
The notion of similarity in data and pattern space†

Irene Ntoutsi1,2

1 Research Academic Computer Technology Institute, 11 Aktaiou & Poulopoulou str,
118 51, Athens, Greece

2 Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou str, 185 34,
Piraeus, Greece

E-mail: ntoutsi@unipi.gr

Abstract. In the recent years, our ability of collecting information rapidly
increases and huge databases that change over time in a high frequency have
been developed. On the other hand, the data mining techniques used for
extracting essential information from raw data are rather complex, thus not
synchronized to underlying data changes. There is a need of detecting whether
synchronization operations should take place so as to rescue resources.
Motivated from the above problem, we introduce the notion of similarity in data
and pattern space and examine their relationship.

1 Introduction

Transactional databases organize collections of transactions where each transaction is
described by a specific set of attributes. A representative example is that of a
supermarket database, where a transaction lists all items bought by a customer during
a single shopping transaction.

An association rule is a probabilistic relationship of the form A B between sets of
database attributes. In the simplest case, the attributes’ values are of Boolean type and
the database contains a set of records each of which is described by a set of attribute
values. Each attribute value declares the presence or absence of each of the attributes
in the transaction.

Real market basket databases keep terabytes of information about customers’
habits and their data are under continuous changes. Since it is important to keep
patterns up to date, the complexity of patterns generation of such a large frequency is
extremely high. Obviously, it is critical for these companies (and all of us) to be able
to detect whether a regeneration of patterns should take place. In other words, we
would like to know whether changes in data space (raw data) would not affect
significantly the corresponding pattern space (i.e. patterns already extracted) and
when such changes enforce patterns’ re-generation.

† Work partially supported by the European Commission under the IST-2001-33058 project

PANDA “Patterns for next-generation Database Systems” (2001-04) and the Greek
government under the EPEAEK II / Heracletos Program (2003-05).

4-2 I. Ntoutsi

 2

The paper is organized as follows. In the next section, we discuss the problem of
similarity in data and pattern space and associate it with the assignment problem of
the graph theory domain. In Section 3, we refer to some concepts of graph theory
domain that are used during this work. In Section 4, we analyze the notion of
similarity in data and pattern space. Section 5 presents experimental results, whereas
section 6 concludes, giving also hints for future work.

2 Problem Definition

Consider two transactional datasets D1 and D2 of equal cardinality2, i.e., |D1|=|D2| =
n. Each dataset is described by a specific ordered set of attributes (a1, a2, …, ak) and a
Boolean value (0/1) is assigned to each attribute. Every pair (i, j), where i ∈ D1 and j
∈ D2, is associated with a weight w, 0 ≤ w ≤ k, that denotes the distance between
elements i and j. Strictly speaking, the difference between two items i ∈ D1 and j ∈
D2 equals the number of permutations required so as to jump from i to j. For example,
distance (110, 010) = 1.

We wish to find the similarity between the two datasets, in terms of optimal
matching between elements of D1 and D2, so as every element of D1 and D2
participates at one and only one matching pair. With the term ‘optimal’ we mean a
matching that minimizes the aggregate difference between the two datasets (i.e. the
sum of differences between pairs of items from D1 and D2).

The above analysis also holds for the pattern space (during this work we use
association rules as examples of patterns). Consider two pattern sets P1 and P2 of
equal cardinality3, i.e., |P1|=|P2| = m. Each pattern set is described by a specific
ordered set of items (i1, i2, …, il) and within each pattern P every item i is assigned a
value (0/ H/ B); H, if i appears at the LHS of P; B, if i appears at the RHS of P; 0,
otherwise. Every pair (i, j), where i ∈ P1 and j ∈ P2, is associated with a weight w, 0 ≤
w ≤ l, that denotes the distance between patterns i and j. The distance is computed as
the aggregated distance between the corresponding items of patterns i and j. For
example, distance({a1 a2},{a1 a2}) = 0

Next we present two examples (in data and pattern space) that demonstrate the
representation we adopt.

Example 1

Consider two datasets D1={{a1, a2}; {a2, a3}; {a2}} and D2={{a1, a2, a3}; {a3}; {a1,
a2}}. Each dataset consists of n = 3 transactions. The total number of attributes equals
3, i.e. k = 3. The datasets are represented as below:

2 The above approach could be extended to include the case of datasets of different size as well,

by simply adding empty transactions (with zero items each) to the smallest dataset.
3 As before, the approach could be extended to include the case of pattern sets of different size

as well.

The Notion of Similarity in Data and Pattern Spaces 4-3

 3

Items

Baskets

a1 a2 a3

{ a1,a2} 1 1 0
{ a2,a3} 0 1 1

{a2} 0 1 0
(a)

Items

Baskets

a1 a2 a3

{a1,a2,a3} 1 1 1
{a3} 0 0 1

{a1,a2} 1 1 0
(b)

Fig. 1. Example 1 – representation of transactional data (a) D1 (b) D2

Example 2

Consider two pattern sets P1={(i1 i2),(i2 i3)} and P2={(i1 i3),(i2 i1,i3)}derived
from the above datasets. Each pattern set consists of m = 2 elements. The total number
of items equals 3, i.e. l = 3. The two pattern sets are represented as below:

Items

Patterns

a1 a2 a3

{i1} {i2} H B 0
{i2} {i3} 0 H B

(a)

Items

Patterns

a1 a2 a3

{i1} {i3} H 0 B
{i2} {i1,i3} B H B

(b)

Fig. 2. Example 2 - representation of association rule patterns (a) P1 (b) P2

We use the notion of similarity in data and pattern space in order to discover how
changes in data space affect the pattern space. The question that we aim to address is
twofold: (a) Is there any correlation between the evolution in data space and that in
pattern space? (b) If yes, is there any bound where changes in data space do not result
to analogous changes in the pattern space derived from these data? Supposed we
determined such a behavior, we could make an efficient synchronization of running
data mining techniques depending on the evolution of the underlying database.

The problem of finding the similarity between two datasets D1 and D2
(respectively, P1 and P2 in the pattern space), looks similar to one well-known
problem of the graph theory domain, the so-called assignment problem. We present
this problem and relevant solutions, in the next section.

3 Graph Theory Domain – The Assignment Problem

In this section, we give some definitions concerning the graph theory concepts that
are used later in the paper.

4-4 I. Ntoutsi

 4

A bipartite graph is a graph),(EVG whose vertex set V can be split in two non-
empty, disjoint sets, A and B in such a way that every edge of G joins a vertex of A to
a vertex of B.

Fig. 3. Example of a bipartite graph

Fig. 4. Example of a perfect matching

A subset M of E is called a matching in G if no vertex is incident to more than one

edge in M. If every vertex of G is incident to some edge of M, then M is called a
perfect matching.

A graph G is weighted if we give a cost function c that associates each edge with a
real value, that is, c: E R. Let X be a subset of E. The cost of set X is:

∑
∈

=
Xa

acXc)()((1)

The problem of similarity could be reduced to a well-known problem of the graph
theory domain; the assignment problem of finding a perfect minimum cost weighted
matching in bipartite graphs.

A solution to this problem has been developed by James Munkres and is of)(3nO
runtime complexity [1]. The algorithm, known as Hungarian method, takes as input a
matrix of the weights of the edges that relate the two disjoint sets of the bipartite
graph (we call it distance matrix) and outputs a cover of minimum cost.

Except for the Hungarian method, the graph theory domain has to demonstrate a
large number of algorithms for the solution of the assignment problem. Below we
present a table of these algorithms, categorized according to their type (sequential or
parallel).

Sequential algorithms

Date Authors Complexity

1955 Kuhn [1])(2mnO
1972 Edmonds and Karp [6])log(nmnO
1984 Fredman and Tarjan [6,7])log(2 nnmnO +
1985 Gabow [8])log(4/3 UmnO
1989 Gabow and Tarjan [9])log(2/1 nUmnO

The Notion of Similarity in Data and Pattern Spaces 4-5

 5

Date Authors Complexity Processors

1988
Goldberg, Plotkin and

Vaidya [10]
)loglog(33/2 nUnnO)log/(3 nnO

1988
Gabow and Tarjan

[11]
)loglog)/((2/1 nUppmnO))log/((22/1 nnmO

Fig. 5. Perfect minimum cost weighted matching problem in bipartite graphs (n: number of
vertices; m: number of edges, U: the greatest absolute value among edge costs, p: the number of
processors). [3]

According to the first table, the best sequential algorithm is the Scaling and
Approximation Algorithm of Gabow and Tarjan with complexity:)log(2/1 nUmnΟ

)log(nUnΟ in our case due to m = n2. According to the second table, the best parallel
algorithm is the Scaling and Approximation Parallel Algorithm of Gabow and Tarjan
with complexity:)loglog)/((2/1 nUppmnΟ)loglog)/((nUppnΟ in our case due to
m = n2.

4. Similarity

The notion of similarity in data (pattern) space is quite important since it expresses
whether two data (pattern) sets share common characteristics. This indication is
critical in a variety of applications. Consider, for example, the synchronization
between two datasets. The tasks involved in the synchronization process are of large
complexity and should be performed only if the corresponding datasets differ
significantly. A similar example could be used for the pattern space.

Apart from its discrete value in data and pattern space, the similarity is also
important in activities that involve both data and pattern space. Consider the example
of a company that generates a patterns’ set p from a specific dataset d. It’s important
for the company to keep patterns up to date. Since data change over time the company
has to re-extract patterns even if changes in data are inconsiderable. This operation is
of large complexity and should be used wisely in order to rescue resources. From the
above, what emerges is the need for determining a limit that would demonstrate
whether the regeneration of patterns should take place.

In the next sections we refer to the notion of similarity in data and pattern space.
As we have already mentioned, we reduce this problem to the assignment problem of
the graph theory domain and use the Hungarian method in order to solve it.

4.1 Similarity in data space

We have already referred to the representation of datasets. The dissimilarity between
two datasets D1 and D2 is represented through a distance matrix. Each element (i,j) of
the distance matrix represents the difference between items i and j (i.e. the number of

4-6 I. Ntoutsi

 6

permutations required to jump from i to j). More formally, distance(i, j) = XOR(i, j), i
∈ D1 and j∈ D2. The total dissimilarity count between the two datasets equals to the
sum of dissimilarity counts between the items that comprise the matching pairs.

Let’s consider the datasets of Example 1. Their dissimilarity matrix is depicted
below:

Fig. 6. Example 1 - the distance matrix (data space)

The above matrix constitutes the input of the Hungarian method used for finding
the optimal minimum cost matching between D1 and D2. Its output is depicted
underlined in the above figure and so distance(D1, D2) = 1+1+1=3.

4.2 Similarity in pattern space

We follow a strategy similar to that used in data space. The distance matrix contains
the dissimilarity between the two pattern sets P1 and P2. Each element (i, j) of the
distance matrix represents the difference between patterns i and j. According to values
0/ H/ B that are assigned to each item of the patterns, the difference is as follows:

Possible values for i ∈ P1

 0 LHS RHS
0 0 1 1

LHS 1 0 k
RHS 1 k 0

Possible values
for j ∈ P2

RHS 1 k 0

Fig. 7. Computing similarity in pattern space

Variable k denotes the dissimilarity between two association rules that share some
common item, i.e. when an item of the LHS of the first rule participates in the RHS of
the second rule and vice versa. Intuitively, two association rules that share some item
in their LHS or RHS are more similar than two association rules that “alternate” the
same item between the LHS of the first and the RHS of the second or vice versa.
Assume, for example, three association rules: AR1 = {milk} {bread}, AR2 =
{milk} {beer}, and AR3 = {beer} {milk}. According to the above table,
dissimilarity(AR1, AR2) < dissimilarity(AR1, AR3). Since field experts define the
dissimilarity semantics, we represent it as a parameter k (0 ≤ k ≤ 1) to be tuned.

Let us now consider the pattern sets of the Example 2 (k = 0.5). Their dissimilarity
matrix is depicted below:

 111 001 110
110 1 3 0
011 1 1 2
010 2 2 1

The Notion of Similarity in Data and Pattern Spaces 4-7

 7

Fig. 8. Example 2 - the distance matrix (pattern space), k = 0.5

The above matrix constitutes the input of the Hungarian method. Its output is
depicted underlined in the above figure and so distance(P1, P2) = 2 + 1 = 3.

5. Experimental Results

In order to evaluate the applicability of our approach we generated synthetic
transactional data. The generator takes as input the number of items per transaction
and the number of transactions we wish to generate and randomly decides whether an
item is included (value 1) or not (value 0) in a transaction. In our experiments we use
datasets of 100 transactions where each transaction consists of 10 items.

For the generation of pattern sets we use the well-known Apriori algorithm [4]
with parameters: support = 20% and confidence = 70%.

Referring to k, the parameter of dissimilarity in pattern space, we fixed it at 0.5
since we saw that its value doesn’t affect the behavior of the dissimilarity. However,
we do not present these experiments in the paper due to space limitations.

Running of an experiment includes the following steps (in pseudo code form):
Generate a synthetic transaction data set D
Extract patterns from D P
Step = 10
While step ≤ 100
{
 change step% transactions of D D’

 extract patterns from D’ P’

 compute dissimilarity(D, D’) //in data space
computer dissimilarity(P, P’) //in pattern space
 step += 10
}
Apart from experimenting with the percentage of change per transactions (i.e. the

number of modified transactions), we also experimented with the percentage of
change per transaction (i.e. the number of modified items per transaction).

 ΗΒΟ 0ΗΒ
ΗΟΒ 2 2
ΒΗΒ 3 1

4-8 I. Ntoutsi

 8

For more objective results, we run each experiment 10 times and used the average
values. The experimental results are presented below:

(a) Modified items per transaction = 20%

(b) Modified items per transaction = 40%

(c) Modified items per transaction = 60% (d) Modified items per transaction = 80%

Fig. 9. The behavior of dissimilarity with respect to the number of modified transactions

Figure 9 shows the dissimilarity’ behavior as the number of modified transactions
increases. At each experiment we changed 20%, 40%, 60%, 80% of the transactions
and fixed the number of modified items per transaction. For example, in Figure 9 (a)
we alternated 20% of the items of each of the modified transaction (2 items in our
case).

It is apparent from Figure 9 that the dissimilarity in data space grows linearly as
the percentage of change per transactions increases. So, starting from a dataset D and
changing 20% (D_20) , 40% (D_40), …, 80% (D_80) of its transactions, the result of
the comparison between (D, D_20), (D, D_40), … , (D, D_80) increases. This result
was expected, as the more we change a dataset the more it would differ from its initial
state. The maximum dissimilarity in data space is given by: n*p1*k*p2, where n:
number of transactions, p1: percentage of change per transactions, m: number of
attributes per transaction and p2: percentage of change per transaction. For example,

Data Pattern

The Notion of Similarity in Data and Pattern Spaces 4-9

 9

in Figure 9 (a) the minimum dissimilarity count is 20 (for p1 = 10%) and the
maximum distance is 200 (for p1 = 100%).

The behavior in pattern space is quite different. As it seems from Figure 9, the
dissimilarity in pattern space increases linearly at initial steps and is afterwards
stabilized. The critical limit seems to be above the 50%; i.e. when the new dataset is
50% different from the initial dataset it seems that dissimilarity count is stabilized.
The maximum dissimilarity count in pattern space is given by: m*l, where m:
maximum number of patterns and l: maximum number of items per pattern.

Fig. 10. The behavior of dissimilarity with respect to the number of modified items per
transaction (data space)

Figure 10 illustrates dissimilarity’s behaviour as the number of modified items per
transaction increases. At each experiment we changed 20%, 40%, …, 100% of items
per transaction and fixed the number of modified transactions. For example, in Figure
10 (a) we modified 20% of transactions (20 transactions in our case).

As illustrated in Figure 10, the behavior of dissimilarity is reproduced
independently of the number of modified transactions. The maximum dissimilarity

(a) Modified transactions = 20%

(b) Modified transactions = 40%

(c) Modified transactions = 60% (d) Modified transactions = 80%
Data Pattern

4-10 I. Ntoutsi

 10

(i.e. minimum similarity) is achieved at initial levels where the percentage of change
per transaction is small, whereas the minimum dissimilarity (i.e. maximum similarity)
is achieved at the last step where each of the modified transactions changes
completely. This result was not what we expected; we thought that the more we
change some transactions the more the dissimilarity will grow. However, it seems that
the Hungarian method we used for the computation of dissimilarity rearranges the
matches so as to minimize the overall dissimilarity count.

Fig. 11. The behavior of dissimilarity with respect to the number of modified items per
transaction (pattern space)

Figure 11 illustrates how dissimilarity’s behavior in pattern space is affected as the
number of modified items per transaction increases. At each experiment we changed
20%, 40%, …, 100% of items per transaction and fixed the number of modified
transactions. For example, in Figure 11 (a) we modified 20% of transactions (20
transactions in our case).

Again, the behavior is reproduced (the same happens in data space). The maximum
dissimilarity is achieved where the change per transaction equals to 40% and the
smallest where the change per transaction equals to 100%.

(a) Modified transactions = 20% (b) Modified transactions = 40%

(c) Modified transactions = 60% (d) Modified transactions = 80%
Data Pattern

The Notion of Similarity in Data and Pattern Spaces 4-11

 11

6. Conclusions and Future work

In this paper we discussed the notion of similarity in data and pattern space. We
reduced the problem of similarity to one well-known problem of the graph theory
domain, the assignment problem and used the Hungarian method in order to find an
optimal matching of minimum cost.

The experimental results showed that although dissimilarity in data space grows
linearly as the percentage of modified transactions increases, dissimilarity in pattern
space stabilizes after initial steps (experiments showed than this limit is near 50% of
changes in initial data). This conclusion is important since it denotes that there is an
upper bound in data space changes above which the corresponding patterns do not
differ significantly from already extracted patterns.

The work presented in this paper is at preliminary steps. Our future work, would
involve performance issues. As we saw, the complexity of finding a perfect weighted
matching between two datasets using the Hungarian method is high ()(3nO). There
are however better solutions, like the parallel algorithm introduced by Gabow and
Tarjan with complexity)loglog)/((nUppnΟ . We plan to explore more efficient
methods for the computation of dissimilarity. Except for the complexity of computing
the dissimilarity, we have to take into account the space complexity of the solution;
the Hungarian method requires n2 space for the dissimilarity matrix. Unfortunately,
the above mentioned costs increase proportionally with the size of data (pattern)
space.

Our work should be extended in order to take into account concept hierarchies that
might exist between items. For example, the dissimilarity between two rules that
differ on a single item that is the particular brand of beer (say, Heineken and Amstel)
is intuitively less than the dissimilarity between two rules that differ on a single item
that is totally separate (say, Heineken and Pampers) [5].

As a second direction of work, although currently we compute the similarity
between two patterns by taking into account only their structural components (LHS
and RHS), it is natural that two identical (referring to structure) association rules that
differ on the measure values (confidence and support) cannot be considered as
identical (i.e., having dissimilarity = 0). We should explore the possibilities of
incorporating the measure component in the computation of similarity [5].

References

1. H.W.Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart.
2: 83-97, 1955

2. The PANDA Project, http://dke.cti.gr/panda, 2002
3. H.A. Baier Saip and C.L. Lucchesi, Matching algorithms for bipartite graph. Technical

Report DCC-03/93, Departamento de Cincia da Computao, Universidade Estudal de
Campinas, 1993.

4. C. Borgelt, Apriori Implementation, http://fuzzy.cs.uni-magdeburg.de/~borgelt/
5. Y. Theodoridis, Proceedings of PANDA Workshop on Pattern Base Management

Systems, PANDA Technical Report T.R.-2003-02, Como, Italy.

4-12 I. Ntoutsi

 12

6. J. Edmonds and R.M.Karp. Theoritical Improvements in algorithmic efficiency for
network flow problems. Journal of the Assoc. for Comput. Mach., 19(2): 248-264, 1972

7. M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in imporved network
optimization algorithms.In 25th FOCS, pages 338-346 1984.

8. H. N. Gabbow. Scaling algorithms for network problems, Journal of Comput. and Syst.
Sci., 31(2): 148-168, Oct. 1985.

9. H. N. Gabbow and R. E. Tarjan. Faster scaling algorithms for network problems, SIAM J.
Comput., 18(5): 1013-1036, Oct. 1989.

10. A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-time parallel algorithms for
matching and related problems. In 29th FOCS, pages 174-185, 1988

11. H. N. Gabow and R. E. Tarjan. Almost-optimal speed-ups of algorithms for matchoing
and related problems. In 20th STOC, pages 514-527, 1988.

