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Abstract. In the recent years, our ability of collecting information rapidly 
increases and huge databases that change over time in a high frequency have 
been developed. On the other hand, the data mining techniques used for 
extracting essential information from raw data are rather complex, thus not 
synchronized to underlying data changes. There is a need of detecting whether 
synchronization operations should take place so as to rescue resources. 
Motivated from the above problem, we introduce the notion of similarity in data 
and pattern space and examine their relationship. 

1   Introduction 

Transactional databases organize collections of transactions where each transaction is 
described by a specific set of attributes. A representative example is that of a 
supermarket database, where a transaction lists all items bought by a customer during 
a single shopping transaction. 

An association rule is a probabilistic relationship of the form A B between sets of 
database attributes. In the simplest case, the attributes’ values are of Boolean type and 
the database contains a set of records each of which is described by a set of attribute 
values. Each attribute value declares the presence or absence of each of the attributes 
in the transaction. 

Real market basket databases keep terabytes of information about customers’ 
habits and their data are under continuous changes. Since it is important to keep 
patterns up to date, the complexity of patterns generation of such a large frequency is 
extremely high. Obviously, it is critical for these companies (and all of us) to be able 
to detect whether a regeneration of patterns should take place. In other words, we 
would like to know whether changes in data space (raw data) would not affect 
significantly the corresponding pattern space (i.e. patterns already extracted) and 
when such changes enforce patterns’ re-generation. 

                                                           
† Work partially supported by the European Commission under the IST-2001-33058 project 

PANDA “Patterns for next-generation Database Systems” (2001-04) and the Greek 
government under the EPEAEK II / Heracletos Program (2003-05). 
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The paper is organized as follows. In the next section, we discuss the problem of 
similarity in data and pattern space and associate it with the assignment problem of 
the graph theory domain. In Section 3, we refer to some concepts of graph theory 
domain that are used during this work. In Section 4, we analyze the notion of 
similarity in data and pattern space. Section 5 presents experimental results, whereas 
section 6 concludes, giving also hints for future work. 

2   Problem Definition 

Consider two transactional datasets D1 and D2 of equal cardinality2, i.e., |D1|=|D2| = 
n. Each dataset is described by a specific ordered set of attributes (a1, a2, …, ak) and a 
Boolean value (0/1) is assigned to each attribute. Every pair (i, j), where i ∈ D1 and j 
∈ D2, is associated with a weight w, 0 ≤ w ≤ k, that denotes the distance between 
elements i and j. Strictly speaking, the difference between two items i ∈ D1 and j ∈ 
D2 equals the number of permutations required so as to jump from i to j. For example, 
distance (110, 010) = 1. 

We wish to find the similarity between the two datasets, in terms of optimal 
matching between elements of D1 and D2, so as every element of D1 and D2 
participates at one and only one matching pair. With the term ‘optimal’ we mean a 
matching that minimizes the aggregate difference between the two datasets (i.e. the 
sum of differences between pairs of items from D1 and D2). 

The above analysis also holds for the pattern space (during this work we use 
association rules as examples of patterns). Consider two pattern sets P1 and P2 of 
equal cardinality3, i.e., |P1|=|P2| = m. Each pattern set is described by a specific 
ordered set of items (i1, i2, …, il) and within each pattern P every item i is assigned a 
value (0/ H/ B); H, if i appears at the LHS of P; B, if i appears at the RHS of P; 0, 
otherwise. Every pair (i, j), where i ∈ P1 and j ∈ P2, is associated with a weight w, 0 ≤ 
w ≤ l, that denotes the distance between patterns i and j. The distance is computed as 
the aggregated distance between the corresponding items of patterns i and j. For 
example, distance({a1 a2},{a1 a2}) = 0 

Next we present two examples (in data and pattern space) that demonstrate the 
representation we adopt. 

Example 1 

Consider two datasets D1={{a1, a2}; {a2, a3}; {a2}} and D2={{a1, a2, a3}; {a3}; {a1, 
a2}}. Each dataset consists of n = 3 transactions. The total number of attributes equals 
3, i.e. k = 3. The datasets are represented as below: 

                                                           
2 The above approach could be extended to include the case of datasets of different size as well, 

by simply adding empty transactions (with zero items each) to the smallest dataset. 
3 As before, the approach could be extended to include the case of pattern sets of different size 

as well. 
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Items 

Baskets 

a1 a2 a3 

{ a1,a2} 1 1 0 
{ a2,a3} 0 1 1 

{a2} 0 1 0 
(a)  

 

Items 

Baskets 

a1 a2 a3 

{a1,a2,a3} 1 1 1 
{a3} 0 0 1 

{a1,a2} 1 1 0 
(b)

Fig. 1.  Example 1 – representation of transactional data (a) D1 (b) D2 

Example 2  

Consider two pattern sets P1={(i1 i2),(i2 i3)} and P2={(i1 i3),(i2 i1,i3)}derived 
from the above datasets. Each pattern set consists of m = 2 elements. The total number 
of items equals 3, i.e. l = 3. The two pattern sets are represented as below: 

  

Items 

Patterns 

a1 a2 a3 

{i1} {i2} H B 0 
{i2} {i3} 0 H B 

(a)  

 

Items

Patterns 

a1 a2 a3 

{i1} {i3} H 0 B 
{i2} {i1,i3} B H B 

(b)

Fig. 2. Example 2 - representation of association rule patterns (a) P1 (b) P2 

We use the notion of similarity in data and pattern space in order to discover how 
changes in data space affect the pattern space. The question that we aim to address is 
twofold: (a) Is there any correlation between the evolution in data space and that in 
pattern space? (b) If yes, is there any bound where changes in data space do not result 
to analogous changes in the pattern space derived from these data? Supposed we 
determined such a behavior, we could make an efficient synchronization of running 
data mining techniques depending on the evolution of the underlying database. 

The problem of finding the similarity between two datasets D1 and D2 
(respectively, P1 and P2 in the pattern space), looks similar to one well-known 
problem of the graph theory domain, the so-called assignment problem. We present 
this problem and relevant solutions, in the next section.  

3   Graph Theory Domain – The Assignment Problem 

In this section, we give some definitions concerning the graph theory concepts that 
are used later in the paper. 
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A bipartite graph is a graph ),( EVG  whose vertex set V can be split in two non-
empty, disjoint sets, A and B in such a way that every edge of G joins a vertex of A to 
a vertex of B. 

 

 
Fig. 3. Example of a bipartite graph 

 
Fig. 4. Example of a perfect matching 

 
A subset M of E is called a matching in G if no vertex is incident to more than one 

edge in M. If every vertex of G is incident to some edge of M, then M is called a 
perfect matching. 

A graph G is weighted if we give a cost function c that associates each edge with a 
real value, that is, c: E  R. Let X be a subset of E. The cost of set X is: 

∑
∈

=
Xa

acXc )()(  (1) 

The problem of similarity could be reduced to a well-known problem of the graph 
theory domain; the assignment problem of finding a perfect minimum cost weighted 
matching in bipartite graphs. 

A solution to this problem has been developed by James Munkres and is of )( 3nO  
runtime complexity [1]. The algorithm, known as Hungarian method, takes as input a 
matrix of the weights of the edges that relate the two disjoint sets of the bipartite 
graph (we call it distance matrix) and outputs a cover of minimum cost. 

Except for the Hungarian method, the graph theory domain has to demonstrate a 
large number of algorithms for the solution of the assignment problem. Below we 
present a table of these algorithms, categorized according to their type (sequential or 
parallel). 

 
Sequential algorithms 

Date Authors Complexity 

1955 Kuhn [1] )( 2mnO  
1972 Edmonds and Karp [6] )log( nmnO  
1984 Fredman and Tarjan [6,7] )log( 2 nnmnO +  
1985 Gabow [8] )log( 4/3 UmnO  
1989 Gabow and Tarjan [9] )log( 2/1 nUmnO  
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Date Authors Complexity Processors 

1988 
Goldberg, Plotkin and 

Vaidya [10] 
)loglog( 33/2 nUnnO  )log/( 3 nnO  

1988 
Gabow and Tarjan 

[11] 
)loglog)/(( 2/1 nUppmnO  ))log/(( 22/1 nnmO  

 
Fig. 5. Perfect minimum cost weighted matching problem in bipartite graphs (n: number of 
vertices; m: number of edges, U: the greatest absolute value among edge costs, p: the number of 
processors). [3] 

According to the first table, the best sequential algorithm is the Scaling and 
Approximation Algorithm of Gabow and Tarjan with complexity: )log( 2/1 nUmnΟ  

)log( nUnΟ in our case due to m = n2. According to the second table, the best parallel 
algorithm is the Scaling and Approximation Parallel Algorithm of Gabow and Tarjan 
with complexity: )loglog)/(( 2/1 nUppmnΟ    )loglog)/(( nUppnΟ in our case due to 
m = n2. 

4. Similarity 

The notion of similarity in data (pattern) space is quite important since it expresses 
whether two data (pattern) sets share common characteristics. This indication is 
critical in a variety of applications. Consider, for example, the synchronization 
between two datasets. The tasks involved in the synchronization process are of large 
complexity and should be performed only if the corresponding datasets differ 
significantly. A similar example could be used for the pattern space. 

Apart from its discrete value in data and pattern space, the similarity is also 
important in activities that involve both data and pattern space. Consider the example 
of a company that generates a patterns’ set p from a specific dataset d. It’s important 
for the company to keep patterns up to date. Since data change over time the company 
has to re-extract patterns even if changes in data are inconsiderable. This operation is 
of large complexity and should be used wisely in order to rescue resources. From the 
above, what emerges is the need for determining a limit that would demonstrate 
whether the regeneration of patterns should take place.  

In the next sections we refer to the notion of similarity in data and pattern space. 
As we have already mentioned, we reduce this problem to the assignment problem of 
the graph theory domain and use the Hungarian method in order to solve it. 

4.1 Similarity in data space 

We have already referred to the representation of datasets. The dissimilarity between 
two datasets D1 and D2 is represented through a distance matrix. Each element (i,j) of 
the distance matrix represents the difference between items i and j (i.e. the number of 
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permutations required to jump from i to j). More formally, distance(i, j) = XOR(i, j), i 
∈ D1 and j∈ D2. The total dissimilarity count between the two datasets equals to the 
sum of dissimilarity counts between the items that comprise the matching pairs. 

Let’s consider the datasets of Example 1. Their dissimilarity matrix is depicted 
below: 

 

 
 

 

 

Fig. 6. Example 1 - the distance matrix (data space) 

The above matrix constitutes the input of the Hungarian method used for finding 
the optimal minimum cost matching between D1 and D2. Its output is depicted 
underlined in the above figure and so distance(D1, D2) = 1+1+1=3. 

4.2 Similarity in pattern space 

We follow a strategy similar to that used in data space. The distance matrix contains 
the dissimilarity between the two pattern sets P1 and P2. Each element (i, j) of the 
distance matrix represents the difference between patterns i and j. According to values 
0/ H/ B that are assigned to each item of the patterns, the difference is as follows: 

 
 

Possible values for i ∈ P1  

 0 LHS RHS 
0 0 1 1 

LHS 1 0 k 
RHS 1 k 0 

Possible values 
for j ∈ P2 

RHS 1 k 0 

Fig. 7. Computing similarity in pattern space 

Variable k denotes the dissimilarity between two association rules that share some 
common item, i.e. when an item of the LHS of the first rule participates in the RHS of 
the second rule and vice versa. Intuitively, two association rules that share some item 
in their LHS or RHS are more similar than two association rules that “alternate” the 
same item between the LHS of the first and the RHS of the second or vice versa. 
Assume, for example, three association rules: AR1 = {milk} {bread}, AR2 = 
{milk} {beer}, and AR3 = {beer} {milk}. According to the above table, 
dissimilarity(AR1, AR2) < dissimilarity(AR1, AR3). Since field experts define the 
dissimilarity semantics, we represent it as a parameter k (0 ≤ k ≤ 1) to be tuned.  

Let us now consider the pattern sets of the Example 2 (k = 0.5). Their dissimilarity 
matrix is depicted below: 

 

 111 001 110 
110 1 3 0 
011 1 1 2 
010 2 2 1 
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Fig. 8. Example 2 - the distance matrix (pattern space), k = 0.5 

The above matrix constitutes the input of the Hungarian method. Its output is 
depicted underlined in the above figure and so distance(P1, P2) = 2 + 1 = 3. 

5. Experimental Results 

In order to evaluate the applicability of our approach we generated synthetic 
transactional data. The generator takes as input the number of items per transaction 
and the number of transactions we wish to generate and randomly decides whether an 
item is included (value 1) or not (value 0) in a transaction. In our experiments we use 
datasets of 100 transactions where each transaction consists of 10 items. 

For the generation of pattern sets we use the well-known Apriori algorithm [4] 
with parameters: support = 20% and confidence = 70%. 

Referring to k, the parameter of dissimilarity in pattern space, we fixed it at 0.5 
since we saw that its value doesn’t affect the behavior of the dissimilarity. However, 
we do not present these experiments in the paper due to space limitations. 

Running of an experiment includes the following steps (in pseudo code form): 
Generate a synthetic transaction data set D 
Extract patterns from D  P 
Step = 10 
While step ≤ 100  
{  
 change step% transactions of D  D’ 

 extract patterns from D’  P’ 

 compute dissimilarity(D, D’) //in data space 
computer dissimilarity(P, P’) //in pattern space 
 step += 10 
} 
Apart from experimenting with the percentage of change per transactions (i.e. the 

number of modified transactions), we also experimented with the percentage of 
change per transaction (i.e. the number of modified items per transaction). 

 ΗΒΟ 0ΗΒ 
ΗΟΒ 2 2 
ΒΗΒ 3 1 
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For more objective results, we run each experiment 10 times and used the average 
values. The experimental results are presented below: 

 

 
(a) Modified items per transaction = 20% 

 

 
(b) Modified items per transaction = 40% 

(c) Modified items per transaction = 60% (d) Modified items per transaction = 80% 

Fig. 9. The behavior of dissimilarity with respect to the number of modified transactions 

Figure 9 shows the dissimilarity’ behavior as the number of modified transactions 
increases. At each experiment we changed 20%, 40%, 60%, 80% of the transactions 
and fixed the number of modified items per transaction. For example, in Figure 9 (a) 
we alternated 20% of the items of each of the modified transaction (2 items in our 
case).  

It is apparent from Figure 9 that the dissimilarity in data space grows linearly as 
the percentage of change per transactions increases. So, starting from a dataset D and 
changing 20% (D_20) , 40% (D_40), …, 80% (D_80) of its transactions, the result of 
the comparison between (D, D_20), (D, D_40), … , (D, D_80) increases. This result 
was expected, as the more we change a dataset the more it would differ from its initial 
state. The maximum dissimilarity in data space is given by: n*p1*k*p2, where n: 
number of transactions, p1: percentage of change per transactions, m: number of 
attributes per transaction and p2: percentage of change per transaction. For example, 

Data Pattern 
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in Figure 9 (a) the minimum dissimilarity count is 20 (for p1 = 10%) and the 
maximum distance is 200 (for p1 = 100%). 

The behavior in pattern space is quite different. As it seems from Figure 9, the 
dissimilarity in pattern space increases linearly at initial steps and is afterwards 
stabilized. The critical limit seems to be above the 50%; i.e. when the new dataset is 
50% different from the initial dataset it seems that dissimilarity count is stabilized. 
The maximum dissimilarity count in pattern space is given by: m*l, where m: 
maximum number of patterns and l: maximum number of items per pattern. 

 

 

Fig. 10. The behavior of dissimilarity with respect to the number of modified items per 
transaction (data space) 

Figure 10 illustrates dissimilarity’s behaviour as the number of modified items per 
transaction increases. At each experiment we changed 20%, 40%, …, 100% of items 
per transaction and fixed  the number of modified transactions. For example, in Figure 
10 (a) we modified 20% of transactions (20 transactions in our case). 

As illustrated in Figure 10, the behavior of dissimilarity is reproduced 
independently of the number of modified transactions. The maximum dissimilarity 

 
(a) Modified transactions = 20% 

 
(b) Modified transactions = 40% 

(c) Modified transactions = 60% (d) Modified transactions = 80% 
Data Pattern 
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(i.e. minimum similarity) is achieved at initial levels where the percentage of change 
per transaction is small, whereas the minimum dissimilarity (i.e. maximum similarity) 
is achieved at the last step where each of the modified transactions changes 
completely. This result was not what we expected; we thought that the more we 
change some transactions the more the dissimilarity will grow. However, it seems that 
the Hungarian method we used for the computation of dissimilarity rearranges the 
matches so as to minimize the overall dissimilarity count. 

 

Fig. 11. The behavior of dissimilarity with respect to the number of modified items per 
transaction (pattern space) 

Figure 11 illustrates how dissimilarity’s behavior in pattern space is affected as the 
number of modified items per transaction increases. At each experiment we changed 
20%, 40%, …, 100% of items per transaction and fixed  the number of modified 
transactions. For example, in Figure 11 (a) we modified 20% of transactions (20 
transactions in our case). 

Again, the behavior is reproduced (the same happens in data space). The maximum 
dissimilarity is achieved where the change per transaction equals to 40% and the 
smallest where the change per transaction equals to 100%. 

(a) Modified transactions = 20% (b) Modified transactions = 40% 

(c) Modified transactions = 60% (d) Modified transactions = 80% 
Data Pattern 
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6. Conclusions and Future work 

In this paper we discussed the notion of similarity in data and pattern space. We 
reduced the problem of similarity to one well-known problem of the graph theory 
domain, the assignment problem and used the Hungarian method in order to find an 
optimal matching of minimum cost. 

The experimental results showed that although dissimilarity in data space grows 
linearly as the percentage of modified transactions increases, dissimilarity in pattern 
space stabilizes after initial steps (experiments showed than this limit is near 50% of 
changes in initial data). This conclusion is important since it denotes that there is an 
upper bound in data space changes above which the corresponding patterns do not 
differ significantly from already extracted patterns. 

The work presented in this paper is at preliminary steps. Our future work, would 
involve performance issues. As we saw, the complexity of finding a perfect weighted 
matching between two datasets using the Hungarian method is high ( )( 3nO ). There 
are however better solutions, like the parallel algorithm introduced by Gabow and 
Tarjan with complexity )loglog)/(( nUppnΟ . We plan to explore more efficient 
methods for the computation of dissimilarity. Except for the complexity of computing 
the dissimilarity, we have to take into account the space complexity of the solution; 
the Hungarian method requires n2 space for the dissimilarity matrix. Unfortunately, 
the above mentioned costs increase proportionally with the size of data (pattern) 
space. 

Our work should be extended in order to take into account concept hierarchies that 
might exist between items. For example, the dissimilarity between two rules that 
differ on a single item that is the particular brand of beer (say, Heineken and Amstel) 
is intuitively less than the dissimilarity between two rules that differ on a single item 
that is totally separate (say, Heineken and Pampers) [5]. 

As a second direction of work, although currently we compute the similarity 
between two patterns by taking into account only their structural components (LHS 
and RHS), it is natural that two identical (referring to structure) association rules that 
differ on the measure values (confidence and support) cannot be considered as 
identical (i.e., having dissimilarity = 0). We should explore the possibilities of 
incorporating the measure component in the computation of similarity [5]. 
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