�
impose.�

1.� Introduction�

Today’s� world� produces� an� enormous� amount� of� data� in� a� regular� basis.� Huge�
amounts�of�raw�data�have�to�be�processed�and�taken�into�consideration�before�new�
solutions�and�decisions�are�made�in�several�fields.�Raw�data�are�facts�that�have�an�
implicit�meaning�and�have�been�recorded�from�various�sources�in�the�real�world.�This�
recording�can�be�done�by�humans� through�data�entry�procedures,�or�by�collecting�
measurements�from�various�instruments�or�devices,�e.g.,�cellular�phones,�environment�
measurements,� monitoring� of� computer� systems,� etc.� (Figure� 1).� The� determining�
property�of�raw�data�is�the�vastness�of�their�volume;�moreover,�a�certain�degree�of�
heterogeneity�is�also�present.�

Clearly,�data�in�such�huge�volumes�do�not�constitute�knowledge�per�se;�i.e.,�they�
cannot� be� directly� exploited� by� human� beings� and� no� useful� information� can� be�
deduced�simply�by�their�observation.�Thus,�more�elaborate�techniques�are�required�in�
order�to�extract�the�hidden�knowledge�and�make�these�data�valuable�to�the�end-users.�
Data�mining� [BeLi96,� FPSU96,�HaKa01,�Vaz+02]�was� developed� to� help� extract�
knowledge�from�the�raw�data,�using�algorithms�that�could�discover�several�statistic�
properties�in�the�original�data.�Data�mining�produces�results�like�association�rules,�
clusters,�decision�trees�and�other�structures�that�describe�properties�of�the�raw�data.�
The�common�characteristic�of�all�these�techniques�is�that�big�portions�of�the�available�
data� are� abstracted� and� represented� by� a� small� number� of� knowledge-carrying�

�

representatives,�which�we�call�patterns.�Patterns�in�this�sense�do�not�appear�only�in�
data�mining�but� in� several� other� fields,� like� signal� processing,� image� recognition,�
spatial�databases�and�others.�

The�patterns�despite�being�already�the�results�of�some�elaboration�on�the�raw�data,�
are�not,�usually,�in�a�form�that�can�lead�us�directly�to�real�life�results.�We�need�tools�
that�will�permit�us�to�compare,�query�and�store�the�patterns�in�order�to�retrieve�the�
information�we�want.�This�paper�describes�the�architecture�of�a�system�named�Pattern�
Database� Management� System� (PBMS)� that� will� provide� such� tools� for� pattern�
manipulation.�

The�main�focus�of�this�work�is�dual:�(a)�it�describes�motivation�behind�and�the�
architecture�of�the�PBMS,�and�(b)�it�explains�why�such�a�system�in�needed�and�why�
no�existing�system�for�storing�and�manipulating�data�can�be�used.�In�Section�2�we�
explain�what�patterns�are,�and�give�briefly�some�mathematical�background�for� the�
PBMS.�In�Section�3�the�architecture�of�the�PBMS�is�described.�In�Section�4�we�list�
criteria�for�PBMS�characteristics�and�in�Section�5�we�conclude.�

2.� Patterns�and�Mathematical�background�

To�effectively�describe�what�patterns�are�in�our�context�and�why�they�are�so�useful,�
we�present�an�exemplary�scenario,�summarized�in�Figure�1.�The�available�raw�data�
come� from� a� super� market,� where� the� goods� purchased� from� each� customer� are�
recorded�in�the�database�of�the�super�market.�While�this�vast�volume�of�data�is�not�
providing�us�with�any�particular�information�on�the�buying�habits�of�the�customers,�
we�can�apply�a�set�of�knowledge�discovery�algorithms�to�the�underlying�data�and�
come� up� with� some� knowledge.� In� the� case� of� Figure� 1,� we� have� applied� an�
association-rules� algorithm,� thus� the� knowledge-carrying� abstractions� of� data� are�
association�rules.�Observe�that�the�association�rule�of�Figure�1,�apart�from�providing�
the�end-user�with�some�hidden�knowledge�over�the�underlying�data,�can�be�linked�to�
the�subset�of�raw�data�it�is�related�to�(see�the�arrows�in�Figure�1).�

Figure�1.�Patterns�(association�rules)�and�their�mapping�to�raw�data�[VaHT02]�
�
Patterns,�thus,�can�be�regarded�as�artifacts,�which�describe�(a�subset�of)�raw�data�

with�similar�properties�and/or�behavior,�providing�a�compact�and�rich�in�semantics�
representation� of� data.� In� our� setting,� patterns� must� satisfy� the� following� two�
properties:�

�

1.�We�assume�that�a�mapping�between�the�raw�data�space�and�the�pattern�space�is�
always�possible;�in�the�most�general�case�the�cardinality�of�this�mapping�is�many-

to-many.�Hopefully,�the�amount�of�data�associated�to�a�single�pattern�through�this�
mapping�is�large�enough�to�qualify�the�pattern�as�a�compact�representation�of�data.�

2.�The� extracted� patterns� have� to� preserve� as� much� knowledge� as� possible� with�
respect� to� the� raw� data� they� correspond� to.� In� other� words,� they� must� be�
semantically�rich,�both�through�the�knowledge�preservation�and�their�conciseness.�
�
Based�on�the�above�discussion,�we�are�ready�to�give�a�first,�informal,�definition�for�

patterns.�
Definition� 1� A� pattern� can� be� defined� as� a� compact� and� rich� in� semantics�

representation�of�raw�data.�□�
�
Next,�we�discuss�the�mathematical�foundations�of�patterns�and�their�relationship�to�

raw�data.�We�can�base�the�discussion�on�the�following�assumptions,�which�directly�
stem�from�the�aforementioned�definitions:�
−� There�exists�a�source�space�(the�space�of�raw�data)�and�a�pattern�space.�
−� There�always�exist�relationships�among�the�members�of�the�source�space�and�the�

members�of�the�pattern�space.�In�general,�these�relationships�can�be�of�cardinality�
many-to-many,�i.e.,�a�pattern�can�correspond�to�more�than�one�data�items�and�vice�
versa.��
�
Source�Space�Characteristics.�We�can�assume�that�each�data�item�in�the�source�

space�is�characterized�by�a�finite�number,�say�N,�of�dimensions.�In�the�case�of�a�single�
relational�table,�these�dimensions�would�probably�correspond�to�the�fields�of�the�table�
(although� one� can� also� consider� scenarios� where� only� a� subset� of� these� fields� is�
considered,� or� where� extra� information,� like� statistical� information� derived� from�
catalog� histograms,� annotates� each� tuple).� We� can� assume,� as� usual,� that� each�
dimension�of�the�data�items�belongs�to�an�infinitely�countable�domain.�We�will�call�
dom(x)�the�domain�of�each�dimension.�If�A1,…,AN�are�the�dimensions�of�the�data�
items,�the�source�space�is�defined�as�dom(A1)x…xdom(AN),�which�we�will�call�DN.�
The�set�of�actually�stored�data�comprise�a�subset�of�DN,�which�we�call�active�source�

space;�we�will�refer�to�the�active�source�space�as�D
N
A� .�

�
Pattern�Space�Characteristics.�Independently�of�which�kinds�of�patterns�we�are�

working�on,�we�can�assume�that�each�pattern�is�characterized�by�a�finite�number,�say�
M,�of�dimensions�or� features.�We�can�assume,�as�usual,� that� each�dimension�of�a�
pattern�belongs�to�an�infinitely�countable�domain.�Again,�we�will�call�dom(x)�the�
domain�of�each�dimension.�If�B1,…,BM�are�the�dimensions�of�the�patterns,�we�define�
the�pattern�space�as�dom(B1)x…xdom(BM),�which�for�brevity�we�will�call�DM.�Note,�
that�as�usually,�only�a�finite�subset�of�the�pattern�space�will�be�eventually�stored,�
queried�and�managed�inside�the�pattern�management�system;�similarly�to�data,�we�will�

refer�to�this�subset�as�the�active�pattern�space�D
M
A� .�

�

�

Relationship�of�data�and�pattern�spaces.�Without�loss�of�generality,�we�can�say�
that�each�pattern� is� related� to�more� than�one�data� items.�As�far�as�data� items�are�
concerned,�a�data�item�can�also�be�related�to�more�than�one�pattern�due�to:��
(a)�� fuzziness,�i.e.,�the�application�of�an�algorithm�that�does�not�result�in�a�single�crisp�

pattern�value�for�each�data�item;�
(b)��overlapping�output,�e.g.,�in�the�case�of�a�pair�of�association�rules�where�one�is�a�

more�general�variant�of�the�other;�
(c)�� the�simple�fact�that�there�can�be�patterns�of�different�types�corresponding�to�a�

single�data�item�(e.g.,�because�two�different�algorithms�were�executed�over�the�
same�set�of�raw�data).�

Data�Space� Pattern�Space�

�

Figure�2.�Data�and�pattern�spaces,�along�with�pattern�subspaces.�
�
Observe�Figure�2,�where�we�can�see�the�relationship�between�the�source�space�and�

a�certain�pattern�space.�As�mentioned�before,�the�relationship�is�not�a�function,�but�in�
general�fDP:DN

→DM�is�a�many-to-many�relationship.��
�
Relationship�characteristics.�By�observing�the�Venn�diagram�of�Figure�2,�we�can�

enrich� the� data-pattern� relationship�fDP� with� extra� information.� Basically,� we� can�
define:�
(a)��participation�measures�for�the�relationship,�e.g.,�how�large�subsets�of�DN,�DM�it�

involves,�if�it�is�total�or�injective,�etc;�
(b)��importance�measures�for�a�data�item,�e.g.,�how�many�patterns�does�it�correspond�

to�(practically�denoting�how�important�or�interesting�it�might�be);�
(c)�� importance�measures�for�a�pattern,�e.g.,�how�many�data�items�it�corresponds�to,�

whether�the�set�of�its�data�includes�the�set�of�data�of�another�pattern�(in�which�
case�we�can�test�for�pattern�zoom-in/out,�and�of�course,�identity).�

�
Another�issue�that�we�can�discuss�is�that�of�(a)�rich�and�(b)�compact�representation�

of�the�data�items�from�the�part�of�the�patterns.�For�both�of�these�issues�we�can�give�a�
naive�metric.�Let�us�start�with�richness�of�representation.�Clearly,�we�cannot�always�
(or,�do�not�wish� to)�store� the�entire� relationship�of�patterns�and�data� in�persistent�
storage.�Instead,�we�can�introduce�condensed�representations�of�this�relationship�(e.g.,�
in�the�form�of�expressions�in�a�certain�language).�The�richness�of�representation�can�

�

be� computed� as� the� fraction� of� the� relationships� captured� by� this� condensed�
representation�over�the�total�number�of�relationships�of�fDP�(actually,�we�can�define�
two�such�functions,�exactly�as�the�Information�Retrieval�community�defines�precision�
and�recall).�Another�measure�could�be�the�success�ratio�of�the�‘inverse’�mapping,�if�
such�a�mapping�can�be�derived.�As�far�as�the�compactness�of�the�representation�is�

concerned,�a�coarse�measure�would�be� the� ratio�of�size(D
M
A�)*M/size(D

N
A�)*N.�

(Note�that�M/N�is�not�a�good�measure,�since�an�association�rule�over�a�relation�with�N�
attributes�can�involve�up�to�2N�attributes;�still�if�we�could�characterize�1M�data�rows�
with�1K�association�rules�or�5�clusters,�this�would�be�compact�enough�representation).�

�
Subspaces�of�the�pattern�space.�Another�interesting�observation�lies�in�Figure�2,�

where�we�can�see�that� in�general,� the�pattern�space�is� the�union�of�a�finite�set�of�
different�sub-spaces.�We�can�envisage�this�division�in�two�different�cases.�In�the�first�
case,�we�can�consider�a�certain�subspace�comprising�the�set�of�association�rules�over�a�
table�of�raw�data�and�another�subspace�comprising�the�set�of�decision�trees�over�the�
same�table.�In�general,�exactly�as�we�define�tables�in�the�relational�paradigm,�we�can�
define�collections�of�semantically�related�patterns�(i.e.,�subspaces�of�the�grand�pattern�
space)� at� design� time.� In� the� second� case,� one� can� consider� that� all� the� patterns�
produced�by�a�certain�algorithm�(e.g.,�association�rules)�form�a�certain�subspace�(i.e.,�
we�have�one�subspace�for�decision�trees,�another�for�frequent�item�sets,�and�so�on).�
Each�subspace�can�be�further�decomposed�in�more�subspaces,�in�the�same�spirit�(e.g.,�
the�subspace�of�clusters�can�be�further�divided�to�subspaces�according�to�the�type�of�
clustering�algorithm�/�cluster�scheme�of�the�patterns).�Again,�the�problem�of�pattern�
similarity�between�the�members�of�the�two�subspaces�is�raised.�In�general,�subspaces�
can� be� considered� as� artificial� constructs� necessary� to� group� semantically� and�
structurally�similar�patterns�together,�with�the�purpose�of�their�further�querying.��

3.� The�reference�architecture�for�the�Pattern-Base�Management�
System�

Patterns�can�be�managed�by�using�a�Pattern-Base�Management�System�exactly�as�
database�records�are�managed�by�a�database�management�system.�In�our�setting,�a�
Pattern-Base�Management�System�(PBMS)�can�be�defined�as�follows.�

�
Definition� 2.� A� Pattern-Base� Management� System� (PBMS)� is� a� system� for�

handling� (storing/processing/retrieving)� patterns� defined�over� raw�data� in� order� to�
efficiently� support� pattern� matching� and� to� exploit� pattern-related� operations�
generating�intentional�information.�□�
�

The�reference�architecture�of�a�PBMS�is�depicted�in�Figure�3.�It�consists�of�three�
major�layers�of�information�organization.�In�the�bottom�of�Figure�3,�we�depict�the�
data�stores�that�contain�raw�data�(forming�thus,�the�Raw�Data�Layer).�Raw�data�can�be�
either�managed�by�a�DBMS�or�can�be�stored�in�files,�streams�or�any�other�physical�
mean�that�is�managed�outside�a�DBMS.�At�the�top�of�Figure�3,�we�depict�the�PBMS�

�

repository�that�contains�patterns,�which�forms�the�Pattern-Base�Management�System�
Layer.�Finally,�in�the�middle�of�Figure�3,�we�can�observe�the�intermediate�mappings�
that�relate�patterns�to�their�corresponding�data,�forming�the�Intermediate�Data�Layer.�
Intermediate�mappings� facilitate� the� justification�of�any�knowledge� inferred�at� the�
PBMS�with�respect�to�the�raw�data;�for�example,�they�could�be�used�to�retrieve�the�
rows�that�produced�the�association�rule�of�Fig.�1.�Ideally,�we�would�like�this�layer�to�
be�part�of�PBMS,�involving�specialized�storage�and�indexing�structures.�For�practical�
purposes,�though,�the�PBMS�should�be�constructed�in�such�a�way�that�it�functions�
even�if�intermediate�results�are�out�of�its�control�(which�we�would�expect�as�the�most�
possible�scenario�in�real-world�scenarios),�or�even�absent.�

�

�

Figure�3.�Reference�architecture�for�the�Pattern-Base�Management�System�
�
In�the�sequel,�we�will�delve�into�the�internals�of�the�PBMS,�which�will�be�the�focus�

of�our�research.�We�distinguish�three�internal�conceptual�layers�in�the�architecture�of�

�

the� PBMS� (in� contrast� to� the� aforementioned� physical� layers� of� the� previous�
paragraph):�
−� Pattern�layer,�which�is�populated�with�patterns.�These�are�the�basic�entities�that�are�

stored�in�the�PBMS.�
−� Type�layer,�which�holds�built-in�and�user�defined�types�for�patterns.�
−� Class�layer,�which�holds�built-in�and�user-defined�definitions�of�pattern�classes,�

i.e.,�collections�of�semantically�related�patterns.�
The�last�two�layers�are�conceptually�“higher”�than�the�pattern�layer�as�the�entities�

they� define� are� more� abstract.� Their� role� is� supportive� in� the� definition� and�
manipulation�of�the�patterns.�Next,�we�present�a�brief�description�of�all�the�entities�
that�appear�in�this�conceptual�description�of�the�PBMS:�
−� Pattern�Layer.�The�patterns�can�be�either�identified�through�query�processing�or�

given�a-priori,�according�to�the�classification�proposed�in�Section�1.�Patterns�are�
related�with�raw�data�via�the�intermediate�mappings.�In�the�first�case,�they�can�be�
obtained�by�different�data�mining�algorithms.�In�Figure�3,�three�algorithms�have�
been�applied:�an�algorithm�for�the�extraction�of�association�rules,�the�DBSCAN�
algorithm� [EKSX996]� for� the� extraction� of� clusters� and� an� algorithm� for� the�
extraction�of�a�decision�tree.�Besides�this,�a�user�can�specifically�define�and�store�a�
pattern�over�the�raw�data,�e.g.,�a�primary�key�constraint,�a�functional�dependency�
or� an� integrity� rule.� In� Figure� 3�we�depict� the� case�where� the�designer� of� the�
database�with�the�raw�data,�has�defined�a�primary�key�constraint�over�them.��

−� Type�Layer.�The�PBMS�pattern�types,�describe�the�syntax�of�the�patterns.�Patterns�
of�same�type�share�similar�characteristics.�The�intuition�behind�this�is�that�a�large�
number�of�operations�can�be�applied�to�patterns�with�similar�characteristics�and�get�
potentially�meaningful�results.�Thus,�defining�a�pattern�as�an�instance�of�a�specific�
type� ensures� that� certain� operations� will� be� applicable� to� it.� For� example,� the�
overlap�of�a�circle�and�an�inference�rule�cannot�even�be�defined�in�an�intuitive�
manner,�whereas�the�overlap�between�two�circles�may�be�of�interest.�Moreover,�the�
lesson� learned� from� object-oriented� databases� dictates� that� different� internal�
representations� can� be� suitable� for� different� types� of� patterns.� Normally,� we�
anticipate�the�PBMS�to�come�with�a�set�of�built-in,�popular�pattern�types.�Still,�the�
type� layer� must� be� extensible,� simply� because� the� set� of� pattern� types� that� it�
incorporates� must� be� extensible.� In� fact,� we� understand� the� extensibility�
mechanism� as� a� requirement� for� the� model,� so� that� whenever� a� new� kind� of�
patterns�is�devised,�it�can�be�gracefully�incorporated�in�the�PBMS.�The�type�layer�
must�characterize�patterns�based�on�the�type�of�source�data�they�are�related�with,�
their�structure,�and�the�measures�we�want�to�associate�with�them.�

−� Class� Layer.� The� PBMS� classes� are� collections� of� patterns� which� share� some�
semantic�similarity.�Patterns�that�are�members�of�the�same�class�are�obligatorily�
required� to� belong� to� the� same� type.� Classes� are� used� to� create� patterns� with�
predefined�semantics�given�by�the�designer;�by�doing�so,� the�designer�makes�it�
easier�for�the�users�to�work�on�them�in�a�meaningful�way.�For�example,�a�class�may�
comprise� members� that� are� clusters� over� AGE� and� SALARY,� i.e.,� patterns� that�
represent�groups�of�employees�in�a�company�that�have�approximately�the�same�age�
and� get� similar� salaries.� In� order� to� model� these� concepts,� we� assume� that�
supportive�entities�not�appearing�in�Figure�3,�called�features,�belongs�to�the�PBMS.�
Features�form�an�ontology�in�the�PBMS,�whose�elements�are�used�in�the�definitions�

�

of� patterns� and� classes.� Features� facilitate� giving� semantics� to� the� patterns� or�
classes�that�are�defined�over�them.�We�can�imagine�features�as�a�dynamic�interface�
over�raw�data.�For�example,�a�feature�labeled�AGE�can�be�dynamically�linked�to�
several�data�representing�the�age�of�employees.�
One�could�elaborate�more�on�extra�potential�characteristics�of�the�class�and�type�

layers;�in�fact,�in�[Riz+03]�we�have�introduced�the�notion�of�specialization�hierarchies�
among�types�and�the�possibility�of�composing/refining�composite�types.�For�lack�of�
space,�we�refer�the�interested�reader�to�[Riz+03].�

Another� meta-entity� of� the� PBMS� is� the� language� that� is� used� to� define� the�
structure� of� patterns� and� the� condensed� expression� for� representing� the�mappings�
between� the� patterns� and� their� respective� raw� data.� The� expressive� power� of� the�
language�and�the�available�features�determine�the�kind�of�patterns�that�we�can�express�
in�a�certain�PBMS.�The�PBMS�features�provide�the�semantic�domain�of�the�PBMS;�
the� supported� language� on� the� other� hand,� provides� the� expressive� power� of� the�
PBMS.� By� extending� the� defined� features� and/or� by� using� a� more� expressive�
language,�more�patterns�can�be�stored�and�manipulated�by�the�PBMS.�

5.� Towards�a�PBMS�Manifesto��

In�this�section�we�will�discuss�on�the�necessary�principles�and�features�for�a�PBMS.�
Clearly,�this�represents�a�personal�viewpoint;�still�we�believe�it�is�well�justified�by�
interesting� practical� applications.� First,� we� give� a� short� list� of� requirements� and�
characteristics� for� a� PBMS.�We� group� the� requirements� in� functional� and� system�
areas.�Then,�we�will�briefly�compare�our�approach�with�respect�to�the�current�state�of�
the�art�in�object-relational�and�object-oriented�DBMS’s.�

�
Data�model�

�
1.�A�PBMS�will�be�based�upon�a�generic�uniform�model� that�covers�all�kinds�of�

patterns.�The�model�captures�all�static,�dynamic�and�well-formedness�properties�of�
all� patterns� (i.e.,� structure,� operations� and� integrity� constraints),� just� as� the�
relational�model�does�for�database�records.�

2.�A�PBMS�model�represents�its�instances�in�a�compact�and�rich�in�semantics�fashion�
(i.e.,�we�gain�a�concise�representation�with�respect�to�the�raw�data�and��we�do�not�
lose�information;�in�fact,�we�abstract�new�knowledge�by�escaping�from�the�vast�
volume�of�raw�data).�

3.�A� PBMS� will� support� different� types� of� patterns� in� an� extensible� fashion.�
Whenever�new�kinds�of�patterns�are�discovered,�or�considered�to�be�of�interest�to�
the� PBMS� users,� they� will� be� smoothly� integrated� in� the� PBMS,� through� an�
extensibility�mechanism.�

4.�A�PBMS�will�allow�its�user�to�be�able�to�identify�interesting�subsets�of�the�pattern�
space� on� the� basis� of� their� semantical� similarity.� This� corresponds� to� the�
aforementioned�notion�of�classes.�

5.�A� PBMS� will� support� composite� patterns,� generated� from� simpler� ones.� This�
implies� that� several� levels� of� representation/abstraction� should� exist� among�

�

patterns,�including�different�levels�of�granularity,�multi-dimensionality,�recursion,�
hierarchies,�etc.��

�
Architecture��
�
6.�A�PBMS�will�have�its�own�mechanisms�for�representing�and�storing�its�entries.�
7.�A�PBMS�will�cooperate�with�DBMS’s�storing�raw�data;�however�raw�data�can�also�

be�stored�outside�a�DBMS.�
8.�A�PBMS�must�be�able�to�manage�also�pattern�extraction�and�creation,�through�the�

appropriate�mechanisms.�
9.�A�PBMS�will�allow�access�to�intermediate�results�of�pattern�creation�algorithms;�

still,�whenever�access� to� these�data� is�not�possible,� the�PBMS�will�continue� to�
function� properly,� compensating� the� loss� of� knowledge� through� appropriate�
mechanisms.��

�
Query�Language�and�Processing�
�
10.A�PBMS�processes�different�kinds�of�queries�(because�of�different�user�needs),�

possibly�even�on�raw�data�and�returns�more�intuitive�results�to�users.�
11.A�PBMS�employs� a� query� language�which� can� at� least� perform� the� following�

tasks:�
−� Pattern�matching,�meaning� the�mapping�of�a�certain� (new)� input� to�a�set�of�

patterns�already�found�in�the�PBMS�and�its�reverse�operation,�which�leads�from�
the�pattern�towards�the�raw�data�that�correspond�to�it�

−� Deductive� capabilities,� meaning� that� logical� inferences� on� the� basis� of� the�
pattern�representation�are�one�of�the�desiderata�for�the�query�language.�This�can�
involve� several� operations,� such� as� zoom� in/out� over� patterns� that� can� be�
composed�with�part-of�relationships�(i.e.,�a�pattern�that�corresponds�to�a�large�
set�of�data�is�possibly�related�to�a�pattern�that�corresponds�to�a�subset�of�these�
data),� pattern� composition� of� patterns,� which� are� candidates� to� compose� a�
complex�pattern,�roll-up�and�drill-down�over�multidimensional�hierarchies�of�
features,�etc.�

−� Meta� querying� facilities,� enabling� the� possibility� of� querying� the� composing�
elements� of� a� pattern� base� (e.g.,� types,� classes,� etc.)� in� order� to� extract�
meaningful�conclusions�and�to�enable�the�administration�of�the�PBMS��

12.A�PBMS�is�useful�in�order�to�process�those�queries�more�efficiently�than�a�normal�
DBMS�would�do.�
�
We�tend�to�believe�that�the�PANDA�approach�is�not�yet�another�object-oriented�or�

object-relational� variant.�Although� it�might� look� quite� close� due� to� the� class/type�
system,�the�two�approaches�are�intrinsically�different:��
−� In� terms� of� the� model,� the� discriminating� feature� is� the� requirement� for� a�

semantically�rich�representation�of�patterns,�achieved�by�separating�structure�and�
measure�on�the�one�hand,�by�introducing�the�expression�component�on�the�other.�

−� From� the� functional� point� of� view,� instead� of� pointer-chasing� object-oriented�
queries,�novel�querying�requirements�arise,�including�(a)�ad�hoc�operations�over�
the� source� and� pattern� spaces� and� their� mapping,� (b)� pattern� matching� tests,�

�

facilitated�from�the�separation�of�structure�and�measure,�and�(c)�reasoning�facilities�
based�on�the�expression�component�of�patterns.�

−� In� terms� of� system� architecture,� the� relevance� of� queries� aimed� at� evaluating�
similarity� between� patterns� and� the� request� for� efficiency� call� for� alternative�
storage�and�query�optimization�techniques.��

6.� Conclusions�and�Future�Work�

In�this�paper,�we�have�dealt�with�the�introduction�of�the�mathematical�foundations�and�
the� architecture� for� pattern� management.� First,� we� introduced� the� intuition� and�
mathematical� foundations� for� pattern� management.� Next,� we� presented� the�
architecture�of�a�Pattern�Base�Management�System� that�can�be�used�to�efficiently�
store�and�query�patterns.�Finally,�we�commented�upon�the�criteria�and�characteristics�
of�PBMS’s�and�on�whether�the�existing�systems�for�storing�and�manipulating�data�can�
cover�the�special�user�requirements�that�patterns�impose.�

Clearly,� under� this� general� framework,� the� PANDA� consortium� has� several�
interesting�tasks�to�accomplish.�From�our�part,�our�future�research�includes�primarily�
theoretical�aspects�like�the�introduction�of�a�powerful�language�for�expressing�pattern�
semantics,�the�possibility�of�contributing�to�the�model�of�[Riz+03]�e.g.,�by�introducing�
constraints�on�patterns;�and�finally�by�contributing�to�a�flexible�query�language�and�its�
respective�algebra�for�retrieving�and�comparing�complex�patterns.��

References�

[BeLi96]� Michael�Berry,�Gordon�Linoff.�“Data�Mining�Techniques:�For�Marketing,�Sales,�
and�Customer�Support”.�John�Willey,�1996.�

[EKSX96]� M.� Ester,� H.-P.� Kriegel,� J.� Sander,� X.� Xu.� A� Density-Based� Algorithm� for�
Discovering�Clusters�in�Large�Spatial�Databases�with�Noise.�Proceedings�of�the�
Second� International� Conference� on� Knowledge� Discovery� and� Data� Mining�
(KDD-96):�pp.�226-231,�1996�

[FPSU96]� U.�Fayyad,�G.�Piatesky-Shapiro,�P.�Smuth�&�R.�Uthurusamy�(eds).�"From�Data�
Mining� to� Knowledge� Discovery:� An� Overview".� Advances� in� Knowledge�
Discovery�and�Data�Mining.�AAAI�Press,�1996.�

[HaKa01]� Jiawei� Han,� Micheline� Kamber.� “Data� Mining:� Concepts� and� Techniques”.�
Academic�Press,�2001�

[Riz+03]� S.�Rizzi,�E.�Bertino,�B.�Catania,�M.�Golfarelli,�M.�Halkidi,�M.�Terrovitis,�P.�
Vassiliadis,�M.�Vazirgiannis,�E.�Vrachnos.�Towards�a�logical�model�for�patterns.�
Submitted�for�publication.�

[VaHT02]� M.�Vazirgiannis,�M.�Halkidi,�G.� Tsatsaronis.� The� logical� model� of� a� Pattern�
Management�System�(The�AUEB�viewpoint).�PANDA�Internal�Report�PANDA�-
-�AUEB�–�001.�June�2002.�

[Vaz+02]� M.�Vazirgiannis,�M.�Halkidi,�G.�Tsatsaronis,�E.�Vraxnos,�D.�Keim,�P.�Xeros,�Y.�
Panagis,�A.�Pikrakis�(UoA).�Related�Research.�PANDA�Internal�Report,�PANDA�
–�AUEB,�KONSTANZ,�UoA,�CTI--�<001>�.�October�2002.�

�

� ������� 	
���
�
� ��
 �����
� ���
����������

������� �	

	�� �
	�� ����	���� ������� �����	��� ��� ������ ��
����

	�

� ����� ���	
 ��
������� �����
� ����� ���	
 �� �����

� ����� ���	
 �� ������ �����

��������� ��������� ��� 	��� 	����� �� ��������� ������� ���� � ����� �� �� ��!��� !"�#
������� ������� ��$� !����"� "���������� ��� ���� ������ �� �"��" �� "����� ��� ���!��%���
�� ���� ����������
 &�� ���!�� �� ����� ������'��� �"� ����"�������� $�������� �"��������
���!��� ��� "��� �� ���������� ���� �� ���� ��������
 (����"�� ��� � �Æ������� ���"�� ���
������� � ����� � (����"�#
���� ���������� ������
 ������ ���� � ������� !����"�� ��	�
�� � "�!"������� ��� ����!������ ����"���� �� � ������� �	
����
	���
 �� ���� !�!�" ��
!"����� ��� ������� ����������� �� ���� � ������ ���"������� ��� ������� �� !����"� ��!��
��� !����"� �������� ����� ����� ��" ��� ����������� ��� �%��������� ����"�!���� �� !����"�
���������� "��!����	���
 &�� �"�����"$ �� ����"�� ��� �%����� �� ������ �� ��	�" � "���
"���� �� "���#��"�� !����"��) ���� !����"� �� ���"����"�*�� � ��� ��"����"�� ��� "������ ��#
��"����� ����� �� �%!"������ ���� ��""��� ��� ��������� �� ��� !����"�� ��� �����"������
�� ��� ���������� ��� "�!"���������� �� "�� ���� ��
 ���� "���"$� �� ��!�� �� "����������!�
 ������ !����"�� �"� ���� ���������

� �������	�
��

��� 	������	�� ��������	�� �� ��	��
� ��

���	�� ��� �����
� ����	��
���� ��
� �� �� ����� ��� ���
���� ��� �!�����	�� ����	�� 	���� ��	�� �� �� �Æ�	���
� ��	��
���� ��� 	���	�	��
� ���
����� ���
���	�� ��" ����	�� ���� ��� #���� 	� ���� 	������	�
 ��� ��	���	$� ���
	���	���% &� ��	� �����!��
���� "�������	�� ����� � ���� ���� ��$��� "	�� ��� �	 �� ����	�	�� ������� ��� ���"
����
"������ "	�� �����'��'���� �� ��� ���� �� �� ���� ��� ���	�	�� �������% (�"����� ���
	 	���
���
��	� ��"�� ����	��� ��)*+, 	��������� ������ �� �� 	���Æ�	��� ��� �������� ���
	���	���� 	�
"�	�� ��� ���� �����	�� �� ���� ������ ��������	
� ����	��� �� 	'���� ���� �������	�� �����	�����
��� ��� ����
	��	�� �� ��� ���� ����	�� ���� ��

� ��� ���'�������� ���
��	� �����	����% �����
����	��	����� ���� �������	�� ���
� -����� ��� 	������� �� ���� 	�	��� ������� ������	�	��� ���
���"
���� �!�����	�� �����	����. "��� ���	��� 	� ����� �� ������� �� ��� �� ����	�
�� ��� ����
	��������	�� 	� ��� ������� �� �!�����	�� 	�������	�� ���"
���� ���	����� -�%�%� �
������� �����	��	��
��
��� �	 � ���	��. ��� ��" ���� /0� 1� 23% 4� �
�	 ���� ��� ��� ������� 	� � ���� ����	���� ��
������

� ������ ����� ����
 	���� ��	�� ������ ���������	
�� �� � �	�� ������ �� �	����	�� ���
�� �
�!	��%
#	5�����
� ��� ��� ���� �� ���� "�������	�� ����� �� ��� ����
� �� �	����
� ����	�� ���

�����	�� �������'����� ��� ����	��� ����
	 	��� ������	�� �� ��� 	� ��� �� ���	�
 "��
�� ���
������
� �� ������	�� �� �

 ��� ��� �������� �� ��	��% &������ ����	�	���
 #���� �� ���
��� �� �� ��"����
 ��� 6�!	�
� ������ �� ���
 "	�� ��	� ��" �	�� �� ���"
����%)� ��� �����
����� "� �
�	 ���� ������� �����������	�� ��� ����� ��� ��� �� �Æ�	���
� ����	��� �� ��	��
� ����	$� ����� � ��

�� ��������	�
� ������
��� ��
��
 -,���.� �����
� �� ���
	��� ����	���
��� �Æ�	���
� ����	�� ��������% ��� ���������� 	� ��	�� � ,��� ��� �� �� ��	
�� �� ��

�"�7

� ��
��������% 4	��	� � ,���� �������� "��
� �� ��� $���'�
��� �	�	
��� ���� ����	�	�� ���
���� "	�� � ���	����
 ��������	�� �� ��" ���� �� �� �	����
� ���
�
�� ��� ��	��
����%

� �Æ������% &�������	�� �� ����	�������
 �������	�� ���"��� ��� ,��� ��� ��� #��� "��
�
	 ����� ��� �Æ�	���� �� ���� ����	�	���
 ��������	��� �� ��� #��� ��� �������� �������	��
�� ��������%

� ��������% ��� ,��� "��
� ����	�� �� �!�����	��
������� ��� �����	�� ��� �������'���� 	�
����� �� ����	��� ��� �� ���� ��������%

�	 	
��
� �� ��� #������� ������ ��� ����� � �
�� � ,��� ��� ��
� �� � ����	$� ����
 ���
� �� "�	�� �������� ��� �� ����������� ��� ��	��
����% ���� � ���
 ��� ���	��� ���
��

�"	�� ����	�� ����7

� ����������% ��� ���
 ��� �� ������
 ������ �� ��� �

 ��� ����	$� ����	�� ���� ����� 	�
�	5����� ���
	���	�� �� �	�� ��� �	5����� �	��� �� ��������%

� �����
�������% ��� ���
 ��� �� �!����	�
� �� ���� ����� ��" �	��� �� �������� 	���������
�� ����
 ��� ���

���	�� ���
	���	���%

� ���
�������% ��� ���
 ��� 	��
��� ���������� ��������	�� ��� ����� �� "��� ��� �
����� ����
��$���%

&� ��	� ������ "� ������� �
��	��
 ��� �"��� ��� ������� �����������	��� "�	�� ���������� ���
$��� ���� ��"���� ��� ��$�	�	�� �� � ������� ���� ���
% &���� �

�� � ������� ��� �� ������� �� ��
� ��
���� ��� ���� ��
�
�����
 �����������	�� �� ��" ����% &� ��� ��������� 	� ����� �� ���������
������
	��� � ������� 	� ���
�� �� �� � �	� �� �������� �� �
� 	��
���������
��
����
������
��� �����

���% ��� ��������� �� ������ �������
 ��� ������� ��
����	�� 	� "	��	� � �������
�����% ��� ������ �� ������ ��������
 ��� ������� �� �����	�� ��� ���
	�� �� ��� ��" ����
�����������	�� ���	���� �� ��� ������� 	���
�% ��� ������ �� ������ �����	��� ��� ��" ���� ���
������� ��
���� ��% ��� �!�����	�� �� ������ �����	��� ��� -�����!	 ���. ���	�� ���"��� ���
��" ���� ����� ��� ��� ������� �����% 4� �
�	 ���� ���� �� ������� ��� ��Æ�	��� �� ���������
�
���� �� ��� �� ��������� ��	�	�� 	� �	5����� ���
	���	�� �� �	��%
���� ������� 	� �� 	������� �� � ������� ����% &�������� �� ��� �� � ���� ����� �	 	
�� ���������'

	��	��% ����� ��$�	�� � ������� �� �� 	������� �� � ����	$� ���� ������� ���� �����	� ������	��� ���
�� ���
	�� �� 	�% ��������� ���� ������� ��� ��
��� �� ��� �� ��� �
�����% ���� �
��� ����������
� ��

���	�� �� �������� "	�� ��� �� � ���� ��� 	� 	� ��� ��� ������� ��� ��� ��$�	�	�� �� � �����

������� �	���� �	 	
��
� �� ��� ��8���'��	����� �����!�� ���� ����� 	� �!������ ���	��� ��� �� ���
��

���	���%
&� ����� �� ��������� �!����	�	
	�� ��� ������	
	��� "� ���� ������� ������
 	�������	�� ��
��	��'

��	�� ���"��� ������� ������ ���� �� ����	�
	
��	��� �� ���	�	��� ��� ��$�� ���%
&� 	� 	 ������� �� ���� ����� ���� 	� �� � ����	$� ���������� ���� �
����� ���� �������� ��

 ���
 ��������� ���� �� ,���	��	�� ����
 ������ *������� /93� �:*;�� �������� /<3� �� ��
4�������� ����
 /=3� >��� #��� �	�	�� +,& /?3� ���� ��� 	��������� �� ��������� ��� ����
�
�	5����� �
����� �� �������� 	� � 6�!	�
�� �5���	��� ��� �������� "��% &� ����� ����
��� ��� ����	��'
 ����
	���� ����� �	��� ����

�� ��
� � �	���
	�� �� �����$��� ������� ����� ��� �� �����������
��� �� ������
 ��� �!����	�
� �������� �� ������� ���
	�� 	� ��������% +
�� ��� �	���� �����
�� � ��� ������
 ��� "�

'���������� ������
���� ���� �� ��� ��8���'��	����� �� ��8���'��
��	���

���� ���� ��� ��� �� ��
�� ��� ����
� � �	��� ������� ���
	�� ��� �����	� ��8��� ���
	��
��� 	���	��	���

� �	5�����% ��� �	���	 	���	�� ������� 	� ��� ����	�� ��� ��� � �� ���	��

� �	��
�����������	�� �� ��������� ���	���� �� �������	�� ��������� ��� ������ �� ��� ��� ����� �� 	�'
������	�� ��� �!�����	�� �� ������ �� ��� �����% ����� �� ������� ���� � "�

 ��$��� �� ���	��
��� � ,��� ��
�	�� �� ��� �������� ���
 "	

 �� ��
� �� ����� �

 �� ��� 	� � �� ���	��

�
 ���	����
 "��%
��� ����� 	� ���������� �� ��

�"�% &� ����	�� <� "� 	�������� ��� ������� �� ������� ����%

,������� ��� 	��������� 	� ����	�� ? "������ �
����� ��� ��������� 	� ����	�� 9% &� ����	�� @ "�
�	����� �� � �� �����
� ����� �� ��
��	����	�� ���"��� ��������% A	��

�� 	� ����	�� 0 "� �������
�� � ����
��	��� ��� ���
	�� ������ "���%

� �
����� �����

������ ��� �������� 	� ���� ���	� �� ��� ���	�� ����� �������� ��� �!� �
�� ����	��� 	� ��	�
����� "	

 �� ����� �� � ����	$�� ���� �� �� ���	�� ����� % +��� 	�� ����� 	� � ��� �� ��
�
����
 -	��
��	�� ��� ���� ���� �. ��� � ��� �� ���� ���
�������
� ��� ��� � �� ����� 	��
���� �

 ���
���� ����� �������� "	�� �

 ��� ����� ������	��
� ��$��� �� ���
�	�� � ���� ����������� �� ��� ��
 ��� ����� �����% ����� ��� ���
	�� �� ���������
%

*�� ���� ����� 	��
��� 	�������� ���
�� ���
����� ���	���� ��� �	 ���� ��B
�� ���� ������������
	��
���
	��� ���� ���� ������ ��� ���
�% C�	�� �� ���	��� �����!� �� � �!� �
�� �� ���� ���
����	���
��� -"� ��� ��������� ��� ���� ����� ��� ���� �������������
�"������ ��� ����	�����.7

� ������� ��	

� ���
��������
� ���
�
�� �������� �� ��������
� ����������
���
���
�
���� �������� ������� ���������

+ ������� ���� ���������� ��� 	�����	���
 ��� �� ��������� �	�	�� � ��� �
 �����	��	�� �� ���	�
��������� ��� ��
��	����	� "	�� ������ ����% ����� ������� ����� �
�� ��� �� � ��
� �� ��������
���� ����� 	� ��� ��8���'��	����� ���
%

��������� 	
�����
� ������ � ������� ���� �� �
 � ��������� �� D -�� ��� ������ 	. ����� � �

��� �� � � ��� ������� ����! ��" ��" ��# �� $�����# ��
�����%��� ��������� ���� �" ������ ���� �"
��# ������ ���� �& ��� ����
 �� � ! 	 �
 � ��� �
�" ������� �� � ��%�� ��������" ����� �� ��
 ��
���������
 ��������� �� ���
����� ��# �� ���
��������
���
�
'

��� $��� �� ������ �� � ������� ���� ��� �� ���	��� ���	��B ��� �� �	�	�� ���� ���� ���
��

�"	�� ��
��7

� ��� ��������� ���� � �� ��$��� ��� ������� ����� �� �����	�	�� ��� ��������� �� ��� ��������
	�������� �� ��� ������� ����% ��� ���	����
� �� �
�!	�� �� ��� ������� ����� -������ ���
6�!	�	
	�� �� ������� �����������	��. ������� �� ��� �!�����	�	�� �� ��� ���	�� ����� %

� ��� ������ ���� � �� ��$��� ��� ��
���� ������ ����� �� �����	�	�� ��� ������� ��� "�	��
��������� 	�������� �� ��� ������� ���� ��	�� ��$���� ��� �����������% ���������	
	�� ��� ������
���� � 	� ����� ����
 ��� ����� ������	�� "�	�� 	���
��� ���� ��� ������� ����� ��� ��� ������
����� -�%�%� "��� ���
�	�� �� � �����	��� �� �!����� �������� ��� ��" ���� �� "��� �����	��
��� ��� ��
	�	�� �� � ������� �� � �������.%

� ��� ������ ���� � �� �����	��� ��� ������� "�	�� �����	�� ��� ���
	�� �� ��� ������ ����
�����������	�� ���	���� �� ��� �������% ��� ��
� �� ��	� �� ������ 	� �� ����
� ��� ���� ��
���
���� ��" �������� ��� �	��	$���� ��� � �	��� ���
	���	�� ���� ������� 	�% ���	���� ���
�	5����� �� ���	�� �� ��� ������ �� ������ "	�� ��������� �� ��� ��������� ��� �� �!�
�	���
	� ����� �� ��$�� ��� �5���	�� �����	��� ��� ���
���	�� ��� �	������ ���"��� �"� �������� /E3%

� ��� ��� �
� 	 �����	��� ��� ��
��	����	� ���"��� ��� ������ ����� ��� ��� ������� ������ ����
�����	�� ��� �� ���	�� �� ��� �������% &��	�� 	 � ����	����� ��� 	���������� �� ���� ���	��
��
����	�� ���� ��� �� ������� �� �	���� ��� ������ �� ��� ������� �����% F��� ����� ������
	� �� � ����	��
�� �� �	�� 	 �� �!���
� �!����� ��� 	����'����� ��
��	����	� -�� ���� ��
�

�"	�� �

 ��" ���� ��
���� �� ��� ������� �� �� ��� ������.� 	� ��� ����� 	� "	

 �����	��
	� ��
� �����!	 ��	��
�%

������ ��� �������� �� ������� ���
	�� 	� ���� ���	� �� ���
������� ������� ��� ��� �'

��� ��� ���	����
� �� ���	�� ��� �������� ������
� ������� �� 	�� �!�����	�	��% A�� ��� �!� �
��
�������� 	� ��	� ������ "� ��� � �������	�� ��
��
�� ����� �� ��
��� 	�
 �������	��� "�	�� ��� �
��	���
� ��� ������
 ����� �� �������� /=G3B ��	

� � ��

 �!�
����	�� �� ��� ��� ��	���
�
������� 	�
����	�� ��� ����� �� ��� �����%

���
��� (' �	��� � �� �	�
 �� ��
��� ��� � ��� �� ��������	���� ���� 	��
��	�� � ������ ��
�
�� �

�������� ���� ����� ��� ��� � � � "���� � �
� � �
� � � � D �% � 	� ����� ��

��
��� ���# �� ��� ��
�� "�	
� � 	� 	�� ��#� /23% +� �!� �
� �� � ������� ���� ��� ���
	�� �����	��	��
��
�� ���� ���	��� ���������	�� �������� 	� ��� ��

�"	��7

� 7 	��������������

�� 7 ���
�
��� � ���
�������� !� �� ���
��������

�� 7 "	�
������������ ���
��������

�� 7 ���
�
���# ����� ��	
� �������� ��	
�

	 7 �
-
 � ��� �
 � !� � 	
 � �����������.

��� ��������� ���� � 	� � ���
� ���
	�� ��� ���� ��� ��� ����% ��� ������ ���� � ����	$�� ����
�����	��	�� ��
�� ��� ����������� ��� � ��� �� ��������	���� ���� ��$��� �� � ��� �� ��������%
��� ������ ���� � 	��
���� �"� �� �� ������� ���� �� ������ ��� ��
������ �� � ��
�7 	��
���$����� -"��� ���������� �� ��� ��������	��� 	��
��	�� ��� ���� �
�� 	��
��� ��� ����. ��� 	��
������� -"��� ���������� �� ��� "��
� ��� �� ��������	��� 	��
��� ���� ��� ���� ��� ��� ����.%
A	��

�� ��� ��� �
� �� ��� �������	�� ��
��
�� ���������� -�!���
�� 	� ��	� ����. ��� �������;�������
��
��	����	� �� �����	��	�� ���� ��
� "	�� ��� ��� �� ��������	��� "�	�� ������� 	�%

���
���)' +� �!� �
� �� � ���� ��	��
 ������� 	� � ����	���
	�� "�	�� 	������
���� � ��� ��
�� �
��% &� ��	� ����� ��� ������ ���� � ���
� ��� �� �
��� ��� ��������� ���� � 	��
���� ���
�"� ���Æ�	���� ��������� �� ����� 	�� �
	��� "�	
� ��� ������ ���� � 	��
����� ��� 	��������
� $��	�� �����	$��% ��� ��� �
� "�	�� �����
	���� ��� �����!	 ��� �������������� ���"��� ���
������� ��� ��� ������ ���� 	� ��� �����	�� �� ���
	��%

� 7 �������������
���

�� 7���
�
�� ��	
� !���	
�

�� 7 ���
��$���� ���
�
�� ��	
� �� ��	
��

�� 7 #������ ��	

	 7 � % �
 � & !

� �
������

������ 	�������	�� ��� ������� �� �������� "� ��$�� ������� ��
���% �� ��	� �������� "� ���� �
���� ���� ���� ���� �� 	� �����	���� "	�� � ��� �� ���"� ��
��� ���-��.% H�
��� ��� ��� �����
���� � ��� 	�����	��
� ��$��� �� ��

�"�7 -	. 	� � D���-��. ��� ��� � � � � �� ��� ��
��� ��� ��� ����
���� � � � � ��� 	� � ��
�� ��� �B -		. 	� � D"	�-��. ��� ��� � � � � �� ��� ��
��� ��� ��� ���� ����� � � � � ����
	� � ��
�� ��� �B -			. 	� � D
���-��. ��� ��� � � � � �� ��� ��
��� ��� ��� ���� � ��� � � � � �� � 	� � ��
��
��� �B -	�. 	� � D	��	'/=� � � � � �3-��. ��� ��� � � � � �� ��� ��
��� ��� ��� ���� /��� � � � � ��3 	� � ��
��
��� �B -�. 	� � D���
�-�� 7 ��� � � � � �� 7 ��. ��� ��� � �� ��� ��
��� ��� ��� � � � � ��� �������	��
�� ����
-�� D ��� � � � � �� D ��. 	� � ��
�� ��� �%
*�� ��" ���� �� ������ 	� � �� ��� �� ��������� ���;�� $
��% + #���
�� 	� ��� ������ �� �����

����� "�	�� "� ���� � �� �� "������ ����� � ���� �� ��� ���	�� ����� -#���
�� ����.% ,�������
��� �� ��$��� �� ��

�"�%

��������� �
�����
��� *�� �� D -�� ��� ������ 	. �� � ������� ����' � ������� � ��
����� �
�� �
 � ��������� � D -���� �� ���� �. ����� ��� $������� 	����	$��& �
 � ������ �#������� �� �!
� $���������& �
 � %���� �� ���� ��! � $������& �
 � #���
�� ���
� ���� ��� ��

 �� ���� ��! �
$ ������& �
 � %���� �� ���� ��! � �
 �� �����

��� #������� ��� ������ � ���
�����
���� �����
�
 ������# �� ������� �'

+�����	�� �� ��	� ��$�	�	��� � ������� 	� ���������	
�� �� -=. � ������� 	����	$�� -"�	�� �
���
��� �� � ��
� ��)&#� 	� ��� ��8��� ���
.� -<. � ��������� ���� ���	�	��� ��� ������� "	��	� ���
������� ����� ��$��� �� 	�� ������� ����� -?. � ������ ���� 	����	$�� ��� ����	$� ������� ��� �������
��
���� ��� -9. � ������ ���� ���	 ���� ��� ���
	�� �� ��� ��" ���� �����������	�� ���	���� �� ���
�������� -@. �� �!�����	�� "�	�� ��
���� ��� ������� �� ��� ������ ����% &� ����	��
��� ��� �!�����	��
	� ����	��� �� ��� ��� �
� 	 	� ��� ������� ���� �� -=. 	������	��	�� ���� ����	���� ������	�� 	� ��
"	�� ��� ����������	�� ��
�� ����	$�� 	� �� ��� -<.
���	�� ��� ����	����� ������	�� 	� �� ����� ����
��� ������ �����% F��� ���� ������� 	���� ��	�� ���
� �� �����	���� �� ���� �������� ����	��	�� ���
	������� ��� 	�	�� ����	�� "�	�� �������� 	�� "�	�� �
���	�� "�� ����� "�	�� ���� ���� ��
���
��
� ��� �
���	�� � ���%

���
��� +' ����	��� ���	� ������� ���� 	�������������� ��$��� 	� �!� �
� =� ��� ������� ����
��" ���� 	��
��� � ��
��	���
 �������� �����	�	�� � ���
� ����� "�	�� ������ ���� ��
���� �� ���

��
�� ��������	��� 	� � ����� ����7 �����
������������ � �������� (��������% C�	�� �� �!������ �:*
�����! �� ������ ��� �������� �� �!� �
� �� �� 	������� �� 	�������������� 	�7

��� 7 @=<

� 7 -��� D �)"����*�� !� � D �)���+�*� *,��*�.

� 7)��
�-� ���./
�������� 	� �����������

/�.0 ����� ��.�� "' ������������ *

� 7 -���# ���� D G�1@� ������� D G�@@.

� 7 ������������ 7 �
-
 � �)"����*�)���+�*� *,��*� 	
 � �����������.�

&� ��� �!�����	��� ����������� ������ ���� ��� ������ �����B ��� ��
��� �	��� �� ��� ��� !� �
"	��	� ��� ��������� ��� ���� �� �	�� ���	��
�� ��� ��� !� � 	� ��� ��� �
� �� ������� ����
	��������������%

���
��� ,' *�� ��" ���� �� �� ����� �� ���
 ��
��� ����������	�� �� �� �
�� ���	��	��

� �����
��� � �	���
� ���
�� ���� ������� ��������� � ��������� "�������� �������� "	�� ��� ���	�	��
"���� 	� ������� "	��	� ��� ������� ��� 	�� � �
	���� ��	�� ��� ��	�7

� 7��$�������

�� 7���
�
���1�� 	��	'234456
��	
�� ��������� ��������

���7�� ��	
� ����� ��	
�

�� 7 ��$����� 	��	'23443886
��	
�

�� 7 ��$�������� ��	

	 7 ��$����/��������I �
 =3 D ���7�I ����� ���1�/�3�

�� 7 = � � � @

������� ��$������� �!������� ��" "�

 "�������� ���1� �����!	 ���� ��� ������ �	���
 	� ����
���	�	��% ��� ��� �
� �����!	 ��	��
� ��� ���1� ���� ��� ���� ����� 	� ��������% + ����	�
�
�������� �!������� ��� � ������� "�	�� ������� ��� ����
�'��������
���
� �� ��� ��
����� �	����
	� �� ��

�"�7

��� 7 9@0

� 7 -���1� D -� D G� � D G�E� � D =� � D G�E� � D G.�

�������� D =<� ���7� D <�G� ���� D =�@.

� 7)������ �4���*

� 7 ��$������� D G�E?

� 7 ���$����/=<3 D <�G� ��$����/=?3 D ?�<� ��$����/=93 D ?�@�

��$����/=@3 D ?�<� ��$����/=03 D <�G�

� ��
����

+ �
��� 	� � ��� �� �� ���	��

� ��
���� �������� ��� �����	����� ��� ��� ������� 	� ��$�	�� �
������� �����
�������% + �
��� 	� ��$��� ��� � �	��� ������� ���� ��� �����	�� ��
� �������� ��
���� ����% ��������� ���� ������� ��� ��
��� �� ��
���� ��� �
���% A�� �

�� � �
��� 	� ��$��� ��
��

�"�%

��������� �
������� � ���

 � �
 � ������ � D -���� ��� ��. ����� ��� $�
��� 	����	$��& �
 � ������
�#������� �� �" �� �
 � ������� ����" ��# �� �
 � ���������� � �������
 � ���� ��'

���
��� -' ��� ������� �
���	�� �����	��� 	� /@3 ���
� �� ���� �� �������� ��
����� �����	��	��
��
�� ��� ��� ������� ��������� 	� �!� �
� ?% +

 ��� ��������� �������� ���
� �� 	������� 	�
� �
��� ��

�� ��������
 ��� ������� ���� 	����	��	����
� ��$��� 	� �!� �
� =% ��� ��

���	�� ��
�������� �����	���� "	�� ��� �
��� ��� ��
���� �!������ �� 	��
��� �
�� ��
�� ��������� ��� �
�	5����� �������� ���������	�� ��� 	������� ��� ��
�� ��������	�� �������� 	� � �	5����� �����%

� ���
�
����
�� ������� �
������

&� ��	� ����	�� "� 	���� �

� 	�������� �� � 	�������	�� ��
��	����	�� ���"��� �������� �	 �� ��
	������	�� ��� ���
	�� �!�����	�	�� �� ���
��	��
 ��� �"���� ��� "�	�� �
�� 	 ����� ������	
	��
��� �!����	�	
	�� ��� 	 ���� ��� �����	�� 6�!	�	
	��%

��	 ��������������

+�������	�� �� ����	�
	
��	�� -��� ��'��

�� .��� ��
��	����	�. 	� "	��
� ���� 	� ��� ���
	��
����������� ��� ��� �����	���� 	����	����� �����	� �	��	$���	��
� ��������� ��� �!����	�	
	��
��� ������	
	�� 	����� �� �

�"	�� ��" ���	�	�� �� �� �����
� ���	��� ��� �!	��	�� ����%
����	�
	
��	�� ���"��� ������� ����� ��� �� ��$��� �� $��� 	�������	�� � �������� ���	�� ��

������	�� ���"��� ���� ����� -�%�%� 	������ 	� � ������� �� ���
.% ������	�� ��� ���� �� 	����'
�	��
� �!������ �� ���
 "	�� ����� �����	�	�� ���� ������������7 �� ����	�
	
�� �� 	� ��� ����� ���
������������ 	� �� ��� �� ��	��	�� ��� ���� �� ������ 	� �� 	� ����	�
	
�� �� ��� �� ������ 	�
��% A	��

�� ������� ���� ��� ����	�
	
�� ������� ���� ��� -���� ��� 	� � ���'������� ���� �� ���. 	�
��� ��������� ���� �� ��� ������ ���� �� ��� ��� ������ ���� � �� ��� ����	�
	
� ��� ���������
���� �� ��� ������ ���� �� ��� ��� ������ ���� � �� ���%
F��� ����� 	� ��� ����	�
	
�� ��� ��� �
��� � 	� ��$��� ��� ���� �
�� ��� 	�������� �� ��� ��� ��

���� �� �%

���
��� /' �	��� � ��� � �� ��	���� � �
�����	�� 	� � ��� �� �
������� ���� ��	�� � ������ �� �� ����
���� ��� ��	��� 	� � �
����� ��� ��� �	 	
�� �� ���� ����� ���� ��	��� 	� �	5����� �
������ /23%
��� �� ������� ��� ������� ���� -������� ���������	�� �	���
�� �
������ ��$��� �� � <'�	 ���	���

������ ���7

� 7-������

�� 7���
�
�� ���� �� ������� ���
�
��� �� ��� ���

�� 7 ���
�� �� �� ��

�� 7 �

	 7 -�
 ��.� I -�
 ��.� � �� ����

"���� 	 �	��� �� �����!	 ��� ���
���	�� �� ��� ���	�� �� ��� ������ ����� ����������� �� ����
�
�����% 4�	
� 	� -������ ��� <'�	 ���	���
 ������ ���� � 	� �����	��

� ��$���� �
������ �� ���
����	$� ������ ����� "	

 �� ���	
� ��$��� �� ����	�
	
��	��% ����� -������ ���
� �� ��� 	�������
����	�
	
�� 	��� � ��" ������� ���� -������.7�������� "���� ��� ��� �� ��� � ��� ����	�
	
�� ��
	�������� �� ��� 	� ����	�
	
�� �� ���
�� ��� � ��" ������ �1������-������9������� �� ���� ���
 	�
������ ����	�	�� ��� ��

�"	�� ������� ����7

� 7 -������.7�������

�� 7 ���
�
�� ���� ��	
�

������� ���
�
��� �������� ��� ���������

�� 7 ���
�� �������� �� ��������

�� 7 �1������-������9�������� ��	

	 7 -�
 ��.� I -�
 ��.� � �� ����

��� ����������� ���
��������

+ �	�� ������� �� ��� ��8��� ���
 	� ��� ����	�	
	�� �� �����	�� �� �
�! ��8����� 	%�% ��8���� "�	��
����	�� �� ����� ��8����% &� ��� ������� ��� �"���� ��	� ��� �� ���	���� �� �!����	�� ��� ��� ��
���� ����� "	�� ������� ������ ���� �	�	�� ��� ���� ��� ����	�	
	�� �� ���
��	�� ��
���� ����
% ��	�
�����	��� �� ���� �"� �	5����� 	 ����� �� ���
	��%

A	���
�� 	� 	� ����	�
� �� ���
��� ��� ��������� ���� � �� � �� �
�! ����� 	� ����� �� ������
�������� ������	��
� �����	�	�� ����� �������� ���� ��$�	��� ��� ��� ���������
 ��	�� �� �	�"� �
������ �	�������% 4� "	

 ��

 ��
��
����� ��	� ��
��	����	�%
������
�� � �� �
�! ���� �� ������ "	��	� ��� ������ ���� �7 ��	� �

�"� ��� �������	�� ���

 ���
	�� �� �������� ����	��� �� 	�	�� ����� �!	��	�� ��������% �	��� 	� ������
 � ������� 	� �
�� ���� �����������	�� �� 	�� ������ ����� "� �� ��

 �����
��� ��	� ��
��	����	� 	� ����� ��
� ����	
� ���� ��	�� ��� � ������� ���� �� ��� ������� ����-�. ���� ������ 	� 	�� ������ ����	
�
	������	�� ���
���
 �� ����	
 	� ���������	�� ���"
����%

���
��� 0' *�� ������� ���� -������.7����� �����	�� � ���'�	 ���	���
 �
����� �� �����	��	��
��
��7 ��� ������ ���� � ���� ���������� ��� ����� �� �����	��	�� ��
��� ��� ��� ��������� ���
�
��� �
�����'�����������	�� ��
�% +��� 	�� ���� ���� �
����� ��	�	�

� 	��
���� �

 ��� ��
�� ����	��
��� �� � ����� 	� 	� ���
�� �� ��

�"�7

� 7-������.7�����

�� 7 ������������1�� 	��������������

�� 7 ���
����� 	���������������

�� 7���
�
 �1������.�-��# ����� ��	
� �1������.��������� ��	
�

	 7 ����4��4��� D ������������1�4��4���

"���� � �������� ��� �����	�� 	� ������� �� ������� ��� �� ������� �� ������� �����% ����� �����
	� � ��$�� ��� ��
��	����	� ���"��� -������.7����� ��� 	��������������%
����	��� ��" ���� � �
�����	�� 	� � ��� �� �
������B 	���	�	��
�� �
�� �
�����	�� 	� � �������� "����

��������� 	� ���
�� �� � �� �
�! ���� "�	�� ���������� � ��� �� �
������ ��� ��� �� ��$��� ��
��

�"�7

� 7 -���������

�� 7 ��������� ���
-������.7������

�� 7 ���
����� 	���������������

�� 7 ����������:��� ���� ��	

	 7
�

����������

��	

&� ��	� ����� � �� ���	�	�� ��
��	����	� �!	��� ���"��� ������� ����� -��������� ��� -������.7�����%

��� ����������

4��� � ������ ���� � 	� ���
���� "	��	� � ������� ����� �"� ������� ��� ����	$��7 ��� ���� �� ���
�������� ��
���� �� �������� -"�	�� ��$��� ��� J�����K �� ��� ������ �����.� ��� � ��� �� ��
�

�����	�� �� � ��	�����
 ���	�� "	��	� ��� ���
	���	�� �� �	� -"�	�� ���	��� �� � �� ���	�� ��
��� ������ �����.% 4� ��

 ������
 ����� �� ��%
4� ������� ���� �	���
� �	��	�� � ������� ���� �� ��� ���
	���	�� �� �	� �� ����	��	�� ���

�������� "	��	� ��� ������ ���� � 	� �������	��
� �	��� 	� ����	��� �� ��$�� � �	5����� ������� ����
��� ���� �	5����� ���
	���	�� �� �	� ���� 	� ��� ��������� ���� �� ��� ������ ���� �� ��� ���
�!�����	�� �� �
��� ��� ������%)� ��� ����� ����� "��� ��� ���'���� ��	��
���� � �������� 	� 	�
����� ����
 ��� ��� �� ���" ��� �� ���	�� �� ��� ��" ���� ���� ������� 	� ��
���� ��� ����	��
��
�
"��� ������� �� ���	���� ��� �� �� ���%
�� ������ � ��	� ����
� "� 	�������� ��
����� ����
% + �� �
��� ���� 	� � ������� ���� 	�

"�	�� ��� ������ ���� � 	��
���� ��� �� ��� ������� ��
�
� 	%�% ���� �� �� "�	�� ����� ��
�� ���	�� ��� ���
� ��� �� �
�����
����% ������ � ������� ��� �� �������� ��� �� �
��� ��� ��
����� �� �����	��	�� ���� ������
 �� � "	�� � ������� �� ��� ���
	���	�� �� �	�%
A�� � ���������
 ��	�� �� �	�"� ��	� ����������� �� ������	
	�� ����� ���	��� ��� ������ ���

��� ������� ������� ����� �� �
�� �� � �������� ������
���� "�	�� ���� �� � ��	��� ���"��� ���
�� �	��	�� ��� ������ ����� �� ��� �� ���	�� �� � �	��� �� �	�% &� ���
	�� ��� �� ��	� ���
�

�� ����������� �� � #����#���� ��
��	����	� -��� �� � 	� �����"�� �� C�*� "���� ���������	��
"	�� ��	���� ���������� ��� ���� �� 	������	��� �� �
����.%

���
��� 1' ����	��� ��� ������� ���� -������.7�������� ��������� 	� �!� �
� 0� "���� ��� �����	'
����� �� ��� ������ ���� � ��� � ��� � ��� ��� ������
 �� �� ��� ��� ��������� ���� � ��� �� ����
������� ��� ��� ��% �� ���	��

� �	�� ��������� ���� �� 	��� ������� ��� �� �����	���� "	�� ��� ������

�� �� � ��� � �������	��
�� "��� �������� ��� ���������% ��� ��

�"	�� 	� �� �!� �
� �� � �������
����	��� 	� ��	� "��7

��� 7 ;<=

� 7 ��-.�9
�� ���� ;4<� ������� ��-.�9
��� <5� ��� 3588��

� 7 ��
�-� '���
�� ��
��>'���
�49���.7"����� 	� 	��� �4������ 	� ������

/�.0 �$������ 	� �

� 7 	1����� ����� -������ ������� 7 =�=

� 7 -	��
 <5.� I -������
 3588.� � ;4<�

� ���	���
���
�� ������ ����

&� ��	� ������ "� ��������� �
��	��
 ��� �"��� ��� ������� �����������	��% ���� � ��� �"��� 	�
��� ���	� ��� ��� ����
�� ��� �� � ,���% ��� �������� ��� �"��� 	� ����� �� ��� ��	��	�
��
�� ������
	��� �!����	�	
	�� ��� ������	
	��% �� ������� ��� ������
	�� ���
 "� 	��������� � �	 �
�
��� ��"����
 ���
	�� ��� �"���� ��
� �� ����� � ����� ����� �� ���
'"��
� ��������% ����� ���
 ��� ������
 ��$�	�	�� �� � ������� ����	$�� 	�� ���������� ��� �����
�	�� ���� ���� ����������
�� 	�� �� �!�����	�� "�	�� 	� �	�� 	� �� ���	�� �� �� �� ���������	
� "��� ��� ������� ������ ����
��� ������ ���� �� ��" ���������
 ��� ��" ���� ��������	�� 	�% �� ������� ��� �!����	�	
	�� ���
����	
	�� ���
�� "� 	��������� ���� �	������	��� "�	�� ����	�� ��� ,��� "	�� ��� 6�!	�	
	�� ��
� ����
� 	���������	�� ����
 ������� ������ �� "�

 �� �����	� � ��� ���������	�� �� ���	��
�������� ��� ��� ��$�	�� ��������%
������ ��� ����� ����
� �� ������� ���
	�� ���� ���� ���������� ������
 	 ������� 	�����

��	

 ���� �� 	�����	�����% A����� �������� 	��
���� ���� �������	��
 ������� �� "�

 �� 	 �
� �����	��'
����	$� 	�����% ��� �������	��
 ������� 	��
��� ��� ���
���	�� ��� �� ���	��� �� ��� �!�����	�	�� ��
�	5�����
�������� �� �!����� ��� �
��� ��� ��� ����� �� � 6�!	�
� �����
������� ��� ����	��	�� ���
�� ���	�� �� �
�! ��������% & �
� �����	�� 	����� 	���
�� ��	 ��	
� ��� ���������	�� �� ��'���
������� ����� ��� ��� ����� �������	�� ���
�� ��� ��� �Æ�	��� ����� ��� �� ��������%

�������	��

+
 ������ ,�"������ ��������� -�,�.
 ������������	
���
���	� /00+

/
 ��� �123�� (�"� 4
 �����������
��������
�������������
��

��� ����	���
�

���� �!�!"�"	����
��##$�#%��! � /00+

5
 6�	� ���� ������ 7(�
 �����������&�����
�&
��!��"���'������ /005

8
 ("������	� ����� ��"$�! 2������� -(��2.
 �����������!	
���
�

�		�
���
 (���		� (� #���	�� /005

9
 :
 7�"���� ��� :
 �"�$���
 ;��� ����"����� ��" ������ ����������� "����
 �� ��	�� ���� ����� +<<8

4
 �

�""� ��� �
 2���=
 ����
����
 ����������� �	�
�������
� ������ ��� ����	
�� ����	��
 6���

,����� +<<4

>
 �
 ;������ �
 (�����$�#���!�"�� ��� (
 �����
 ;"�� ���� ������ �� $�������� �����	�"�? �� �	�"	���

�� �������� �� �	!���
� ����	���" ��� ���� #����
� !���� +@58
 777� ("��� ��� ��� ��& ("����
+<<4

A
 B
 ������ :
 :���$"������� 6
 ���"$�� ��� ,
#C
 2��
 7 �"�����"$ ��" �����"��� ��������� �� ����
���"����"������
 �$�%� +<<<

<
 6
 D�� ��� �
 E�� �"
 ����
����
� �	������ ��� ����������
 7������� ("���� /00+

+0
 (
 E������$��� �
 E�!�"� ��� (
 :�	��*
 �����"���� 1��"� 2��������
 &	����� 	� '	
����� ���

%"���
 %�������� 9+-+.?/9@9/� +<<9

Patterns in hypermedia

Michalis Vaitis1, Manolis Tzagarakis2, 3 and George Gkotsis2, 3

1 Department of Geography, University of the Aegean, Greece
2 Computer Technology Institute, Patras, Greece

3 Department of Computer Engineering and Informatics, University of Patras, Greece
vaitis@aegean.gr, tzagara@cti.gr, gkotsis@ceid.upatras.gr

Introduction

According to [18], patterns are knowledge artifacts that represent properties, rules or taxonomies that
hold among data elements. Usually, these artifacts are inferred from the data using data mining tech-
niques and are continuously tested for their validity as the data set evolves. There is a clear distinction
between the data elements of a dataset and the pattern (or patterns) that are effective among them at a
certain point in time.

Phrased differently, patterns can be regarded as exhibiting primacy of structure over data. One con-
sequence of such shift is the elevation of relationships from second class to a first class abstraction
within the system.

In recent years, another research area that is involved in the management of relationships among
data elements is structural computing. As its name reveals, structural computing focuses on the struc-
tural abstractions that exist among data in different application domains. In structural computing, data
is regarded as an outcome of structure. Driven by the philosophy of the “primacy of structure over
data” [8], structural elements are introduced and treated as first-class entities. Computations over
structure are defined in order to model the behavioral aspects of the application domain. Computations
contribute to the semantic aspects of structure elements. A crucial aspect of structural computing is the
fact, that there is no “minimal data abstraction”, such as the relation in RDBMSs or the object in
OODBMS. Structural computing introduces the relationship as its fundamental building block, allow-
ing the granularity level of such systems to be configurable. The issue of granularity seems to be a
critical characteristic for structure-oriented approaches.

In this paper we present patterns that appeared in the hypermedia field and outline how these have
been represented in the Callimachus hypermedia system [15]. Callimachus is a hypermedia system
based on the concepts of structural computing where hypermedia domain aspects are represented as
patterns (hypermedia patterns). The insights of how such hypermedia patterns are treated in Callima-
chus may reveal additional requirements on the modeling of patterns in Pattern Based Management
Systems (PBMS).

Hypermedia domains: Patterns of information organization

A hypermedia domain is a coherent set of abstractions, that are appropriate to solve organization prob-
lems in a particular application domain. These abstractions originated from the classic node-anchor-
link model, but mutated in order to fit better entities and relationships present in the application do-
main. Below we briefly present some of these domains, highlighting representative abstractions and
behaviors. Table 1 summarizes the presentation of the hypertext domains.

Navigational hypertext

The navigational domain was one of the first domains supported in early hypertext systems, in which
the ability to associate was explicitly provided [7,14].

Inspired by Bush’s ideas [1], many researchers have investigated navigational hypertext in computer
applications, resulting in many different hypertext systems. As stated in the Dexter Open Hypermedia
work [2], the basic node/link network structure is the essence of (navigational) hypertext. As a result,
the navigational hypertext can be viewed as a network of data containing ‘components’ interconnected
by relational ‘links’. To support the navigational domain, many hypermedia researchers have adopted a
fundamental entity that provides the node, link, anchor and context abstractions [10]. A node provides

a wrapper for an arbitrary resource and may have several anchors associated with it, whereas an anchor
can be bound to several links. A link of the navigational domain is defined as an association between
anchors with its direction clearly stated [2] and a context is a collection of object references (similar to
hypertexts in Dexter and to contexts in [3]), or —as stated in HOSS ([9,10])— a set of links. Links are
used to associate nodes, thus allowing the author to express semantic relationship. The system however
is not ware of the semantics of the established links. Set of links create documents. Users (readers) are
able to browse through the interconnected material by traversing links.

Taxonomic hypertext

Taxonomic reasoning is a particular kind of reasoning task that deals with the comparison and classifi-
cation of highly similar nodes, in which an analyst viewing one node thinks not in terms of linking it to
another node, but of including it in or excluding it from a set of related nodes [16]. The hierarchical
structure is not a result of the data but is a way to structure the set of categories into which the artifacts
are classified [17].

In general, the task of taxonomic reasoning has the following characteristics [16]:
• The information objects being manipulated are highly similar to one another along some dimen-

sional attribute(s), so much so that the question of how to categorize or organize is not immediately
obvious.

• Taxonoming reasoning develops descriptions of each item along a set of dimensions, but these di-
mensions are not fully defined when one begins the reasoning process.

• The basic activities that need to be supported to facilitate taxonomic reasoning are essentially set
operations, such as sorting objects into sets based on their characteristics, looking together at the
members of a single set, examining the different sets of which a single item is a member and gener-
ating new sets from old ones.
On the one hand, some nodes allow the analyst to select a perspective from which a given object is

desired to be viewed. On the other hand, there are other nodes that require the analyst to sort the object
into one of a set of disjoint categories. Actually, categories can be constructed in such a way that the
structure remains a strict tree, and it is perspectives that cause the hierarchy to deviate from a strict tree,
since they permit a given artifact to descend from several branches [17]. A taxonomic reasoning system
contains three primary abstractions, the specimen (or item), the taxon (or category) and the taxonomy.
A specimen has arbitrary content and attributes and represents a fact. A taxon, on the other hand, has
no content but has arbitrary attributes. While a taxon can contain other taxons or specimens, a given
taxon is contained in only one taxon. Finally, a taxonomy is a hierarchy of specimens and taxons.

Users do not traverse links, but rather open taxons, revealing their contents. Cycles are not allowed
in taxonomic hypertext, since they do not have semantic meaning. Finding differences between two or
more taxonomies (delta calculation) is a necessary aid for taxonomic workers.

Spatial hypertext

In the information analysis problem domain, the focus is on the process of structuring diverse material.
Structuring and organization of information is a complicated intellectual process including activities
such as collecting, comprehending and interpreting diverse types of information. During such activities,
users tend to explore the structures they are creating and organize information by implicit and informal
spatial methods formalizing incrementally their structures [4]. Taking advantage of the human percep-
tual system as well as spatial and geographic memory [5,6], these systems allow to express relation-
ships by spatial proximity and visual cues. Such expression of relationships achieves differentiation of
implicit from explicit structure hence permitting a smooth shift from informal to formal structure. Hy-
permedia systems providing such paradigm to information organization are referred to as spatial hy-
permedia systems.

Primary entities in spatial hypermedia systems include objects, collections and composites each usu-
ally appearing with a different visual symbol having different visual characteristics such as shape, col-
our, border, text, font, etc. Objects represent wrappers for arbitrary types of data. Object types are sup-
ported by means of explicit visual characteristics. Collections contain arbitrary amount of objects or
collections. A set of objects or composites in a particular visual configuration form composites. Spatial
hypermedia systems also provide visual and spatial means to denote relationships among entities. Con-
sequently, these systems are able to recognize relationships by spatial arrangement, relationships by
object type, relationships by collection, and relationships by composite. A special structure-finding

process—the spatial parser—is responsible for discovering such relationships and suggesting the crea-
tion of new collections and composites to the user [13].

Hypertext Domain Abstraction Behaviour
Navigational Node, link, anchor Traversing link, opening

node
Taxonomic Taxon (category), item,

taxonomy, perspective
Opening category, delta
calculation

Spatial Object, collection, com-
posite

Spatial parsing

Table 1: Overwiew of abstractions and behaviors observed in the different various hypertext domains

Structural Computing

While hypertext domains describe a particular problem in information organization, hypertext systems
attempt to provide the appropriate means to support information organization. Nevertheless, it has been
shown that hypertext systems suitable for one domain exhibit insufficiencies for others. For example,
attempting to model taxonomic hypertext with the use of a navigational hypertext system has been
proven difficult and error prone. Spatial hypertext is difficult to discuss with the classic notions of hy-
pertext such as “node” and “link”. Domains such as spatial or taxonomic require conceptual founda-
tions markedly different from those used to support navigational hypermedia manifesting, thus, a gap
between hypermedia domain and system research. The incompetence of hypertext systems, led to a
radical reconsideration of their conceptual foundations. Such re-examination and redesign of the foun-
dations of hypertext systems is one central concern of structural computing [11,12].

Structural computing was originally inspired by research work on hypertext. A significant result in
this area was the realization that there exist various hypertext domains, each one imposing different
structural requirements, indicating different behavior and needing different services. In this context,
hypertext recovers its original foundation as a knowledge organizing methodology; not only as a means
for supporting navigation through inter-related documents.

Navigational, spatial, taxonomic and modeling are the most representative hypertext domains found
in literature. This notion of hypertext domains had led to a layered architecture for hypertext systems,
so called component-based open hypertext systems (CB-OHS). CB-OHSs are a realization of the struc-
tural computing approach. They provide an open set of components, called structure servers, each one
providing the foundations to support the structural abstractions and behavior of a single hypertext do-
main, in a convenient and efficient way. Functionality that is common among all domains, is regarded
part of the infrastructure (fig. 1).

Fig. 1: Component-Based Open Hypertext Systems’ Architecture

The Callimachus CB-OHS attempts to provide the framework in which the aforementioned hyper-
text domains co-exist and structure servers – providing new abstractions and services - for new do-
mains can be developed. Given the complexity of development of structure servers for new hypertext
domains, special attention has been given in the provision of suitable tools to facilitate such task.

Client
application

Infrastructure

Structure
server

One such tool is the structure template; a pattern of structure. The aim of structure templates is to
maintain the specifications of the structural abstractions of different hypertext domains. Structure serv-
ers operate guided by these structure templates to provide domain specific functionality and con-
straints. Figure 2 outlines the conceptual architecture of Callimachus and the central role of structure
templates. Each architectural entity has a specific role, which is briefly described below:
• Behavior. Behavior models the computational aspects of a domain, sub-domain or application. Be-

havior can be divided—depending on its purpose—into two main categories: services, which are
available to clients through the use of a specific API and protocol (e.g. openNode, followLink, etc.),
and internal operations that are used by the structure server internally for consistency reasons
mainly (e.g. to affirm conditions and constraints, or to interpret abstractions in a suitable manner).

• Structure cache. Provides an immediate storage for the elements upon which behaviors operate.
• Infrastructure. This includes the fundamental hypermedia functionalities that are available to all

other entities. Functionalities, such as naming, persistent store, and notification, constitute an essen-
tial part of the infrastructure.

• Template repository. A storage place for structure templates. Its main purpose is to hold structure
definition as well as to support reusability and extensibility of structure among structure servers.

• Client. Any process that requests hypermedia functionality. Clients request hypermedia operations
from one or more structure servers with the use of the appropriate APIs.

A structure template models the static aspects of the structural abstractions of a domain. The dy-
namic (or behavioral) aspects are incorporated into the services and internal operations modules.

Modeling static aspects (domain schema)

The methodology for defining the structure model of a domain consists of the specification and inter-
relation of structural types. A structural type is either an instantiation of a basic abstract class, the Ab-
stract Structural Element (ASE), or a specialization of another existing structural type. The notion of
the ASE is inspired by the structure object, proposed by Nürnberg [10] and is similar to the object
(meta-)class in the object-oriented paradigm. The crucial characteristic of the ASE is that it is used to
model a relationship. In Callimachus, data is conceived as a degenerate form of relationship: a rela-
tionship that is unable to relate.

Structure servers operate on structural elements, which are instances of structural types. The set of
structural types defined by the designer at the same context, establish the template of the domain. Dur-
ing the definition of a new structure model, already existing templates may be reused or extended.

Fig. 2: Conceptual architecture of the Callimachus CB-OHS.

Structural types are identified by a system-defined unique structural type identification (sid) and a
designer-specified unique name. A structure type may have an arbitrary number of properties and end-

sets. Structural elements are constrained by their structure type specification, regarding their endsets
and properties. Each structural element is identified by a system-defined unique object identification
(oid).

Properties are specified by a name, a data type and they may be single-valued or multi-valued. A
special property, named content, may be defined in the context of a structural type. At the instantiation
level, the value of this property is an address specification of an arbitrary amount of data. Since our
purpose is to specify structure, not data, we do not define other semantics for that.

An endset of a structural element is a placeholder for oids of other structural elements. It is the most
significant construct since it enables the grouping of related objects (fig. 3). An endset of a structure
type has the following attributes:
• Name: unique among the endsets of the same structural type,
• Order number: an integer that designates the sequence of the endsets of a structural type,
• Total participation indication: a [min, max] notation that indicates the minimum and maximum

number of oids that can participate in the endset.
• Multiplicity: a [min, max] notation that indicates the minimum and maximum number of occur-

rences the endset can participate in a structural element of that type.
• Configuration: whether or not the members of the endset bear a particular functional or structural

relationship to one another (e.g. may form a set, list, queue etc).
Along an endset, a set of structural types is defined, called s-set, which configures the structure

types whose instances may be end-points of the endset. An s-set may be inclusive or exclusive; an in-
clusive s-set specifies the allowed structure types, while an exclusive specifies the forbidden ones. A
partial participation indication may be defined for each structure type in an inclusive s-set, indicating
the minimum and maximum number of elements of this type that can participate in the endset. In addi-
tion, for each structural type in an s-set, a cardinality indication is specified defining the number of
elements (of the structural type that is currently defined) to which a structural element of that type is
allowed to be related (through that endset). This is similar to the cardinality ratio in the E-R diagrams
that specifies the number of relationship instances that an entity instance can participate in, so a [min,
max] notation is used as well.

As a last notation, an endset with more that one structural types in its s-set, may be characterized as
homogeneous or heterogeneous. At the instantiation level, a homogeneous endset can include structural
objects of only one type, while a heterogeneous endset may point to structural objects of different types
simultaneously.

Fig. 3: A structural element with 3 endsets and identification

A structure template is the container of the structure type specifications that model a domain. A
template is modeled itself as a structural object. Templates are stored in a special part of the infra-
structure, called template repository. A template may be created from scratch or by utilizing existing
templates in the repository. In this case, the new template is assigned a set of templates that inherits
from.

Templates are represented in a formal specification language, since they include various attributes
and complex relationships. A visual representation would be easier to use, but it is not easy to visually
express all the details of the specifications. XML is used for such a task, as it enables composition and
arbitrary details. Furthermore, it is a well-known language and can be manipulated easily.

Modeling behavioral aspects

Structure templates in Callimachus are not passive entities, but active constructs. They are not con-
trolled by data, but control data. Templates react to changes in data, by propagating operations to all
relevant abstractions, as denoted by the structure template. Different domains propagate operations in a
different way. In particular, structural elements are considered contextualized and sensitive to events in
their environment. They may absorb an event, meaning that they may initialize a specific computation
or may propagate the same (or different) event to other, associated structural elements. A “routing ta-

ble” for each structural type specifies how an event is broadcasted to the members of its endsets and to
the structural elements to which it belongs. Such “micro-behavior” of structural elements (types) is
used to achieve system wide (global) behaviors.

In Callimachus, the propagation graph captures how events generated by data are propagated within
a structure. Figures 4 and 5 capture the propagation path for the delete operation in the navigational and
taxonomic hypertext respectively. Arrows depict the scope of the propagation. Applying a delete op-
eration on a node (fig 4, Node1), will result in deleting all associated anchors (fig. 4, Anchor1), but will
not necessarily affect the link1 (Link1) and surely not affect the destination nodes (fig 4. Node2). On
the contrary, in taxonomic hypertext (fig. 5), a delete event will propagate recursively to all contained
taxons and items resulting in their deletion. Different propagation schemas can be also witnessed when
considering operations such as adding an attribute or copying a node or taxon.

Fig. 4 : Propagation graph of the delete operation in navigational hypertext.

Fig. 5: Propagation graph of the delete operation in taxonomic hypertext.

Conclusions

The above discussion rises that structure templates and pattern types share some common characteris-
tics. Both aim at modeling and handling relationships about data. Structure elements and patterns are
treated as first class objects, which are explicitly separated from data items, even if they may act as
“data” in different contexts. Although not discussed clearly in [18], we claim that patterns types, like
structure templates, have also dynamic aspects. For example, rules denote transitions from a “left-

1 If anchors of other nodes act as source of the same link, then the link should not be deleted.

hand” to a “right-hand” side, clusters and decision trees require certain traversal and manipulation op-
erations, serial and parallel episodes drive different occurrences of events in time.

The above observations conceal a number of common requirements that should be laid in order for a
management system for patterns to be developed. We perceive three such requirements: Arbitrary
granularity, valence specification and operation propagation.

High level units may be constructed from or divided in lower level ones in a recursive manner. The
“minimal abstraction” provided by the system should be carefully decided in order to support arbitrary
granularity in modeling data item relationships. The same unit may be treated either as “individual” or
“composite” in different contexts.

The term valence is borrowed from chemistry. We use it to denote “what” can be related according
to a given pattern or structure type. The definition language of the management system should support
the declaration of constraints and validation rules, stemming from an application domain, so that only
valid instances could be created.

 Besides the static aspects of a pattern or structure type, its behavior may be modeled as well. O p-
eration propagation seems to be a promising approach in this direction. Units receive external “stimu-
lus” (from other units, or the context) and react by either “absorbing” it internally, propagating it to
other units, or both. “Routing tables” for each type may be defined in order to incorporate the necessary
behavioral knowledge of the application domain.

Another interesting issue is the interoperability of patterns inferred from different application do-
mains. For example, a pattern from the mathematics domain maybe tested for validity against a music
database. In structural computing, the same problem is approached by the definition of transformation
rules that convert a structural element of one hypertext domain to an element for a different domain.

In conclusion structural computing and PBMS, although originating from different research areas,
both are looking for answers in similar kinds of problems. The common objective to emerge the sig-
nificance of the relationships on data, rather than the data items themselves, may trigger the inter-
change of ideas, methodologies and practices between the two communities.

References

1. Bush, V.: As We May Think. Atlantic Monthly, pages 101–108, July, 1945.
2. Halasz F, Schwartz M. The Dexter hypertext reference model, Commununications of the ACM 37 (2)

(1994) 30–39.
3. Leggett J. J. and Schnase, J. L. Viewing Dexter with Open Eyes. Communications of the ACM,

37(2):76–86, 1994.
4. Marshall CC, Rogers RA, Two years before the mist: experiences with Aquanet, ECHT ‘92 Proceedings,

1992, p. 53–62.
5. Marshall CC, Shipman III FM. Coombs JH. VIKI: spatial hypertext supporting emergent structure,

ECHT ‘94 Proceedings, 1994, p. 13–23.
6. Marshall CC. Shipman III FM, Spatial hypertext: designing for change, Communications of the ACM 38

(8) (1995) 88–97.
7. Nelson, T.: A File Structure for The Complex, The Changing and The Indeterminate. In Association for

Computing Machinery Proceedings of the 20th National Conference, pages 84–100, 1965.
8. Nürnberg P, Leggett J, Schneider E. As we should have thought, Hypertext ‘97 Proceedings, Southamp-

ton, UK, ACM, 1997, p. 96–101.
9. Nürnberg P, Leggett J. A vision for open hypermedia systems, Journal of Digital Information 1 (2)

(1999) 207–248.
10. Nürnberg, P. J., “HOSS: An Environment to Support Structural Computing”, Ph.D. dissertation, Dept. of

Computer Science, Texas A&M University, College Station, TX, 1997.
11. Reich, S., Anderson, K.: Open Hypertext Systems and Structural Computing, 6th International Work-

shop, OHS-6, 2nd International Workshop, Sc-2, San Antonio, Texas, USA, May 30-June 3, 2000, Pro-
ceedings. Springer 2000

12. Reich, S., Tzagarakis, M. and De Bra, P.: Hypermedia: Openness, Structural Awareness, and Adaptiv-
ity, International Workshops OHS-7, SC-3, and AH-3, Aarhus, Denmark, August 14-18, 2001. Revised
Papers. Springer 2002

13. Reinert, O., Bucka-Lassen, D., Pedersen, C.A., Nurnberg, P.J. “CAOS: A Collaborative and Open Spa-
tial Structure Service Component with Incremental Spatial Parsing”, Proceedings of the ACM 1999 Con-
ference on Hypertext, 1999, pp. 49-50.

14. Trigg, R., Suchman, L. and Halasz, F.: Supporting Collaboration in Note-Cards. In CSCW 86 Proceed-
ings, pages 153–162, Austin, Texas, USA,1986, ACM.

15. Tzagarakis, M., Avramidis, D., Kyriakopoulou, M., Schraefel, M. M. C., Vaitis, M., Christodoulakis, D.:
“Structuring Primitives in the Callimachus Component-based Open Hypermedia System”, Journal of
Network and Computer Applications, Academic Press, to appear.

16. Van Dyke Parunak H. Don’t link me in: set based hypermedia for taxonomic reasoning, Hypertext ‘91
Proceedings, San Antonio, TX, USA, ACM, 1991, p. 233–42.

17. Van Dyke Parunak H. Hypercubes grow on trees (and other observations from the land of hypersets),
Hypertext ‘93 Proceedings, Seattle, WA, USA, ACM, 1993, p. 73–81.

18. Vazirgiannis, M. et al.: “A Survey on Pattern Application Domains and Pattern Management Ap-
proaches”, PANTA (IST-FET project) Technical Report Series, PANDA-TR-2003-01, February 2003.

What’s new in Querying, Query Processing and Optimization
in PBMS?

Ilaria Bartolini1, Paolo Ciaccia1, Marco Patella1, and Yannis Theodoridis2

1 DEIS – University of Bologna, Italy
e-mail: {ibartolini, pciaccia, mpatella}@deis.unibo.it

2 CTI and University of Piraeus, Greece
e-mail: ytheod@cti.gr

Abstract: Representing, storing, and manipulating useful patterns extracted from raw data is an
emerging field of research in data management The architecture of a so-called Pattern-Base
Management System (PBMS) should definitely include modules for pattern definition/manipulation
languages, appropriate indexing mechanisms and efficient query processing, evaluation and
optimization techniques. In this paper, we provide a preliminary overview of the above issues and
discuss efficient solutions.

1. Introduction

In this paper, we consider the major issues related to querying and query processing in a, so called,
Pattern-Base Management System (PBMS), that handles patterns extracted from large databases.

The outline of the paper is as follows: In Section 2, we briefly review what has emerged so far
concerning the logical modeling of patterns and then, in Section 3, we classify operation types depending
on the type of patterns they apply to and on the type of relationships between patterns and between
patterns and raw data they exploit. In Section 4, issues concerning the declarative languages that
supported by the PBMS, are reported. A set of preliminary examples of pattern types, pattern instances
and queries is also presented in that section. Section 0 introduces some query optimization issues based
on query examples presented earlier, in Section 4. Finally, Section 6 highlights the relevance of some
operation types which, according to our view, are peculiar to PBMSs and as such deserve careful
consideration, and summarizes some open issues for future work.

2. Basics from a Logical Model for Patterns

In [6], a logical model for patterns is proposed and the concept of Pattern-Base Management Systems
(PBMS) is introduced. Restricting our attention to those aspects which can have a relevant impact on the
physical level, we list the following:
1. The PBMS will manage a variety of pattern types, which cannot be a-priori defined; the extension of

each pattern type will consist of a collection of patterns sharing similar characteristics (i.e. they fit the
pattern type definition).

2. A pattern type pt is a quintuple (n, ss, ds, ms, f), where n is the name of the pattern type; ss, ds, and ms
(called, respectively, structure schema, data source schema, and measure schema) are types in T (the
set T of types includes all the base types together with all the types recursively defined by applying a
type constructor to one or more other types); f is an formula, written in a given language, which refers
to type names appearing in the source and in the pattern schemas.

3. A pattern p instance of a pattern type PT is a quintuple (pid, s, d, m, e), where pid (pattern identifier) is
a unique identifier for p; s (structure) is a value for type ss; d (data source) is a dataset whose type
conforms to type ds; m (measure) is a value for type ms; e is obtained by the formula f by instantiating
each type name appearing in ss with the corresponding value specified in s.

Besides managing patterns, a PBMS should also take a set of pattern (semantic) relationship types
(e.g. aggregation, refinement, generalization) into account, which will be used to model a pattern base
according to the specific application needs.

It is also convenient to take into account the fact that some interesting relationships between patterns
arise because of the presence of data source relationships that hold between the corresponding data
source schemata ds. For instance, two sets of association rules might be related because they have been
mined from two data sets corresponding to different stores of a same chain.

3. Classification of Pattern Operations

For query processing purposes, patterns are classified according to how they are constructed and what
they are used for (Fig. 1).

Fig. 1. Pattern classification schema

How they are constructed

A-priori A-posteriori

What they are used for

Active patterns
(Active rules,
workflows)

Targets
(given by

user)

Test patterns
(Int. constraints)

Generative
(Constraints,

Rules)

Data
mining
results

�� A-posteriori patterns: patterns created in the PBMS by means of a processing on the raw data,

typically as results of a data mining task.
�� A-priori patterns: patterns existing a priori in the raw dataset (e.g. integrity constraints), being

enforced by DBMS administrator or user.
From the query processing point of view, a-posteriori patterns typically require some kind of

processing to be performed on the raw data in order to extract their structure and measure components,
whereas a-priori patterns are usually compared against raw data to produce a score assessing how well a
pattern is representative of (a part of the) raw data.

We now analyze the main patterns relationship types we are interested in for query processing issues
(see also [6]).
�� Composition: A complex pattern can be obtained by assembling other patterns; more precisely, an

aggregated pattern has a structure schema which is defined in terms of one or more pattern types.
�� Refinement: A refinement is a relationship existing between patterns at different abstraction or

granularity levels.
�� Specialization: A pattern type pt1 specializes another pattern type pt2 when the structure schema, the

source schema, and the measure schema of pt1 specialize the structure schema, the source schema,
and the measure schema, respectively, of pt2.

�� Induced relationships: Relationships existing between subsets of the data space can induce
relationships on patterns related to such data. Relationships of this type can also lead to refinement
relationships. As an example, consider a functional dependency between two features product and
category in the data space: product � category. Such relationship would naturally induce a number

of relationships between patterns generated over the data, e.g. between rules built on categories and
rules built on products. This relationship can also be viewed as a refinement.

Such relationships between patterns, along with the obvious relationship between patterns and the data
they are extracted from (for a-posteriori patterns) or against which they have to be matched (for a-priori
patterns), define a classification of the different operation types a PBMS has to deal with. In the following
we will present examples of such classification.

3.1 Basic operations

A basic operation between patterns is that of comparison: Two patterns of the same (simple) type can be
compared to compute a score s, s�[0,1], assessing their mutual similarity. The similarity between two
simple patterns is computed as a function of the similarity between both the structure and the measure
components:

pattern_similarity = f(structure_similarity, measure_similarity)

Supposed two patterns have the same structure, the measure of similarity naturally corresponds to a
comparison of the patterns’ measures, e.g. by aggregating differences between each measure [2]. In the
general case, however, the patterns to be compared have different structures, thus a preliminary step is
needed to reconcile the two structures to make them comparable.

3.2 Operations on PB-DB relationships

These operations allow crossing the boundary between the PBMS and the DBMS, relating patterns to data
from which they are generated or with which they have to be matched.
�� PB-DB relationships for a-posteriori patterns. This class contains all the operations which are used

to create patterns from the raw data. Typical examples include data mining algorithms as extraction
of association rules for market-basket analysis, clustering, etc. Such operations are typically used to
populate the Pattern Layer of the PBMS.

�� PB-DB relationships for a-priori patterns. As above anticipated, a-priori patterns are patterns which
already exist in the PBMS and that are compared (e.g. matched) to the raw data at hand. Basic
operations belonging to this class include:
a. Matching a pattern against a subset of the data space (matching), obtaining the data objects along

with their score expressing how well they fit the given pattern.
b. Matching a data object against a set of patterns of a given type (classification), obtaining a score

for each pattern, expressing how well each pattern is suited to represent the given datum.
c. Obtaining the measures for a given pattern with respect to a set of data (measuring); given the

pattern structure, the user could ask to compute its measures with respect to a subset of the raw
data. As an example of this class of operations, just consider the computation of support and
confidence measures for an association rule over a set of data.

3.3 Operations involving composition

In a complex pattern, the structural component includes the schemes of simple component patterns,
whereas the measure part may include values defined as expressions of the component pattern schemes
[6]; an obvious generalization allows to aggregate complex patterns, thus defining a multi-level pattern
hierarchy. A basic operation belonging to this class is the comparison of complex patterns. The similarity
score s between two complex patterns of the same type is computed starting from the similarity between
component patterns, then the scores obtained for each sub-pattern are aggregated, using an aggregation
logic, to determine the overall similarity of the two patterns [2]. The aggregation logic may be very
simple, just an expression combining numerical values, or a more complex one, if constraints and/or
transformation costs are to be considered: For example, a suitable “matching” between components
patterns might be needed. The aggregation logic can also involve a variety of transformations, each with
an associated cost, and the overall similarity score is obtained as the maximum score obtained by
applying all the possible transformations to the component patterns.

3.4 Operations involving refinement of patterns

Here, the most common operations are zooming in/out on different granularity/abstraction levels. For
a-priori patterns, these correspond to multi-resolution queries: Processing of such queries may require
access to raw data, depending on the relationships existing between patterns. As an example, consider a

hierarchical clustering algorithm yields a dendrogram, where the nested grouping of clusters is
represented [3]. At each granularity level, different clusters can be determined, see Fig. 2. Measures for
clusters at higher abstraction levels (i.e. with lower granularity) can be obtained with simple computations
from measures for clusters at lower levels, thus without need to access the raw data.

 Granularity level

Fig. 2. A dendrogram

3.5 Operations involving specializations (or hierarchies)

Operations in this class allow the user to navigate the types hierarchy by generalizing (i.e. moving up the
types hierarchy) or specializing (i.e. moving down the types hierarchy) a pattern. These are simple
operations and we will not detail them further.

3.6 Operations on induced relationships

Operations belonging to this class act on patterns which have no direct relationship, but whose
relationship is induced by relationships existing on the data such patterns are associated to. This may
require to access the raw data in order to compute measures for patterns. For example, consider the
relationship between association rules on categories and rules on products: if we want to compute the
exact confidence of a rule on a given category, we cannot devise a formula to obtain it from measures of
rules built on products of that category, but the original data have to be accessed.

4. Querying a Pattern Base

A DBMS (PBMS) is basically a system that stores and retrieves data (respectively, patterns) upon user’s
requests. The two fundamental features that are supported by a DBMS are the data model and the high-
level languages for defining, manipulating and retrieving data. We are considering that the PBMS must
provide the same set of declarative languages for defining, manipulating and retrieving pattern types and
patterns.

4.1 Pattern Definition Language (PDL)

PDL is placed in the pattern type layer according to the PBMS architecture proposed in [6]. This language
enables PBMS users to manipulate pattern types that are stored in the PBMS catalog. PDL must
implement a set of constraints and checks that are related to the underlying patterns. For example, if a
user posts a pattern type deletion the PBMS must check for existing pattern instances and abort the
operation if associated patterns are found. The definition of PDL is an open issue.

4.2 Pattern Manipulation Language (PML)

PML should be able to support insertions, deletions and updates for patterns. The usage of PML in
manipulating a-priori patterns is essential. Users should be given the tools to insert an a-priori pattern
through a declarative way and PBMS should perform all the semantic checks before storing the pattern in
the pattern base. For example, the condensed expression of a pattern type has its own structure and every
value that is assigned to it must conform to that structure. Thus, the syntax and the semantic checks must
be performed in multiple levels before a pattern acquires the grant for storing.

4.3 Pattern Retrieval (or Query) Language (PRL or PQL)

Queries in PBMS are divided in two main categories: queries that apply to pattern types and queries that
apply to pattern instances. The query processor mostly derives pattern type queries at the semantic
analysis phase, that is, after a query has been syntactically analyzed it is further checked for
inconsistencies between the entities that it contains and the entities that exist in the PBMS catalog. Next,
we give some examples for queries of that type, partially taken from [6].

Name Structure Schema Data source
Schema

Measure Schema Function

Association
Rule

RECORD(head:
SET(STRING),
body:
SET(STRING))

BAG(transaction:
SET(STRING))

RECORD(confidence:
REAL, support:
REAL)

head � body �
transaction

Interpolating
Line

SET(sample:
RECORD(x: REAL,
y: REAL))

RECORD(a:
REAL, b: REAL)

fitting: [0..1] y = a · x + b

TimeSeries RECORD(curve:
LIST(y: REAL),
position:
TIMESTAMP, shift:
REAL, gain: REAL)

LIST(sample:
REAL)

similarity: [0..1] sample[position + i
� 1] = shift � gain
� curve[i], �i: 1 � i
� length(curve)

Table 1. Examples of pattern types

Pattern
Identifier

(pattern type)

Structure Data source Measure Expression

512
(Association
Rule)

(head = {‘Boots’},
body = {‘Socks’,
‘Hat’})

‘SELECT
SETOF(article) FROM
sales_in_US GROUP
BY transactionId’

(confidence =
0.75, support =
0.15)

{‘Boots’, ‘Socks’,
‘Hat’} � transaction

513
(Association
Rule)

(head = {‘Hat’},
body = {‘Boots’})

‘SELECT
SETOF(article) FROM
sales_in_Canada
GROUP BY
transactionId’

(confidence =
0.60, support =
0.35)

{‘Boots’, ‘Hat’} �
transaction

456
(TimeSeries)

(curve = (y = 0, y
= 0.8, y = 1, y =
0.8, y = 0),
position = 12,
shift = 2.0, gain =
1.5)

‘colorado.txt’ similarity = 0.83 sample[12] = 2.0,
sample[13] = 3.2,
sample[14] = 3.5,
sample[15] = 3.2,
sample[16] = 2.0

Table 2. Examples of patterns

Apart from the query processor that submits queries to the system catalog during the semantic checking
phase, users may also query the system catalog of the PBMS. The PBMS can be seen as a repository for
pattern types and patterns, thus queries submitted to the system catalog may be of interest for a group of
users. Examples of system catalog queries posted by the query processor will be presented along with

queries on patterns. We use a table to demonstrate the result of every query but this does not imply that
the query result will be a set of tuples as in the relational model.

4.3.1 Queries on pattern types

�� Q1: Retrieve all pattern types of the PBMS: Q1 will return the entire system catalog. The type of this
query result is unknown. Will it be a set of objects of type “pattern type” or a set of pattern type
names that will be materialized upon user’s or application’s request? The result, according to the first
option, would be identical to Table 1.

�� Q2: Retrieve the measures of pattern types: Q2 shall return the measure schema of every pattern as
shown in Fig. 3 (a).

�� Q3: Retrieve names and structure schemata of pattern types extracted by datasets of type bag (i.e. the
Data source schema is like BAG%): This query has a selection predicate on the value of the Data
source schema component. The query language should have the ability to express such queries that
refer to the internal structure and to the values of the pattern type components. The query result of
this query is depicted in Fig. 3 (b).

Measure Schema

RECORD(confidence: REAL,
support: REAL)

fitting: [0..1]

similarity: [0..1]

Name Data source Schema

Association
Rule

BAG(transaction:
SET(STRING))

(a) result of Q2 (b) result of Q3

Fig. 3. Results of queries on pattern types

4.3.2 Queries on patterns

�� Q4: Retrieve patterns of type “Association Rule”: This query returns patterns that are instances of
the “Association Rule” type and can be determined in two alternative ways. We will use the notation
of SQL to illustrate the example.

select * from “Association Rule”;

The above query implies a relational flavor, that is, every pattern type is a first-class object in the
PBMS.

select * from patterns
where pattern_type = “Association Rule”;

On the other hand, this alternative query implies that all pattern instances are members of the unique
and general entity "Pattern". Thus, the part "select * from Pattern" is always implied in every query.

�� Q5: Retrieve the name of types and the value of all Measures named "confidence" where value of
confidence must be greater than 0.70: The query result is shown in Fig. 4 (a).

�� Q6: Retrieve the head of patterns with type “Association Rule” (AR1) and the body of patterns with
type “Association Rule” (AR2) having the body of the first to be equal with the head of the second:
The expected query result is shown in Fig. 4 (b).

Pattern Identifier
(pattern type)

Measure

512 (Association Rule) (confidence = 0.75,
support = 0.55)

AR1.head AR2.body

{‘Hat’} {‘Socks’, ‘Hat’}

(a) result of Q5 (b) result of Q6

Fig. 4. Results of queries on patterns

5. Query optimization

In this section we present some preliminary issues concerning the query evaluation process in the PBMS.
Again, the use of terms like "scan", "select" and "project" are taken from the relational lingua franca and
do not impose any restriction on future definitions of the PBMS data model operations. We will use
example Q5, taken from the previous section, to demonstrate some preliminary query evaluation plans.
For example, Fig. 5 (a) and (b) illustrate a primitive and an improved, respectively, execution plan for Q5.

step 1. Scan the Pattern Base to find patterns that
satisfy the condition "Measure.confidence
> 0.70".

step 2. Project the value of measure from the
patterns returned in Step 2.

step 3. Construct the query result

step 1. Scan system catalog to find pattern types
having "confidence" in their measure
schema.

step 2. In the retrieved pattern types from Step 1,
identify the type of measure "confidence"
and check if the comparison with the const
value "0.70" is valid. This implies static
type checking.

step 3. Assuming an index on patterns.PTName,
perform index scan in the pattern space
and retrieve only those patterns that are
instances of pattern type(s) of Step 1 and
satisfy the condition "Measure.confidence
> 0.70".

step 4. Project the value of measure from the
patterns returned in Step 3.

step 5. Construct the query result.

(a) naïve execution plan for Q5 (b) improved execution plan for Q5

Fig. 5. Results of queries on pattern types

6. Final Remarks and Summary

In this paper, we have presented some preliminary aspects on querying and query processing in PBMS. In
the following, we address some issues that should be addressed in future work.

Pattern comparison: As anticipated in Section 3.1, comparison between patterns requires matching
both the structural and the measure components of patterns [2].

Comparison of complex patterns: The comparison of complex patterns (see Section 3.3) entails the
use of aggregation logic. Efficient evaluation of aggregation algorithms may require the indexing of
component patterns, for example a metric index like the M-tree [1] can be used if the (dis-)similarity
between component patterns is a metric. Other issues arise if one considers complex matches between
component patterns, e.g. M-to-N matching, matching based only on a subset of component patterns, etc.
Moreover, one should also consider that a number of transformations can be applied in order to obtain a
better matching. Such transformations can considerably alter the complexity of matching. In this complex
scenario, the use of approximate strategies could significantly reduce evaluation costs.

Obtaining measures for finer/coarser patterns: These operations allow the user to zoom in/out on
different granularity/abstraction levels. Measures for coarser patterns can be obtained by appropriately
combining the measure components of finer patterns. In order to reduce accesses to the DBMS,
approximate results and additional knowledge on the object domain can be used. Similar arguments also
apply to the case where measures are requested for finer patterns, since they can be estimated starting
from measures for coarser patterns.

Other issues include:
�� Operators similar to "Project", "Select", "Join", etc. should be defined for the structure and values of

pattern types and patterns.
�� Type checking and casting mechanism for PBMS need to be defined, as well as the level of strictness

that it will provide.
�� Definition of the intermediate query results types should be addressed.
�� Additional metadata for pattern types and patterns could be considered.

References

[1] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in
metric spaces. Proceedings of the 23rd VLDB International Conference, pp. 426-435, 1997

[2] V. Ganti, J. Gehrke, R. Ramakrishnan, Wei-Yin Loh. A Framework for Measuring Changes in Data
Characteristics. Proceedings ACM Symposium on Principles of Database Systems, Philadelphia, PA,
pp. 126-137, 1999.

[3] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing Surveys, 31 (3),
pp. 264-323, 1999.

[4] E. Keogh. Exact Indexing of Dynamic Time Warping. Proceedings of the 28th VLDB International
Conference, pp. 406-417, 2002.

[5] E. Keogh, M. J. Pazzani: Relevance Feedback Retrieval of Time Series Data. Proceedings of ACM
SIGIR Conference, pp. 183-190, 1999.

[6] S. Rizzi et al. Towards a Logical Model for Patterns. Under submission, 2003.

Correct Algorithms
for the Comparison of Complex Patterns

Ilaria Bartolini, Paolo Ciaccia, and Marco Patella

DEIS - IEIIT-BO/CNR, University of Bologna, Italy
{ibartolini,pciaccia,mpatella}@deis.unibo.it

Abstract. The comparison of complex patterns, i.e. patterns that are obtained by recur-
sively aggregating other patterns, poses serious challenges because of the different ways the
component patterns can be matched. In this paper, we investigate the problem of comparing
set of patterns when constraints are imposed on the matching between component patterns.
This is motivated by a real world example, namely the retrieval of images in a region-based
image retrieval system, where images represent complex patterns that are composed of re-
gions, i.e. base patterns. We present both sequential and index-based exact algorithms for
solving the problem, and experimentally evaluate them on a medium-size data set.

1 Introduction

The massive quantity of data produced every day by both industrial and scientific applications
poses new challenging requirements to DBMS systems. Such huge amount of data is unlikely
to be useful for end users, and automated processing techniques (such as data mining, pattern
recognition, and knowledge extraction techniques) are needed in order to reduce such raw data to
a compact, manageable, set of knowledge artifacts (e.g. clusters, association rules, time series). A
compact and rich in semantics representation of raw data is called a pattern [13, 4]. The problem of
storing and querying patterns in an effective and efficient way is the focus of so-called Pattern-Base
Management Systems (PBMSs). Among the several issues that a PBMS has to address (modeling,
storage, and retrieval of patterns), we believe that one of the most important operations that should
be supported is that of comparison. The comparison between two patterns entails the computation
of a score s, s ∈ [0, 1], assessing their mutual similarity. Given the definition of similarity between
patterns, the user may be interested in finding the patterns which are most similar to a given
(query) one. More precisely, given a query pattern q and an integer value k, a best matches query
returns the k patterns having the highest similarity score with respect to q, according to the
similarity measurement implemented.

The comparison between complex patterns, i.e. patterns obtained by assembling other patterns
to obtain a part-of hierarchy (for example, a clustering pattern is obtained as the composition of
cluster patterns) is particularly challenging. The similarity score s between two complex patterns
is computed starting from the similarity between component patterns, then scores obtained for
each sub-pattern are aggregated, using an aggregation logic, to determine the overall similarity
of the two patterns [9]. The aggregation logic may be very simple, just an expression combining
numerical values, or a more complex one, if constraints and/or transformation costs are to be
considered: For example, a suitable “matching” between components patterns might be needed.
The aggregation logic can also involve a variety of transformations, each with an associated cost,
and the overall similarity score is obtained as the maximum score obtained by applying all the
possible transformations to the component patterns.

In this paper, we provide correct sequential and index-based algorithms to solve best matches
queries for complex patterns consisting of a set of base patterns when constraints on the matching
between component patterns exist. In Section 2 we introduce a (simplified) framework for modeling
patterns. Then, Section 3 provides a motivating example, drawn from the world of image retrieval,
for the problem of best matches queries. The problem is precisely formalized in Section 4 and both
sequential and index-based correct algorithms for its solution are provided in Section 5. Section 6
shows some preliminary results obtained over a real data set and Section 7 concludes the paper.

2 A Model for Patterns

The following framework for modeling patterns is a simplified version of the model proposed in
[13, 4], that we adapted to our needs.

A pattern type pt specifies the intensional form of patterns, and is represented by a quintuple
pt = (n, ss, ds,ms, f), where:

– n is the name of the pattern type.
– The structure schema ss describes the structure of the pattern instances of pt, thus defining

the space in which patterns can be defined.
– The source schema ds defines the schema of the data set from which instances of pt are

constructed.
– The measure schema ms describes the measures that quantify the quality of the representation

of source data achieved by the pattern.
– The formula f describes the relationship between source space and pattern space and, thus,

carries the semantics of the pattern.

Example 1. The pattern type “2-D cluster” can be defined as follows:

n : 2DCluster

ss : RECORD(radius: REAL, center: RECORD(cx: REAL, cy: REAL))

ds : SET(point: RECORD(x: REAL, y: REAL))

ms : numberOfPoints: INTEGER

f : (x − cx)2 + (y − cy)2 ≤ radius2

�
A pattern p, instance of a pattern type pt, is defined as a quintuple p = (pid, s, d,m, e), where:

– pid (pattern identifier) is an unique identifier for p.
– The structure s is a value of the structure schema ss.
– The data set d conforms to type ds.
– The measure m is a value of type ms.
– The expression e is obtained by opportunely instantiating the formula f .

Example 2. A cluster of type 2DCluster (see Example 1) can be represented as follows:

pid : 324

s : RECORD(radius: 2.3, center: RECORD(cx: 35, cy: 1570))

d : ‘SELECT E.age, E.salary

FROM Employee as E’

m : numberOfPoints: 184

e : (E.age−35)2 + (E.salary−1570)2 ≤ 2.32

�
Note that composition of patterns can be obtained by inserting pattern types in the structure

schema of a pattern type pt.

Example 3. A clustering is just a set of clusters (see Example 1) having a measure expressing the
validity of the obtained clusters:

n : 2DClustering

ss : clusters: SET(2DCluster)

ds : SET(point: RECORD(x: REAL, y: REAL))

ms : validity: INTEGER

f :

�

The similarity between two simple patterns of the same pattern type is computed as a function
of the similarity between both the structure and the measure components:

sim(p1, p2) = f(simstruct(p1.s, p2.s), simmeas(p1.m, p2.m))

where with p.s and p.m we indicate the structure and the measure for pattern p, respectively.
If the two patterns have the same structural component, then simstruct(p1.s, p2.s) = 1, and the
measure of similarity naturally corresponds to a comparison of the patterns’ measures, e.g. by
aggregating differences between each measure [9]. In the general case, however, the patterns to be
compared have different structural components, thus a preliminary step is needed to reconcile the
two structures to make them comparable. Computing the similarity between complex patterns, i.e.
instances of a complex pattern type, in the general case is a two step process:

Matching: Component patterns of a pattern are associated to component patterns of the reference
(query) pattern, i.e. by only considering “best” couplings (matches).

Combining: The overall similarity between the two patterns is computed by combining similarity
scores corresponding to matched component patterns.

3 Motivating Example

The goal of content-based image retrieval (CBIR) systems is to define a set of properties (features)
able to effectively characterize the content of images and then to use such features during retrieval
in order to provide effective and efficient access to image databases based on content. To increase
the effectiveness of image retrieval, in recent times a number of region-based image retrieval systems
has been presented [5, 12, 1, 14], which “fragment” each image into regions, i.e. sets of pixels sharing
common visual characteristics, like color and texture. Similarity between images is then assessed
by computing similarity between pairs of regions and combining the results at the image level.

Conceptually, each image is represented as a set of component regions. By considering the
model of Section 2, we can represent each region as a simple pattern and the overall image as a set
of region patterns. This way, the problem of finding the images that most resemble a given query
one can be modeled as a best matches query over the space of image patterns. In particular, the
process of similarity assessment between images perfectly fits the matching/combining paradigm
introduced in Section 2 (see Figure 1).

Fig. 1. In region-based systems, similarity between images is assessed by taking into account similarity
between matched regions.

Region matching algorithms have only recently emerged as a need for region-based CBIR sys-
tems. Existing systems [5, 12, 14], however, use näıve heuristic matching algorithms when associ-
ating regions of the images being compared, thus obtaining incorrect results.1

The criterion used to assess the similarity between two regions vary from system to system.
For example, the Windsurf system [1] segments images into sets of pixels that are homogeneous
for color and texture by using the Discrete Wavelet Transform (DWT, [7]) and a fuzzy c-means
algorithm. Each region is then represented as an elliptical cluster in the HSV space and the similar-
ity between regions is computed by taking into account both differences in the color and textures
descriptors (the pattern structure) by way of the Bhattacharyya distance and in their relative size
(the pattern measure). For more details, see [1].

4 The Problem of Optimal Matching

Given a reference (query) complex pattern cpq, composed of a set of patterns {pq1 , . . . , pqn
}, and

a pattern ps, also composed of a set of patterns {ps1 , . . . , psm
}, the problem of optimal matching

consists in associating (matching) each pattern pqi
of cpq to a pattern psj

= Γs(pqi
) of cps (possibly,

no pattern is associated to pqi
, i.e. Γs(pqi

) = ∅) such that the overall similarity score between
patterns cpq and cps, sim(cpq, cps), is maximized. Similarity between base patterns is assessed
by way of the simbase(pqi

, psj
) function. Every Γs() has to satisfy the following constraint: Two

patterns of cpq cannot be associated to the same pattern of cps, therefore if pqi
�= pqj

and Γ (pqi
) =

Γ (pqj
), it is Γ (pqi

) = Γ (pqj
) = ∅. Similarity between complex patterns is computed by taking

into account similarity between associated base patterns using a monotonic function PMsim, i.e.
sim(cpq, cps) = PMsim(simbase(pq1 , Γs(pq1)), . . . , simbase(pqn

, Γs(pqn
))). The only requirement for

the function PMsim is that it has to be a monotonic increasing function, that is if si ≤ s′i, i ∈ {1, n},
then it is PMsim(s1, . . . , si, . . . , sn) ≤ PMsim(s1, . . . , s

′
i, . . . , sn). This is intuitive, since better

matches between base patterns can only increase the overall similarity score between corresponding
complex patterns. Moreover, for the sake of simplicity, in the following we will assume that PMsim

is a commutative function. The optimal matching between regions, i.e. that for which sim(cpq, cps)
is maximum, will be denoted as Γ opt

s .

sim(cpq, cps) = max PMsim(si1j1 , . . . , si|H|j|H|),

(ihjh), (iljl) ∈ H, (ihjh) �= (iljl) (1)
H = {(i, j)|xij = 1} (2)

m∑

j=1

xij ≤ 1 (i = 1, . . . , n), (3)

n∑

i=1

xij ≤ 1 (j = 1, . . . , m), (4)

xij ∈ {0, 1} (i = 1, . . . , n)(j = 1, . . . ,m) (5)

Equation 1 means that to determine the overall score sim(cpq, cps) we have to consider only the
matches Γs() in H (Equation 2). Equation 3 (Equation 4) expresses the constraint that at most
one pattern psj

of cps (resp. pqi
of cpq) can be assigned to a pattern pqi

of cpq (resp. psj
of cps).

Definition 1 (Correct matching). A set of xij values that satisfies the constraints expressed by
Equations 3, 4, and 5 is called a correct matching.

Definition 2 (Complete matching). A correct matching for which it is
∑m

j=1 xij = 1, (i =
1, . . . , n) (i.e. each pattern of cpq is associated to a pattern of cps) is called a complete matching.

1 As an example, suppose that an user asks for an image containing two tigers: If a database image
contains a single tiger, it is not correct to associate both query regions to the single “tiger” region of
the DB image, since, in this case, information about the number of query regions is lost.

It should be noted that any correct matching for a pattern cps having a number of patterns lower
than that of cpq is obviously not complete.

Definition 3 (Optimal matching). The correct matching that maximizes the function expressed
by Equation 1 is called the optimal (or exact) matching, and will be denoted as Γ opt

s ().

5 Solving the Problem

A typical form of the scoring function PMsim is that of a sum (this is indeed the case, save for a
constant scale factor, for the image retrieval systems WALRUS [12] and Windsurf [1]), leading
to a re-formulation of Equation 1 as follows:

sim(cpq, cps) = max
n∑

i=1

m∑

j=1

sij · xij (6)

The generalized assignment problem, in this case, takes the form of the well known Assignment
Problem (AP), one of the most popular topics in combinatorial optimization. To resolve it, we
can apply the Hungarian Algorithm [11] to the matrix {sij} of similarity scores between regions.
Sequential evaluation of a best matches query is performed by way of a simple algorithm that
computes the optimal matching between the query pattern and all the searched patterns and
returns the k patterns for which the highest similarity score is obtained [3]. Of course, the sequential
algorithm requires to compute the similarity between the base patterns of the query and all the
indexed base patterns. Moreover, the matching problem has to be solved for all the searched
complex patterns.

In order to obtain a complexity sub-linear in the data set size, we describe an index-based algo-
rithm that speeds up the evaluation of best matches queries by reducing the number of candidate
patterns, i.e. patterns on which the optimal region matching problem has to be solved.

In order to use an index to speed-up the search, we suppose that the similarity between base
patterns is computed by way of a distance between pattern features (this is the case, for example, for
most of the region-based CBIR systems, see Section 3). In this case, a distance-based access method
(DBAM), like the M-tree [6], can be used to index base patterns according to their respective (dis-
)similarity. Such index structures are able to efficiently answer k nearest neighbor queries, as well
as to perform a sorted access to the data, i.e. to output objects one by one in increasing order of
distance with respect to a query [10].

To retrieve best matches for query patterns, we run a sorted access to the indexed patterns for
each base pattern in the query. The AWS

0 algorithm shown in Figure 2 is able to return the correct
result for a best matches query by only solving the matching problem for the candidate set, i.e. for
those patterns having at least one base pattern that has been returned by a sorted access [3, 2].
The random access phase consists in computing those similarity scores sij between query patterns
and patterns of candidates not returned in the Xi result sets.

Correctness of AWS
0 (the proof can be found in [3]) is independent of the specific PMsim function

used to combine scores into similarity between patterns, since it only relies on the monotonicity of
PMsim.

It can be noted that sorted and random access phases of AWS
0 somewhat resemble those of

Fagin’s A0 algorithm [8], the major difference being that A0 does not deal with the issue of correct
matching, thus, if applied, it could report non-correct results.

6 Experimental results

Preliminary experimentation of proposed techniques has been performed on the Windsurf system,
using a sample medium-size data set consisting of about 2000 real-life images from the IMSI-
PHOTOS CD-ROM.2 The over 8000 obtained regions were indexed using an M-tree [6]. The query

2 IMSI MasterPhotos 50,000: http://www.imsisoft.com.

AWS
0 (cpq: query, k: integer, T : DBAM)

{ ∀ base pattern pqi of cpq, open a sorted access index scan on T
and insert results in the set Xi;

stop the sorted accesses when there are at least k patterns for which

a complete assignment exists, considering only base patterns in ∪iX
i;

∀ pattern cps having base patterns in ∪iX
i,

∀ pair pqi , psj

if psj �∈ Xi compute score sij = simbase(pqi , psj); (random access)

compute the optimal assignment; (combining phase)

return the k patterns having the highest overall scores sim(cpq, cps); }

Fig. 2. The AWS
0 algorithm.

workload consists in about one hundred randomly chosen images not included in the data set. All
experiments were performed on a Pentium II 450 MHz PC with 64MB of main memory running
Windows NT 4.0.

The experiments we present concern the efficiency of the AWS
0 index-based algorithm as com-

pared to that of the sequential algorithm. In Figure 3 (a) we compare the average number of
candidate images, i.e. the images on which the Hungarian algorithm has to be applied, as a func-
tion of the number of query regions, for different values of k. Of course, the sequential algorithm
(the horizontal line labeled ERASE, for Exact Region Assignment SEquential algorithm [3]) would
lead to a number of candidate images equal to the number of images in the data set, whereas for
AWS

0 this number depends both on k and on the number of query regions. As the graph shows,
AWS

0 does well in reducing the number of candidate images. Clearly, its performance degrades as
the number n of query regions increases, since the complexity of finding k objects in the intersec-
tion of n sets augments with n. This is also confirmed by Figure 3 (b), where query response times
are shown for the case n = 3.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 3 4 5 6 7 8

of

 c
an

di
da

te
 im

ag
es

of regions

A0
WS, k=1

A0
WS, k=5

A0
WS, k=10

A0
WS, k=15

A0
WS, k=20

ERASE

(a)

30

35

40

45

50

0 5 10 15 20

tim
e

(s
)

k

A0
WS

ERASE

(b)

Fig. 3. Average number of candidate images vs. number of query regions (a), and response time vs. k
(n = 3) (b).

7 Conclusions

In this work we have investigated the problem of correct resolution of best matches queries for
complex patterns, obtained as sets of base patterns. In particular, an index-based algorithm (AWS

0)
has been presented which computes the optimal matching between the base patterns, in order to

maximize the overall similarity score between complex patterns, under the condition that only
one-to-one matches exist. Preliminary experiments conducted over a region-based image retrieval
system have shown that our approach is indeed very effective with respect to alternative retrieval
strategies. In the future we plan to investigate how to solve the problem when different kind of
constraints or aggregation logics exist, and also to devise algorithms for dealing with multiple levels
of aggregation (i.e. when the composition hierarchy has more than just one level, as was the case
considered in this work).

References

1. Stefania Ardizzoni, Ilaria Bartolini, and Marco Patella. Windsurf: Region-based image retrieval using
wavelets. In Proceedings of the 1st International Workshop on Similarity Search (IWOSS’99), pages
167–173, Florence, Italy, September 1999. IEEE Computer Society.

2. Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. A sound algorithm for region-based image retrieval
using an index. In Proceedings of the 4th International Workshop on Query Processing and Multimedia
Issues in Distributed Systems (QPMIDS 2000), pages 930–934, London/Greenwich, UK, September
2000.

3. Ilaria Bartolini and Marco Patella. Correct and efficient evaluation of region-based image search. In
Atti dell’Ottavo Convegno Nazionale SEBD, pages 289–302, L’Aquila, Italy, June 2000.

4. Elisa Bertino, Barbara Catania, Matteo Golfarelli, Stefano Rizzi, Manolis Terrovitis, Panos Vassiliadis,
and Michalis Vazirgiannis. A preliminary proposal for the panda logical model. Technical Report
PANDA-UNIMI-2003-001, The PANDA Consortium, February 2003.

5. Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jitendra Malik. Blobworld:
A system for region-based image indexing and retrieval. In Proceedings of the 3rd International Con-
ference on Visual Information Systems VISUAL’99, pages 509–516, Amsterdam, The Netherlands,
June 1999. http://elib.cs.berkeley.edu/photos/blobworld/.

6. Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for similarity
search in metric spaces. In Proceedings of the 23rd International Conference on Very Large Data
Bases (VLDB’97), pages 426–435, Athens, Greece, August 1997. Morgan Kaufmann.

7. Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1992.

8. Ronald Fagin. Combining fuzzy information from multiple systems. In Proceedings of the 15th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’96), pages 216–
226, Montreal, Canada, June 1996. ACM Press.

9. Venkatesh Ganti, Johannes Gehrke, Raghu Ramakrishnan, and Wei-Yin Loh. A framework for mea-
suring changes in data characteristics. In Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’99), pages 126–137, Philadelphia, PA, May
1999. ACM Press.

10. Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial databases. ACM Transactions on
Database Systems, 24(2):265–318, June 1999.

11. Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistic Quar-
terly, 2:83–97, 1955.

12. Apostol Natsev, Rajeev Rastogi, and Kyuseok Shim. WALRUS: A similarity retrieval algorithm for
image databases. In Proceedings 1999 ACM SIGMOD International Conference on Management of
Data, pages 396–405, Philadelphia, PA, June 1999. ACM Press.

13. Stefano Rizzi, Barbara Catania, Matteo Golfarelli, Maria Halkidi, Manolis Terrovitis, Panos Vassiliadis,
Michalis Vazirgiannis, and Euripides Vrachnos. Towards a logical model for patterns. Submitted, 2003.

14. James Ze Wang, Jia Li, and Gio Wiederhold. SIMPLIcity: Semantics-sensitive Integrated Matching for
Picture LIbraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9):947–963,
September 2001. http://wang.ist.psu.edu/cgi-bin/zwang/regionsearch show.cgi.

Pattern Visualization by Pixel Validity Plots

Amihood Amir1, Reuven Kashi1, Daniel Keim2, and Markus Wawryniuk2

1 Department of Computer Science, Bar-Ilan University, Israel
2 Department of Computer and Information Science, University of Konstanz, Germany

Abstract. The staggering amounts of available digital information, from astronomical, bi-
ological and scientific data to business and entertainment, create new challenges and new
frontiers. To be fully useful, the data needs to be categorized and analyzed. Much effort has
been devoted in recent years to develop automated methods for data analysis.
Because of the, somewhat amorphous, nature of clusters, visual methods have proven to be
quite successful. However, because of the size and dimensionality of the data sets, it is nec-
essary to develop automated clustering algorithms. Automated methods have the advantage
of speed but the disadvantage of lacking domain knowledge.
We are proposing a novel method that makes it possible to automatically analyze high
dimensional data with arbitrary clusters and high noise levels. Our method requires no
domain knowledge in advance, yet it discovers different types of projected clusters and allows
separating overlapping clusters with different topologies. At the core of our method lies the
idea of subspace validity. We map the data in a way that allows us to test the quality
of subspaces using statistical tests. Our approach is robust as far as noise is concerned,
and enables discovery of arbitrary projected clusters with unusual topology even without
any prior domain knowledge. Experimental results, both on synthetic and real data sets,
demonstrate the potential of our method and show highly promising results.

1 Introduction

1.1 Motivation

The last few decades witnessed a flood of digitized information, from pervasive digital libraries to
an everexpanding Internet. Google reports over 3 billion sites, double the amount of four years ago.

The staggering amounts of available digital information, from astronomical, biological and
scientific data to business and entertainment, creates new challenges and new frontiers. To be fully
useful, the data needs to be categorized and analyzed. Much effort has been devoted in recent years
to data analysis, borrowing from areas of machine intelligence, visualization, and statistics. These
efforts produced myriad interactive and automated methods for data analysis.

The concept of “cluster” is somewhat elusive. From an intuitive sense, it means points that
are “close” to each other in space while they are “far” from other points. The meaning of such
“closeness”, vis-a-vis data analysis, is that points in a cluster are similar to each other, whereas
points from different clusters are dissimilar.

This mapping from clusters to related variables over domain subsets adds some complications
to our cluster definitions.

1. Projected Clusters: Typically, a relation may exist between some, but not all, variables. Con-
sequently, the clusters are not defined over all attributes, i.e. values in some attributes are
similar, but in other attributes not. This means that even finding all clusters in full space will
not be sufficient. It is possible that projecting the space into a smaller dimensional space will
yield interesting clusters that do not exist in the original data space. See example in Figure 1.

2. Topology: Clusters may have different shapes and linear dependencies. For example, we would
like to identify a a sphere as a cluster, or we may be interested in identifying a plane in a
multidimensional space as a cluster.

3. Overlaps: It is possible that under a certain projection, two clusters overlap and can not
be distinguished, whereas in another projection they are separated. In an even more drastic
situation, a cluster may not be identified under any (axes parallel) projection! See Figure 2.

(a) (b)
The clusters are not defined in
dimension W

The clusters are defined in di-
mensions X,Y and Z

Fig. 1. Three 3-dimensional projected clusters in 4-dimensional space

(a) A “surrounded”

cluster

(b) The X-Y projection (c) The X-Z projection (d) The Y-Z projection

Fig. 2. A “hidden” cluster that does not appear in any axes-parallel projection

Because of the, somewhat amorphous, nature of clusters, visual methods have proven to be
quite successful. Such methods use the perceptual capabilities of the human. Knowledge about the
domain/task flows into the process step by step and is exploited both for a successful understanding
of dependencies in the particular domain and for ferreting out and separating clusters [10, 11].

Albeit the success of such visualization methods, it is necessary to develop automated clustering
algorithms. The reason for this need is the existence of high dimensional data sets that need to be
analyzed. Just considering all different 2-dimensional projections of a d-dimensional dataset means
analyzing

(
d
2

)
cases. This is not a feasible number for interactive human analysis.

Automated methods have the advantage of speed but the disadvantage of lacking domain knowl-
edge. Harnessing such knowledge through preprocessing work or by machine learning methods is a
laborious process and the state-of-the-art is far from satisfactory. The above mentioned challenges
of cluster finding do not have good solutions by current methods of automatic data exploration.

1.2 Related Work

Cluster finding has been an extensively studied problem for many years by the statistics, machine
learning and database communities. In its full-dimensional view, the clustering problem may be
defined as the problem of partitioning the set of data vectors into a number of clusters and noise,
such that the data vectors within the clusters are similar to each other and the data items which
are in different clusters or in the noise partition are not similar. Many specific clustering algorithms

have been proposed [5, 9, 13, 6, 17] and to improve performance optimized clustering techniques
have emerged [15, 18, 16, 7]. Recent research has proposed many algorithms for clustering [12].
However, in high-dimensional data sets, the curse of dimensionality severely affects the effectiveness
(or quality) of the resulted clustering. It was shown in [8] that that existing clustering methods
suffer from either severe breakdown in efficiency or have a serious effectiveness problem.

One of the first algorithms dealing with projected clustering is CLIQUE [3]. The algorithm
mines the projection space bottom up by searching quantitative frequent item sets (histogram
bins) which are assembled to clusters on a single linkage basis.

The algorithms PROCLUS [1] and ORCLUS [2] are k-means like algorithms, which need the
number of clusters and the average dimensionality of the associated projections as parameters.
Each cluster found is described by a single centroid from the data space with a set of vectors,
spanning the subspace of the projected cluster. The data points are assigned to the centroids
using a modified nearest neighbor rule. Both algorithms iteratively change the centroids and the
subspaces, and stop after a predefined number of iterations. The iteration starts with random
centroids, each associated with the full-dimensional space as cluster space. After assigning data
points to the centroids the dimensionality for the subgroups is reduced. PROCLUS reduces the
full-dimensional data space to the subspace spanned by the dimensions with the smallest variance.
For the selection, the dimensions are treated independently, with the result that only axes-parallel
projected clusters can be found. In contrast, ORCLUS determines for each cluster the eigenvectors
of the covariance matrix with the smallest eigenvalues and therefore allows arbitrary orientations.

The most recent method DOC [14] defines a projected cluster as a hyperbox, with a boundary
size of w (which is a parameter of the algorithm) in the bounded dimensions and an unbounded
size in the other dimensions. Additionally, the number of data points in a projected cluster has to
be at least a given minimum percentage of the total number of data points. An optimal projected
cluster maximizes the number of bounded dimensions as well as the number of points in the cluster.
DOC uses sampling to center the boxes around some randomly chosen data points. The result of
the DOC method is a set of hyperboxes, which are bound in some dimensions and contain the
projected clusters.

1.3 Our contribution

The described current methods are restricted to specific kinds of cluster definitions and cannot find
in the data general structures that may have different topologies, share dimensions, and overlap.
Such structures may still be considered as useful and interesting to the end user. The state-of-the-
art methods for cluster finding differ in their requirements of knowledge domain and they require
parameters (such as the requested number of clusters) as input for the algorithm. In addition, they
depend on the amount of noise in the data and that affects the quality of the results.

Our goal is analyzing high-dimensional data sets in order to find structures and patterns which
can be considered as interesting to the end user. It is accepted that if the human eye would per-
ceptually capture a pattern in a subset of data points, then it is considered as valuable information
which should be noticed and investigated further. The traditional way to capture such “similar”
data objects is by the various definitions of clustering in the literature. Therefore, to demonstrate
the performance – meaning the efficiency and the effectiveness – of the proposed methods we com-
pare it against clustering algorithms in the databases literature. However, it should be stressed
that we are not defining “clusters” in any traditional formal sense. We are seeking a more gen-
eral method that can automatically detect “interesting” structures in high dimensional data sets.
Therefore, our use of the word “clusters” to define such structures is intentionally quite loose.

We are proposing a novel method that makes it possible to analyze high dimensional data with
high noise levels. Our method requires no domain knowledge in advance, yet it discovers projected
clusters and allows separating overlapping clusters with different topologies.

At the core of our method lies the idea of subspace validity. We map the data in a way that
allows us to test the parameters of a one-dimensional subspace. It is possible to perform various
statistical tests efficiently in one dimension. We use a concept of generalized histogram to efficiently
consider projections of three dimensions. In these projections, one of the variables is designated as

Fig. 3. The proposed methodology

the subspace whose validity is checked by various statistical means. The result of these tests allows
us to reach a conclusion about clustering in the three-dimensional subspace.

This approach is robust as far as noise is concerned, and enables discovery of projected clusters
with unusual topology even without any prior domain knowledge. The main objective of this paper
is introducing this new approach and demonstrating its effectiveness and viability.

2 The Concept of Subspace Validity

2.1 Problem Statement

The projected clustering problem consists of two main tasks, namely finding useful projections of
the high dimensional data and determining clusters in these projections. Both tasks depend on each
other, because a projection is only useful if it provides a good clustering and for the determination
of a projected cluster a useful projection is needed. So an algorithm for the projected clustering
problem has to decide, whether a clustering is good for a given projection, and it has to search the
space of projections based on that criterion.

Given a database DB with m attributes, also referred as dimensions or variables, the goal is
to find different local structures in DB, C1, . . . , Ck with arbitrary topology, which can be defined
over different subsets of dimensions. We refer to such local structure as projected clusters although
we generalize our goal to general structures without any specific definition for similarity of objects.
We define (projected) clusters as sets of data points that create a visually related structure.

Note that each cluster may be defined in a different projection and therefore, determining all
projected density functions is computationally infeasible.

2.2 Overview of the Idea

Practical approaches to determining projected clusters are based on an iterative partitioning of the
data. Partitioning based approaches try to partition the data space without partitioning any of
the clusters. The most efficient way to partition the data set is to use low-dimensional projections
to split the data. If we just use one-dimensional projections, the resulting clusters are hyperboxes.
If we use two dimensional projections, we may separate arbitrary shaped regions of the data. In
both cases, the idea is to split the data set only in the considered projection, which allows us to
find projected clusters, however two dimensional projections have the potential of a more refined
separation.

Our method is based on a new approach of automatically viewing and analyzing dataset pro-
jections by a method called subspace validity projections. Here we conceptually demonstrate our
idea, a detailed description is given later.

Let DB be the database with m numeric attributes. We exploit the fact that if there exists a
projected cluster in k dimensions, there is also a projected cluster in the subsets of the given k
dimensions. The idea is to consider projected clusters in small sets of dimensions, call such a small
set of dimensions a projection set. The problem with such a projection is that different clusters
will tend to aggregate together and noise will have a much more prominent effect when we view
clusters projected into a very small set of dimensions.

We propose to solve this problem with the concept of subspace validity. The idea is to consider
an additional dimension, henceforth the vertical dimension to that of the small projection set. The
vertical dimension is a given variable. We consider the behavior of that variable in every location of
the space of the projection set. Every such location will, in effect, create a histogram in the vertical
dimension. A contiguous subspace with “similar” histograms in the vertical dimension indicates a
higher dimensional projected cluster.

Our projecting method is not restricted in the number of dimensions but for ease of exposition
and to afford a more natural way of visualizing the idea consider three arbitrary attributes X,
Y and Z. The reason that restriction to three variables aids in conceptualizing the idea is that
the subspaces then map as images. Thus we can both view them and use customary digital image
processing tools. It turns out, in addition, that the results obtained with this strategy are highly
satisfactory. Consequently, the idea we pursue is considering different triples of variables 〈X, Y, Z〉
and automatically checking whether the subspace validity of the Z-variable in the 〈X, Y 〉 subspace
can indicates the existence of projected clusters in the X and Y variables. In other words, we will
try to find triples of attributes 〈X, Y, Z〉, where the Z variable has values that belongs to some
projected cluster(s) in meaningful regions of the X and Y variables.

The proposed approach has four major phases, as shown in Figure 3: The first stage is projecting
the dataset on every subset 〈X, Y, Z〉 of three dimensions and constructing an “image” from it.
The variables X and Y define the dimensions of the image matrix and the variable Z determines
the information stored in each entry (i.e., pixel) of the image.

In the second stage, we map the data distribution of each pixel into features that allow us to
test the similarity of contiguous pixels with respect to their designated one-dimensional vertical
(i.e., the Z variable) distribution properties in the image. The result of this test enables us to find
regions, referred to as subspace validity projections, in the image that indicate the existence of
(projected) clusters in a three-dimensional subspace.

In order to discover such regions, we perform, in stage 3, a segmentation procedure on the
images. The segmentation stage, discovers all regions of data points that have some interrelation
in lower dimensions and enables us to efficiently focus on identifying the type of the relation towards
clustering as shown in stage 4 of Figure 3.

In this final stage, we analyze the subspace validity regions obtained from all images to find
clusters in subsets of dimensions greater than just three variables.

2.3 Conceptual Clusters and Subspace Validity

In this discussion we motivate our definition and analysis of the subspace validity concept. Subspace
validity generalizes and formalizes the concept of pixel validity that was introduced in [4]. A pixel
was called valid, if a large portion of its subpopulation is congregated within a small distance from
the median of that subpopulation.

The typical shape of the density function of a one dimensional projection of a cluster is a
unimodal distribution, and the Gaussian distribution is a good approximation. With the definition
of the pixel validity using the median and the 50% rule a pixel with a Gaussian distribution in the
vertical dimension values will be identified as valid. One can say that the vertical dimension values
were identified as a projection of a cluster.

Let’s assume now that we have a pixel and the distribution of the vertical dimension values is
bimodal. With the original definition of pixel validity this pixel would be rated as invalid. But, if
we consider that in reality clusters overlap or have peculiar shapes, an obvious approach is to test
whether the two peaks in the density function correspond to two clusters.

A bimodal distribution of a histogram might indicate that points from its subpopulation come
from two clusters. However, we must take care that two neighbored pixels, both with a bimodal
distribution, belongs to the same two clusters, i.e. the two peaks of the bimodal distribution must
have similar locations in the histogram. This is done by comparing histograms of neighboring pixels.
This comparison necessitates a norm or distance function on histograms. In our implementation
we use transforms for histogram comparisons.

The values of validity could be – uniform, unimodal (i.e. as in the original pixel validity defini-
tion), bimodal or multimodal. It is clear, though, that a region of similar histograms is interesting

to the user. Thus it is necessary to find a good method of measuring distance between histograms,
and a good method for separating the image into regions of similar histograms.

Let h be a data distribution (represented by a histogram or a density function). Let f , f : h →
−→v , be the feature function of a data distribution h. The vector −→v , also called the feature vector,
is a d-dimensional vector, depending on the selected feature function.

For example, in the case of pixel validity definition, let p be some pixel. Then, h would be the
histogram of the values that falls in the pixel p and the feature function f is the median of the
values in p, i.e., f(h) = median{x : x ∈ p}. In this case the feature vector, f(h), is a 1-dimensional
vector. Other feature functions can be the Fourier transform (DFT) or Wavelet transforms, any
statistic for testing k-modality of a distribution, or simply the histogram of a data distribution.

Given two feature vectors v1 and v2, we denote by s the similarity function such that s(v1, v2)
is the distance or the similarity between two feature vectors v1 and v2.

In general, we would like to define the feature vector as such that would best capture the
distribution in the pixel and enable us to compare adjacent pixels for a similar regions or (projected)
clusters.

3 Algorithms

3.1 Algorithms for Subspace Validity

In this subsection we explain in detail our subspace validity algorithms. We dwell specifically on the
computation of various projections (images) from the original database, the extraction of features
(associated with image pixels), and the analysis of regions meeting subspace validity.

Given an m-dimensional database DB, we first project the data set onto every subset of 3
dimensions. For each 3-dimensional projection, we designate one dimension (i.e., attribute) as the
vertical dimension, i.e., the one-dimensional subspace whose subspace validity is tested.

Phase 1: Constructing compact images from the data. The first stage consists of building
compact 2-dimensional projections or images for every triple of dimensions 〈X, Y, Z〉. A general
framework of constructing gray level images from ordinary data was introduced in [4]. Let MXY

denote the matrix for attributes X and Y . In every MXY entry we can store the values of the Z
variable associated with that entry.

Note that the matrices we create are of relatively small size (e.g.,50 × 50). For this purpose
we use a mapping T : V → C, where V is the domain of variable values (e.g., X and Y), and
C = {1, ..., c}, where c is some number, say 50. This mapping somewhat distorts the domain V but
preserves distances in it, in the sense that a close clustering of many values will map to distinct
numbers, whereas large empty areas will be clumped together. In a case where the V -values are
(almost) uniformly distributed T can just be equally partitioning of the range of V into c bins.

Phase 2: Feature extraction from the image. Given three attributes X, Y , and Z, denote
by MZ

XY the corresponding image matrix, where X and Y are the coordinates and Z is the attribute
which defines the values in each pixel. Recall that for the same (x, y) location in the image MZ

XY ,
there can be many z values in the Z dimension. Therefore, in each pixel, we keep information about
the data distribution of the Z values. This information is an example of a feature vector associated
with the pixel. In general, feature extraction is carried out by applying some feature function.

Phase 3: Image segmentation. Since MZ
XY represents an image, we can segment the image

by applying standard image segmentation techniques. The segmentation of MZ
XY yields regions,

such that the pixels of a region have similar data distributions with respect to the Z variable. In
other words, the image is segmented into regions such that a region’s pixels have similar feature
vectors.

Our objective is to identify, essentially, regions in a given image such that pixels in each region
have similar features. We employ an image segmentation variant, such that segmented regions are
dense, i.e., they contain a large number of points, and have compact shapes. The strategy we
have used for segmentation is based on region growing, where at each iterative step pixels may be
merged with a neighboring region depending on their feature similarity with that of the region.

Phase 4: Region analysis. At this stage we have possibly a large number of different regions
of the various X and Y attributes, such that the values of the associated vertical Z dimensions in

each such region are distributed in a similar manner. Using this information about the regions, we
can analyze the data points in order to further discover prospective clusters (i.e., similar subsets
of data points) either in the same attribute subspace or in some augmented subspace projections.

Note that each projected cluster may be defined with respect to a different projected subspace
(i.e., attribute subset) and furthermore, clusters may overlap in some dimensions. According to
our definition, (projected) clusters are subsets of data points. In order to determine the correct
partitioning of data points into clusters we analyze the data distribution (or the density function)
of the vertical dimension.

As discussed in Subsection 2.3, the data distribution of the vertical dimension in each region
can suggest several possibilities regarding projected clusters. One simple case is a unimodal data
distribution, which implies the existence of a single cluster in the appropriate dimensions. On
the other hand, if the distribution is bimodal (or multimodal), we partition the data set over the
vertical dimension and iterate the whole process with respect to this subset only (i.e., process each
partition separately by again constructing “images” and finding regions).

The clustering scheme we have used consists of the following characteristics:
1. Consider the two-dimensional projection on X and Y . A pixel stores information about the

distribution of the Z values of the points which are mapped to the corresponding cell.
2. We find regions (dense and compact) with similar distribution of Z.
3. If the distribution is unimodal (by definition of pixel validity), then these data points belong

to one cluster in (at least) the X, Y , and Z dimensions. The data points should not be further
partitioned with respect to the Z attribute in this case.

4. In order to augment the current set of dimensions which define the cluster (and to find clusters
in the points which do not belong to the region) we partition all points into two sets; points which
belong to the region and points which do not. The two subsets are processed recursively. The
concept employed here is a generalization of the separator tree concept used in HD-Eye [10]. This
method is explained in more detail in Section 3.2.

5. Suppose that a subset of points form a cluster in at least the set of dimensions D (e.g., D =
{X, Y, Z}). Further suppose that these points yield a region of interest in the image corresponding
to the triple U , V , W . The points of this region may thus define a cluster in the augmented set of
dimensions D ∪ {U, V,W}.

6. Searching for projected clusters is motivated by the fact that it might not be possible to
augment a certain dimension set D (i.e., the cluster is not defined in all dimensions; it is a projected
cluster).

3.2 Partition Tree Algorithms

The concept employed by our new framework for clustering is similar to that employed by decision
trees to classification. A decision tree consists of a number of nodes, each containing a decision
rule which splits the data to achieve finer labeling in the children nodes. In our trees, a node is a
subspace of the dataset defined by a region that was discovered in a 2 dimensional projection by
the segmentation algorithm. The decision rule is a separator defined by a region in a 2 dimensional
projection of the points in this subspace.

A single region of similar features in a 2 dimensional projection does not necessarily define
a single cluster in the dataset. The points defined by this region need to be further refined to
understand the structure of clusters in that region.

This refinement is done recursively, by constructing all 2 dimensional projections of the subset of
the dataset defined by the region. The order of these refinements is organized by the partition trees.
A partition tree is a tree which corresponds to a recursive partitioning of a data set DB. A node v
corresponds to a subset of DB. Like decision trees, which are an assemblage of classification rules
forming a classifier, a partition tree is a collection of regions/separators forming a cluster model
for the given data.

(a) (b) (c)
synthetic rotated projected
clusters

synthetic rotated projected
clusters with noise

pendigits data set

Fig. 4. Experimental results

4 Evaluation and Comparison

We performed an extensive series of experiments to evaluate our new subspace validity method. In
the experiments, we use a number of data sets with controlled characteristics, such as the number
of dimensions or noise level, as well as real data sets. In the experiments, we compare our new
approach to the most competitive existing methods including Expectation Maximization [5] and
PROCLUS [1] (for a brief description of those algorithms see 1.2).

Real clusters often describe linear dependencies between the dimensions which define the cluster.
This means that the cluster dimensions are not necessarily axis-aligned. Therefore, in our first
experiment we analyze the ability of the algorithms to find rotated projected clusters. The clusters
are modeled by multi-dimensional Gaussians and the rotation is defined by an arbitrary covariance
matrix. We generate the clusters as follows: First, we create unrotated projected clusters. The
cluster is an axis-aligned multi-dimensional Gaussian, but bounding dimensions (where points of
a cluster are similar) have a small standard deviation in contrast to unbounded dimensions, where
the standard deviation is very large. In a second step, we then apply a random rotation to the
bounded dimensions.

The results of applying the different algorithms to this type of data sets are shown in Figure 4(a).
The results represent the average classification rate over a number of data sets of this type. Subspace
Validity has the best overall classification rate. EM performs surprisingly well and provides a better
performance than PROCLUS.

In the next experiment, we examined the effect of noise in the data. For this series of exper-
iments, we added random noise to the data sets from our second experiments and repeated the
tests. The new results (see Figure 4(b)) show that the effectiveness of our method remains un-
changed, but the performance of EM and PROCLUS degenerates. Interestingly, the performance
of EM degenerates much faster than the performance of PROCLUS.

To show the relevance of our method, we performed a series of experiments with two real data
sets. The first data set are the pendigits data set from the University of California at Irvine’s
Machine Learning Repository (see www.ics.uci.edu/∼mlearn/MLRepository.html). The pendigits
data set contains 7,494 tuples and 16 dimensions that describe handwritten digits. The data set is
labeled, we are therefore able to determine the classification rate as in the experiments above.

The results of our experiments are shown in Figure 4(c). With our method we get the best clas-
sification rate of 84%, followed by EM with 80% and K-Means with 78%. From the bad classification
rate of PROCLUS (only 66%), we may conclude that clusters are spread over all dimensions.

Figure 5 gives an exemplary pixel validity plot. The image has a resolution of 64×64, unoccupied
pixels are colored with white, whereas pixels with similar features have the same color. In this case
we identified 3 groups of similar features. Note, that in this case regions of similar features are
not necessarily connected. But in order to process the image recursively, the algorithm will select

connected regions only. To understand the meaning of the different regions, the average of the
histograms of the third dimensions is shown for each group of similar features. Here, the average
is shown with red bars. Because some histograms of a group might be outliers, the 75% quantile
of the histograms is shown as well. In most cases the average and the quantile of a bin are very
close. Therefore we can conclude that the regions represent different characteristics of the dataset
in this particular projection with respect to particular the third dimensions.

image with regions histogram of red regions

histogram of blue region histogram of green region

Fig. 5. Example of an segmentation

Our second real data set is the census dataset nhis93ac, National Health Interview Survey 1993
(NHIS). The data set is available from http://ferret.bls.census.gov/. It has several hundred numeric
and nominal attributes and consists of 45951 records. We selected the most promising numerical
attributes, which are Person’s age, Bed Days in Past Year, Doctor Visits in Past Year, Years of
Education, Family Income Level, Number of Conditions, and Weight.

Since the data does not come with a known classification, we can not calculate classification
rates but have to judge the classification accuracy by looking at the results. For this purpose, we
use the Subspace Validity plots and visualizations of the corresponding projections for the results
of EM and K-Means.

An indicative example of the superiority of the subspace validity method can be seen in Figure 6.
The clusters found by the EM method and the K-Means method are pretty much meaningless.
However, the clusters found by our method tell a very interesting story. The horizontal axis is the
age and the vertical axis is the weight, with the origin in the bottom left corner. Note the diagonal
in the projected cluster, from top left to bottom right. This indicates something that insurance
companies love to find. That the number of medical conditions increases at a younger age when
the weight is greater. In fact, the diagonal can even predict at what weight and at what age one
can expect the problems to accumulate.

(a) Result of Subspace Validity (b) Result of K-Means (c) Result of EM

Fig. 6. An example from census data set ’nhis93ac’

References

1. C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algorithms for projected
clustering. In Proc. ACM SIGMOD International Conference on Management of Data, June 1-3, 1999,
Philadephia, Pennsylvania, USA, pages 61–72. ACM Press, 1999.

2. C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional spaces. In
Proc. of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000,
Dallas, Texas, USA, pages 70–81. ACM, 2000.

3. R. Aggrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In Proc. ACM SIGMOD International Conference on
Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages 94–105. ACM Press, 1998.

4. A. Amir, R. Kashi, and N. S. Netanyahu. Analyzing quantitative databases: Image is everything. In
VLDB 2001, Proc. of 27th International Conference on Very Large Data Bases, pages 89–98, Roma,
Italy, September 11-14 2001.

5. A. P. Dempster, N. Laird, and D. Rubin. Maximum likelihood for incomplete data via the EM
algorithm. J. of the Royal Statistical Society, ser. B, 39:1–38, 1977.

6. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proc. of the 2nd Intl Conf. on Knowledge Discovery and Data
Mining, pages 226–231. AAAI Press, 1996.

7. A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases with
noise. In Proc. of the 4th Int. Conf. on Knowledge Discovery and Data Mining, pages 58–65. AAAI
Press, 1998.

8. A. Hinneburg and D. A. Keim. Clustering methods for large databases: From the past to the future. In
Proc. ACM SIGMOD International Conference on Management of Data, June 1-3, 1999, Philadephia,
Pennsylvania, USA, page 509. ACM Press, 1999.

9. A. Hinneburg and D. A. Keim. Optimal grid-clustering: Towards breaking the curse of dimensionality
in high-dimensional clustering. In Proc. of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages 506–517. Morgan Kaufmann, 1999.

10. A. Hinneburg, M. Wawryniuk, and D. A. Keim. Hd-eye: Visual mining of high-dimensional data. IEEE
Computer Graphics & Applications Journal, 19(5):22–31, September 1999.

11. D. A. Keim. Information visualization and visual data mining. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 8(1):1–8, January–March 2002.

12. D. A. Keim and A. Hinneburg. Clustering techniques for large data sets - from the past to the future.
In Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data
Mining, pages 141–181, San Diego, CA, 1999. ACM Press.

13. R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In Proc. of
20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile,
Chile, pages 144–155. Morgan Kaufmann, 1994.

14. C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. A monte carlo algorithm for fast
projective clustering. In Proc. of the ACM SIGMOD international conference on Management of data,
pages 418–427. ACM Press, 2002.

15. E. Schikuta. Grid-clustering: An efficient hierarchical clustering method for very large data sets. In
In Proc. 13th Int. Conf. on Pattern Recognition, volume 2, pages 101–105, Vienna, Austria, October
1996. IEEE Computer Society Press.

16. W. Wang, J. Yang, and R. R. Muntz. Sting: A statistical information grid approach to spatial data
mining. In Proc. of 23rd International Conference on Very Large Data Bases, August 25-29, 1997,
Athens, Greece, pages 186–195. Morgan Kaufmann, 1997.

17. X. Xu, M. Ester, H.-P. Kriegel, and J. Sander. A distribution-based clustering algorithm for mining
in large spatial databases. In Proc. of the Fourteenth International Conference on Data Engineering,
February 23-27, 1998, Orlando, Florida, USA, pages 324–331. IEEE Computer Society, 1998.

18. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for very large
databases. In Proc. of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal, Quebec, Canada, June 4-6, 1996, pages 103–114. ACM Press, 1996.

Using Pattern-base Management Systems –
Requirements and Applications

Martin Nelke1

1 MIT – Management Intelligenter Technologien GmbH
Pascalstrasse 69, D-52076 Aachen, Germany

Phone: +49-2408-94580, Fax: +49-2408-94582
martin.nelke@mitgmbh.de

http://www.mitgmbh.de/e/index.htm

Abstract. A successful pattern data base management system has great
potential in applications in the area of Business, Trade, Services and Industry as
we can see that in these areas we have a tremendous increase of data and very
little offer from focused commercial products. One problem for market
penetration is that the data mining community coming from an academic
background has focused on the algorithms behind the technology. But efficient
algorithms are not what business users care about. The core algorithms are now
a small part of the overall application and users do care about compact and rigid
information which a Pattern-base Management System (PBMS) could offer.
Also the results of the data mining process or of a dbase query will drive efforts
in areas such as marketing, risk management, and credit scoring. Each of these
areas is influenced by financial considerations that need to be incorporated in
the focused data analysis process. A business user is concerned with
maximizing profit, not minimizing a function error and thus the necessary
information to make these financial decisions (costs, expected revenue, etc.) is
often available and ideally should be incorporated in the pattern. This paper
deals with the requirements of building a PBMS and contains an overview on
existing and future applications.

1 Introduction

Pattern is a compact and rich in semantics representation of raw data, with the main
characteristic that it is a repeated attribute or constraint shared by the raw data that
satisfy it. The design of a Pattern Based Management System, i.e. a system for
handling (storing/processing/retrieving) patterns extracted from raw data in order to
efficiently support pattern matching and to exploit pattern-related operations
generating intentional information is the aim of the PANDA (“Patterns for Next-
Generation Database Systems”) IST/FET Working Group (IST-2001-33058).

PANDA concepts and techniques cover numerous application domains
dealing with voluminous and heterogeneous data (further called raw data). Pattern
extraction algorithms (pexas) applied to these data generate potentially large

quantities of patterns that essentially represent the knowledge hidden in the raw data
and due to their volume and diversity call for efficient management.

The requirements to design a PBMS from the application and users’s view
are discussed in the following .

2 Requirements

To support a successful use of a PBMS, the following requirements should be
addressed:

• To support IT professionals to build patterns on users’ data offering flexible
interfaces for data access, parameter settings

• To reduce the dependency on IT professionals to apply data mining models
on users’ data.

• To reduce the cost of data analysis (storage capacities, performance of
building patterns and applying models).

The advantages of a Pattern Based Management System designed in the PANDA
working group should be pointed out clearly to give interested business users
investment incentives.

Fig. 1. Overview process of building patterns

From the requirements point of view to build patterns, a PBMS should support the
whole data analysis process considering as main aspects the generation, storage,
analysis, processing and retrieving of patterns [1].

It actually starts with the acquisition and storage of data in a data base; a
flexible import and export interface is necessary for an easy data exchange.

Considering the vast amounts of data that can be acquired from business
processes, the data to be analyzed has to be carefully selected. In the pre-processing
stage the data is filtered, missing values and outliers are treated, derived quantities are
calculated from the basic process variables and all the variables are trans-formed and
normalized. This step is followed by a feature selection procedure that is supposed to
ensure that only the most relevant of the pre-processed variables are used for
modeling. In the modeling phase (“building patterns”) data mining technologies are
applied to construct a model (e.g. decision tree, cluster, association rule).

The efficient support of pattern matching and the exploitation of pattern-related
operations are focused by the business end users. Their main requirements are

• Documentation: a user should be able to select the right pattern / model for
his application supported by a report about the process of building the model
(input raw data, parameters, evaluation results). This is necessary i.a. to
follow rules and regulations for the use of software systems in companies
e.g. of financial business

• Reporting: the results of building and retrieving of patterns should be
summarized in reports

• User interface: a web-based graphical user interface should be supported to
offer an easy access to the PBMS functions

• Historic data: it should be possible to follow the development of; e.g. if we
analyze a customer of a financial institution by cluster analysis, his features
like income, age, .. will change during in his lifetime. If a pattern-matching
model is applied to such customers, it is very interesting to see to which
patterns the customer belonged in the earlier years

• Methodology: it would be interesting not only to use patterns (e.g. in a
matching application) in a crisp way (that means the decision of a pattern
matches or not), but to give an additional information about the degree of the
matching as possible with the Fuzzy C-Means classifier [2].

• Adaptivity: However, the need for adaptivity in real application problems is
the same and the end-user is not technology dependent: he just wants his
problem to be solved. A PBMS should consider the adaptation of the used
technologies to changing circumstances regarding raw data, algorithms,
parameters, … to optimize the PBMS performance

3 Applications

3.1 Supplier Relationship Management

Procurement already serves as an ideal platform to change a company’s value
proposition, influence the choice of core competencies to maintain internally, and
enable its ability to innovate. By making the scope of supplier relationships broader
and more flexible, companies are enabled to achieve new areas of growth and to build
profitable new business models. Global leaders identify procurement excellence as the
main source of sustainable competitive advantage.

One of the most typical applications of Enterprise Resource Planning (ERP)
systems like SAP R/3® is being used for at end user sites is logistics [3],[4]. Here,
vendor selection and evaluation is one of the important tasks in the supply chain
management process. This is based on the two information sources of buying market
research results and vendor controlling information. Buying market research typically
collects, prepares and analyses vendor information on general company information,
product based data, conditions and services, and purchaser own relationship to the
vendor. Vendor controlling, on the other hand side, as based on information gathered
from the company's own experience with the vendor, is the more reliable source.

Fig. 2. Screenshot typical patterns for vendor evaluation

Vendor evaluation can be defined as a permanent and objective monitoring
and evaluation process of a vendor's performance regarding specific criteria like, e.g.,
quality or timeliness. The main objective of vendor evaluation is to ensure product
and service quality and the optimization of the vendor group structure according to
the business of the purchasing organization. This objective is highly correlated with
constraints like, e.g., permanent cost reduction and maintenance of competitive
advantage. Knowledge Discovery (KD) is an extraction process of implicit, unknown,
potentially useful and understandable information from large data sets using data
mining technologies. Vendor categorization by patterns that is based on a
segmentation of the whole vendor portfolio helps to identify intra-segment similarities

and inter-segment dissimilarities. This, in turn, helps to get a deeper understanding the
vendor portfolio structure, and to optimize this portfolio according to the company's
business strategy. Dynamic generated typical profiles of vendors described by
patterns can identify trends at early stages and deliver important controlling
information.

Typical raw data for vendor evaluation include
• dates and amounts of orders,
• dates and amounts of deliveries,
• quality and test results of deliveries,
• vendor information.

First approaches use features like number of deliveries, quantities, number of
days between delivery and order and others as input for a cluster algorithm to
identify patterns in the vendors performance to the requested deliveries
[5],[7].

3.2 Customer Segmentation in Financial Services

Customer Relationship Management is the practice of identifying, attracting and
retaining the “best” customers to increase sales and profits. To achieve this target
several independent S/W providers and vendors developed stand alone or add-ons to
provide solutions for Customer Relation Management.

But there is no product in the market that could successfully use and manage
patterns that are concentrating compact information for the customer although most
traditional data bases in the companies have only the basic raw data information. It is
obvious that data like purchase patterns, current status, contact history, demographic
information, sales results and service trends are there; but that data must also be
"actionable," so that managers and employees on the front lines can use it for decision
support. What is a great challenge in this area is "changing patterns": market and
customers are moving fast so it is difficult to work and derive conclusions using static
patterns from the past. Customer segmentation has its origin in the field of marketing
and market research. It provides analytical division of all potential customers in a
sales market according to different criteria. This results in the formation of internally
homogeneous and externally heterogeneous groups of customers or customer
segments, thus providing marketing activities focused on these segments.

The most important component for success in financial services is certainly
the relationship between the respective institute and its customers. This relationship
and the customer's degree of satisfaction and confidence is of central importance since
it concerns the customer's property. It determines the strategic aim in banking and
finance. The needs of individual customers are crucial for strategic planning in this
area. In addition to the necessity of providing an enormous variety of products, most
financial institutes serve a broad palette of customers. Due to this financial institutes
have to adapt as fast as possible to changing requirements and structures in order to
remain in a strong position among a rising number of competitors. Confronted with
this, financial institutes have realized that a decisive approach for the improvement of
quality in consultation and services lies in the segmentation of all customers into
different target groups containing 'similar' customers.

The products and services for a certain customer segment must be provided
in a way and at a level which the customer belonging to this segment is expecting and
willing to pay for. The relevance of a customer-oriented segmentation and the
identification of different customer segments by suitable methods is required for such
an approach [6].

Fig. 3. Database marketing uses the matching of product to customers belonging to patterns
generated from raw data

Cluster analysis is the usually used method for customer segmentation
referring to a group of methods for recognition of structure in data sets. It can be
applied if certain features of different objects (e.g. customers) can be observed, and if
those objects are supposed to be divided according to their individual feature values.
The entire set of objects will be clustered regarding all describing features in such a
way that all objects belonging to one cluster represented by a pattern are (possibly)
similar. Vice versa, the objects belonging to different clusters should be different
regarding their feature values [8].

3.3 Future Applications

Future applications of a PBMS will have great success where useful information from
lots of available raw data can be generated with high performance. Interesting
domains in general for business success are security, health, communication, financial
business, marketing and distribution of goods as well as entertainment.

Especially supported by the growing multimedia business with digital image
processing and GSM/GPS in recent years applications like

• personal identification by pattern matching derived from visual information,
• traffic analysis by detection of cars on highways,
• customer profiling in using the internet

could be target of a PBMS approach. One of the great advantages of the use of
patterns is the reduction of raw data to because of the representation aspect which
hides the original identity when the raw data contains confidential information.

Regarding the aim of PANDA working group, the design of a PBMS as a
result should be able to show the technical proof of concept as well as its advantages
to estimate the benefit for end-users to have the chance of starting an implementation.

References

1. Angstenberger, Joachim; Weber, Richard; Poloni, Marco, 1998, "Data Warehouse Support
to Data Mining: A Database Marketing Perspective ", The Journal of Data Warehousing, pp.
2-11

2. Bezdek, J. C., 1981, Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York

3. Grimmer, Udo; Poloni, Marco: “VendorAnalyzer: A real life vendor profiling tool - Data
mining on top of mySAP.com” , European SAP-Microsoft Congress 2001, February / March
2001, Berlin; Germany

4. i2: “Supplier Relationship Management (SRM) - Powering the Bottom Line through
Strategic Supplier Relationships”, WP-6709 (02/01), January 2001

5. Nelke, Martin: “Supplier Relationship Management: Advanced Vendor Evaluation for
Enterprise Resource Planning Systems”, Proceedings of Eunite2001, December 13-14 2001,
Tenerife, Spain

6. Nelke, Martin: Business Intelligence in Financial Engineering - A Combined Approach to
Customer Segmentation and Database Marketing; Coil 2000: Symposium on Computational
Intelligence and Learning; 22-23 June 2000, Chios / Greece

7. Nelke, Martin; Klotz, Uwe; Poloni, Marco: “A new Vendor Evaluation Product for SAP
R/3® Systems”, Session “Knowledge Discovery in Enterprise Information Management
SAP R/3 Systems” of European Symposium on Intelligent Techniques, September 14-15,
2000, Aachen, Germany

8. Zimmermann, H.-J., 1987, "Fuzzy Sets, Decision Making, and Expert Systems", Kluwer
Academic Publishers, Boston, Dordrecht, Lancaster

Mining patent databases for monitoring technological trends

Konstantinos MARKELLOS1,2, Penelope MARKELLOU1,2, Giorgos MAVRITSAKIS1,2,
Katerina PERDIKOURI1,2, Spiros SIRMAKESSIS1,2, Athanasios TSAKALIDIS1,2

1 Research Academic Computer Technology Institute,
61 Riga Feraiou Str., 26221 Patras, Greece,

2 University of Patras, Computer Engineering and Informatics Department,
Campus, 26500 Patras, Greece

Tel: +30-2610-960335, Fax: +30-2610-960322
E-mail: {kmarkel, markel, syrma, tsak}@cti.gr
E-mail: {mayritsa, perdikur}@ceid.upatras.gr

Abstract. The analysis of the information “hidden” in patent databases can provide a very clear view
of the current trends regarding technological and scientific innovation. In this paper we present the
methodology used from a system that combines efficient and innovative tools for the analysis of
textual data related to patents. The system uses existing patent databases as input, supports
multidimensional analysis and produces new technological indicators as output. These indicators
express information concerning the scientific and technological progress and can help the active
actors (individuals or organizations) to understand the on-going changes and their effects.

1 Introduction

Nowadays in order to observe and analyse economic, technological or scientific activities it is necessary
to take into account the flow of information that is related to them. Usually information is stored in large
databases and therefore access to information is performed through access to those databases. Information
can be distinguished in several categories e.g. information related to research is stored in research
publications, scientific magazines etc., while information related to the phases of development and
production is mainly stored in patents.

A patent is a legal title granting its holder the exclusive right to make use of an invention for a limited
area and time by stopping others from, amongst other things, making, using or selling it without
authorization [7]. Patents indicate the level of innovative activity in a particular market [10]. They
generate new investment and are a motivating force behind technical progress. Patents are also closely
related to technological and scientific activities [4] i.e. with Technology Watch. Therefore it is closely
related to innovation. Statistical exploitation of this information may lead to useful conclusions related to
technological development, trends of technology or innovation.

A patent can be decomposed and described by several fields. Each field contains specific information
while each patent is described by a code (or in many cases more than one codes) depicting its technical
characteristics. The information included in patents can be categorized in four large sections as shown in
figure 1. The first section concerns the technological features of each invention, the second section refers
to all the characteristics concerning the application of each invention. In addition information about the
countries in which an invention is protected is provided as well as information about the invention’s
origin. Below are presented the fields describing a patent in the database ESPACE ACCESS:

 PN: Priority Number (number of the patent).
 AN: Application Number.
 PR: Priority Year.
 DS: Designated States.
 MC: Main Classification Codes.
 IC: All Classification.
 ET: English Title.
 FT: French Title.
 IN: Inventor.

 PA: Applicant (name of the company depositor).
 AB: English Abstract.
 AF: French Abstract.

Figure 1. Information contained in a patent

The mining and the analysis of the information “hidden” in patents, which are stored in many
international databases, can provide a very clear view of the current trends regarding technological and
scientific innovation and can provide measurable and comparable results [6], [11].

In this paper we present a system that combines efficient and innovative methodologies and tools for
the analysis of textual data related to patents. The system uses existing patent databases (input), supports
multidimensional analysis and produces new indicators (output). These indicators express information
concerning the scientific and technological progress and can help the active actors (individuals or
organizations) to understand the on-going changes and their effects.

The structure of this paper is the following. In section 2 we discuss our system for the analysis of
patents and present its functional architecture. Section 3 describes the adopted methodology. System’s
evaluation and a list with its key benefits are included in section 4. Finally, in section 5 some conclusions
are summarised.

2 The system

The implemented system comprises a flexible tool, specialized in the mining and the analysis of patent
data. It combines different features and technologies as well as a complex statistical methodology for
analysing huge amounts of textual data. Specifically, it is characterized by its flexibility and interactivity
as well its ability to produce results in a fast and accurate way. The value of this system is enhanced by
the fact that there are available different ways of visualization. The user is able to visualize the results
through graphs easily adapted to his own requirements, tables and ready-made reports produced through a
drag and drop procedure.

The functionalities of the system, the analyses offered as well as the visualization techniques are in
total agreement with User Requirements analyses. In fact the design of the functionalities as well as of the
analyses offered were based on the feedback obtained from the questionnaire survey in many companies
at national and international level that are specialized in the domain of patent management as well as on
the feedback obtained from the user group meetings.

The system is windows-based with a user-friendly interface (see figures 3, 4, 5, 6, 7, 8, 9, 10, 11 in the
Appendix). It is a modular system consisting of different independent modules giving to the user the
ability to perform various types of analysis adapted to the user needs. Each module corresponds to a main
system task, has a pre-specified input and output data format and executes a set of well-defined tasks. The
main systems modules are:

 Database Manager Module: performs the data import, cleaning and preparation. Specifically, the
module reads the data from the selected patent database and transforms them into the appropriate

format, in order to be ready for further processing. The system accepts the textual and numerical
data of the patents fields.

 Statistical Analysis Module: performs the simple statistical analysis, as well as the analysis
envisaged from the proposed methodology. In particular, it applies textual analysis methods on the
pre-formatted data, in order to extract valuable information and create the first groups of patents.

 Results Presentation Module: performs the data export and the graphically representation of the
results. It is very important for the end-user in order to fully understand the meaning of the
produced results.

Next figure presents the system’s functional architecture. The depicted flows define the different stages
of the analysis and the connections between them. It is also common sense that the natural sequence
followed by the flows should be respected for the correct operation and for the robustness of the results.

Graphs

STING
System

ReportsTables

Statistical Analysis Module

Results Presentation Module

Import Process

Database Manager Module

Coordinates in 2-dimensional
level

Correspondence
Analysis

Hierarchical Analysis

Clustering
Process

Bootstrap Analysis

Hierarchical Analysis

Simple Analysis

Data Cleansing
Lemmatization

Part-of-speech Tagging
Part-of-Speech Selection

Linguistic
Preprocessing

patents.txt

User

Patent Database

Figure 2. System’s functional architecture

3 The methodology

The system tools interact and allow easy navigation to the user from the Data import level to the
Statistical Analysis module and the Results Presentation Module. The system uses innovative IT
technologies and complex statistical methodology. This methodology is based on the use of textual
analysis [2] and complex statistical procedures:

 Textual analysis consists in:
o Data cleansing: cleans the input data by removing irrelevant html characters and punctuation

characters.
o Lemmatisation: focuses in restricting the morphologic variation of the textual data by

reducing each of the different inflections of a given word form to a unique canonical
representation (or lemma).

o Part-of-speech tagging: automatically identifies the morpho-syntactic categories (noun, verb,
adjective) of words in the documents. The non-significant words can be filtered on the basis
of their morpho-syntactic category. The part-of-speech tagging runs on the textual content i.e.
on titles and abstracts of the patents.

o Part-of-speech selection: to further reduce the vocabulary size, the user has the ability to
select the word categories as identified by the assigned parts-of-speech and restrict the
analysis to specific word categories (i.e. nouns, verbs, adjectives). Moreover, the user can
select words that will not be involved in the subsequent steps of the analysis, and create
synonyms.

 Statistical analysis consist in:
o Simple analysis.
o Correspondence analysis [3], [8].
o Cluster analysis [1], [9].
o Bootstrap analysis.

By using this methodology the system offers a stable and robust analysis of patent data by enabling the
production of technology indicators through a fast and easy procedure. Moreover, the analysis of huge
databases is possible in a realistic time of processing. There are no limits in the patent database used since
the only requirement is to input the original data in txt format.

The technology used permits to provide high quality analysis in terms of patent processing,
competitive capturing and capturing of technology watch. Below is given a brief description of system
functioning and the subsequent processing steps:

1. Firstly, one has to import the data in the system and decide about the information that will be
involved in the analysis. For example, one can select specific patents by defining filters in the
different fields that describe a patent.

2. Then the process goes on by selecting a simple analysis or a more complex analysis. In the first
case, the system analyses all the information as a whole and permits to produce simple graphs and
tables. In the second case, a more complicated analysis is obtained based on a complex statistical
methodology, which makes uses of linguistic pre-processing of the data [5], and then performs a
correspondence, a cluster and a bootstrap analysis for the creation of group of patents that express
similar technologies and the production of technology indicators. These procedures are completely
automated in the system not requiring a deep knowledge of the subject and the only requirement is
the definition of specific parameters.

In the sequence, the information is visualized through different ways consisting of graphs, tables and
ready-made reports. The system enables the creation of homogeneous groups of patents that express
similar technologies as well as specific technology indicators for each group. In addition it is possible for
each group to exploit all relevant information to the patents belonging to this group i.e. information about
assignees, inventors, countries, designated states, etc.

The system proved quire capable of giving answer to a set of different questions that usually arise
about specific technologies and technology on goings through concrete and simple steps. The user will be
really appealing by having a tool that is easy at use, does not require technical knowledge for using it and
can be adapted to the users needs.

In analysing data, the system combines various kinds of analysis, and permits to capture technology
trends, innovate technologies and hot technologies. In fact, though the developed statistical methodology
consisting of linguistic pre-processing of the data, correspondence and cluster analysis for all the case
studies we can obtain homogeneous groups of patents that express specific technological areas.

Furthermore, we can derive specific technology indicators for each cluster. These are of great
importance since permit to quantify all the information related to the specific technologies. Therefore, we
can obtain indicators about the patenting activity of specific actors, inventors and countries. We are also
able to derive technology indicators explaining the promising technologies for a wide range of technology
activities, the innovative technologies, as well as trace the most important actors in these areas of
technology. It is also possible to derive technology indicators over time. More specifically we can check
for the specific technologies their evolution over time, and also be able to see for specific companies their
activity in time. The same information was easily obtained for specific countries or continents.

Although the production of technology indicators is a rather complicated procedure, by using the
specific system we are able to produce several technology indicators in a fast way through discrete steps.

In terms of the visualization of the results it is realized how important is to use a system that does not
only offers complex statistical procedures and analysis but also enable in an easy way to depict the
information in a way easily understood. The specific system contains many options in terms of the offered
visualization techniques that allow each time to obtain the most appropriate output. These outputs were
graphs, tables or ready-made reports.

4 Evaluation

Within the prototyping phase, we planned a working demonstration system. The pilot applications
provided the infrastructure in which the system was tested in a technical and functional way. The
demonstrations trials that took place aimed at two things: firstly they enabled to test the value of the use
of the system at a variety of statistical themes related to the needs of the users. Secondly it was tested the
usefulness of the system across a range of different users.

For this purpose the system was presented to the different user group meetings and in several events.
The specific demonstration aimed at clarifying to the users, which are the functionalities of the system,
what kinds of analyses are available as well as to present the visualization techniques for the formatting of
the produced results. Therefore, this presentation permitted to become familiar with the system and
understand the way it works. The case studies were based on real patent data and during the
demonstrations in the user group meetings the users had the opportunity to give answers to specific
questions to technology problems in the technology domain they are specialized in.

As a conclusion taking into account the feedback from the users we mention that the adopted
technology permits to obtain high quality results in terms of patent processing, competitive analyses and
capturing of technology watch. The key benefits that the system offers to the end-users are summarized
below:

 Save time. Generally, patent data statistical analysis requires considerable time. The system allows
users to conduct analyses quickly and efficiently as it provides them with a variety of tools and
functionalities (filters, charts, tables, ready-made reports, etc.).

 Ease-of-use. It contains user interface enhancements and features that improve and support users
and make analyses easy and flexible.

 Data correction. The system allows users to explore and even correct every filed in patent data.
Moreover, users can define new fields, keep annotations on them, etc., so that they can add value to
the downloaded data.

 Wizards. Wizards leads user step by step to analyse patent data. Even a novice user will be able to
analyse information and create sophisticated charts only after a few clicks.

 Visualization tools. It offers a great variety of tools in order to visualize the analysis results (e.g.
ready-made reports in various formats). So, the user with only a few clicks can quickly get the
overall picture of his/her data.

 Export/import capability. It offers the user the ability to import patent data from a variety of
International Patent Databases and export the results of his analysis in various and well-known file
formats.

 Automatic/manual report generation. A powerful tool for producing reports gives the user the
ability to summarize the patent data analysis procedure and its results in reports available for
printing.

 Manipulation of large database. The system allows users to explore and efficiently analyse even
large databases of patent data making analysis an easy, flexible and quick procedure.

5. Conclusions

The presented system accepts data from any patent database and proceeds with a set of complicated
analysis without requiring any special qualifications from the end-user. The user is able to select the kind
of analysis he is interested and through successive steps perform a complete analysis and obtain robust
results. Furthermore, the user is able to totally intervene in the produced results in order to visualize the
information in his own prospect of view and finally he is able to create his own ready-made reports.
Another feature that makes this tool competitive is the background technologies used, which combine
both innovate IT technologies as well as complex statistical methodologies.

Finally, the system maximizes the user’s productivity and satisfaction by providing him not only with
the correct guidance but also with tools to expand the system in a suitable patent data analysis
environment. This means that the system enables the user to extract only necessary information and
exploit it in an informative way in order to draw useful conclusions.

References

1. Alderferer, M.S., Blashfield, R.K. Cluster Analysis, Beverly Hills, CA., Sage Publications, Inc., 1986.
2. Beaugrande, R., Dressler, W. Introduction to Text Linguistics, London Longman, 1981.
3. Benzecri, J.P. Correspondence Analysis Handbook, New York: Marcel Dekker, 1992.
4. Chappelier, J., Peristera, V., Rajman, M., Seydoux, F. Evaluation of Statistical and Technological Innovation

Using Statistical Analysis of Patents, JADT 2002.
5. Ciravegna, F., Lavelli, A., Pianesi, F. Linguistic Processing of Texts Using Geppetto, Technical Report 9602-06,

IRST, Povo TN, Italy, 1996.
6 . Comanor, W.S., Scherer, F.M. Patent Statistics as a Measure of Technical Change. Journal of Political

Economy, pp. 392-398, 1969.
7. EPO- European Patent Office. Available at: http://www.european-patent-office.org/index.htm.
8. Hill, M.O. Correspondence Analysis: a Neglected Multivariate Method. Journal of Applied Statistics, Vol. 23,

No. 3, pp. 340-354, 1974.
9. Lewis, S. Cluster Analysis as a Technique to Guide Interface Design, International Journal of Man-Machine

Studies, 35, pp. 251-265, 1991.
10. Narin, F. Patents as Indicators for the Evaluation of Industrial Research Output. Scientometrics, 34, 3, pp. 489-

496, 1995.
11. Schmoch, U., Bierhals, R., Rangnow, R. Impact of International Patent Applications on Patent Indicators.

JOINT NESTI/TIP/GSS WORKSHOP, Room Document No. 1, 1998.

Appendix

Figure 3: Visualization of input data

Figure 4: Simple statistics and graphical representation

Figure 5: Linguistic processing

Figure 6: Selection of lemmas and graphical representation

Figure 7: Contingency matrix involved in the correspondence and cluster analysis.

Figure 8: Histogram of indices

Figure 9: Dendrogram

Figure 10: Cluster map

Figure 11: Visualization of the results per cluster

	UNIBO-CTI
	Introduction
	Basics from a Logical Model for Patterns
	Classification of Pattern Operations
	Basic operations
	Operations on PB-DB relationships
	Operations involving composition
	Operations involving refinement of patterns
	Operations involving specializations (or hierarchies)
	Operations on induced relationships

	Querying a Pattern Base
	Pattern Definition Language (PDL)
	Pattern Manipulation Language (PML)
	Pattern Retrieval (or Query) Language (PRL or PQL)
	Queries on pattern types
	Queries on patterns

	Query optimization
	Final Remarks and Summary
	References

	Untitled

