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Abstract

A huge amount of patterns is available nowadays due to the wide
spreading of the Knowledge Discovery in Databases (KDD), as a result of
the overwhelming amount of data. This ”flood” of patterns imposes new
challenges regarding their management. Pattern comparison, which aims
at evaluating how close to each other two patterns are, is one of these
challenges resulting in a variety of applications. In this work we inves-
tigate issues regarding the pattern comparison problem and present an
overview of the work performed so far in this domain. Due to heterogene-
ity of data mining patterns, we focus on the most popular pattern types,
namely frequent itemsets and association rules, clusters and clusterings,
and decision trees.

1 Introduction

Nowadays a huge quantity of raw data is collected from different application
domains (business, science, telecommunication, health care systems etc.). Ac-
cording to Lyman and Varian [37], ”The world produces between 1 and 2 ex-
abytes of unique information per year, which is roughly 250 megabytes for every
man, woman, and child on earth”. Due to their quantity and complexity, it is
impossible for humans to thoroughly investigate these data collections directly.
Knowledge Discovery in Databases (KDD) and Data Mining (DM) provides a
solution to this problem by generating compact and rich in semantics repre-
sentations of raw data, called patterns [47]. With roots in machine learning,
statistics and pattern recognition, KKD aims at extracting valid, novel, po-
tentially useful and ultimately understandable patterns from data [19]. Several
pattern types exist in the literature mainly due to the wide heterogeneity of data
and the different techniques for pattern extraction as a result of the different
goals that a mining process tries to achieve (i.e. what data characteristics the
mining process highlights). Frequent itemsets (and their extension, association
rules), clusters (and their grouping, clusterings) and decision trees are among
the most well known pattern types in data mining.
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Due to the spreading of the DM technology nowadays, even the amount of
patterns extracted from heterogeneous data sources is huge and hard to be man-
aged by humans. Of course, patterns do not raise from the DM field only; signal
processing, information retrieval and mathematics are among the fields that also
”yield” patterns. The new reality imposes new challenges and requirements re-
garding the management of patterns in correspondence to the management of
traditional raw data. These requirements have been recognized by both the aca-
demic and the industrial parts that try to deal with the problem of efficient and
effective pattern management [10] including, among others, modeling, querying,
indexing, and visualization issues.

Among the several interesting operations on patterns, one of the most im-
portant is that of comparison, i.e. evaluating how similar two patterns are. As
an application example, consider a supermarket that is interested in discovering
changes in its customers behavior over the last two months. For the supermarket
owner, it is probably more important to discover what has changed over time in
its customers behavior rather than to preview some more association rules on
this topic. This is the case in general; the more familiar an expert becomes with
data mining the more interesting becomes for her to discover changes rather
than already known patterns. A similar example stands also in case of a dis-
tributed mining environment, where one might be interested in discovering what
differentiates the distributed branches with respect to each other or in grouping
together branches of similar patterns. From the latter, another application of
similarity arises, that of exploiting similarity between patterns for meta-pattern
management, i.e. applying data mining techniques over patterns instead of raw
data like in [55].

So far, the importance of defining similarity operators between patterns has
been justified. However, this definition is not so straightforward. At first, there
are a lot of different pattern types like association rules, frequent itemsets, de-
cision trees, clusters etc., so similarity operators should be defined for each
pattern type. Secondly, except for patterns of the same pattern type an inter-
esting extension would be the comparison between patterns of different pattern
types, e.g. a cluster with a decision tree (extracted from the same raw data
set). Furthermore, an important aspect is that of examining whether similarity
between patterns reflects in some degree the similarity between the original raw
data. From an efficiency point of view this is desirable, since the pattern space
is usually of lower size and complexity.

In the next sections we overview the work performed so far in the area of
data mining patterns comparison. Due to the wide spreading of the data mining
pattern types we focus mainly on three basic pattern types that have been used
extensively in KDD literature, namely frequent itemsets and association rules,
clusters and clusterings, and decision trees.

The paper is organized as follows. In Section 2, we present the above men-
tioned basic pattern types in detail. In Section 3, we overview the work regard-
ing the comparison of frequent itemsets and association rules. In Section 4, we
focus on decision trees comparison. In Section 5, we present the related work
regarding the comparison of clusters and clusterings. Next, in Section 6, we
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present the general frameworks for the comparison/monitoring of data mining
patterns that have been appeared in the literature. Finally, we conclude our
work in Section 7.

2 Data Mining Patterns

According to [47], patterns can be defined as compact and rich in semantics
representations of raw data; compact by means that they summarize in some
degree the amount of information contained in the original raw data and rich in
semantics by means that they reveal new knowledge hidden in the huge amount
of raw data.

A variety of pattern types exists in the literature due to the heterogene-
ity of the raw data from which patterns are extracted and the different goals
that each mining task tries to accomplish. Different pattern types highlight
different characteristics of the raw data; for example, frequent itemsets capture
the correlations between attribute values, clusters reveal natural groups in the
data whereas decision trees detect characteristics that predict (with respect to
a given class attribute) the behavior of future records [24].

In [22] Ganti et al introduced the 2-component property of patterns. The
central idea of their work is that a broad class of pattern types (called models in
authors’ vocabulary) can be described in terms of a structural component and
of a measure component. The structural component identifies ”interesting re-
gions”, whereas the measure component summarizes the subset of the data that
is mapped to each region. In other words, the structural component describes
the pattern space, whereas the measure component quantifies, in some way, how
well the pattern space describes the underlying raw data space.

The 2-component property of patterns has been extended in [47], where au-
thors introduced a general model for patterns including also a source component
that describes the data set from which patterns have been extracted and an ex-
pression component that describes the relationship between the source data
space and the pattern space. We refer to the 2-component property of patterns
since, as will be shown from the related work, most of the similarity measures
exploit these components.

In the following subsections we present three popular data mining pattern
types that are relevant to this work, namely frequent itemsets (and their exten-
sions, association rules), clusters (and their groupings, clusterings), and decision
trees.

2.1 Frequent Itemsets and Association Rules

Frequent itemsets and association rules mining are strongly related to each other
by means that frequent itemsets mining is the first step towards association rules
mining. In this section we present more detail on both of them.

The Frequent Itemset Mining (FIM) problem is a core problem in many
data mining tasks, although it was first introduced in the context of market
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basket analysis towards mining for relationships between sets of items in terms
of customers purchases. To define the FIM problem we will follow the work
by Agrawal et al [45]: Let I be a set of distinct items and D be a database
of transactions where each transaction T contains a set of items T ⊆ I. A
set X ⊆ I with |X| = k is called k-itemset or simply itemset. The frequency
of X in D, equals to the number of transactions in D that contain X, i.e.
frD(X) = |{T ∈ D : X ⊆ T}|. The percentage of transactions in D that contain
X, is called support of X in D, i.e. suppD(X) = frD(X)

D . An itemset X is called
frequent if its support is greater than or equal to a user-specified minimum
support threshold σ called minSupport, suppD(X) ≥ σ. The FIM problem is
defined as finding all itemsets X in D that are frequent with respect to a given
minSupport threshold σ. Let Fσ(D) be the set of frequent itemsets extracted
from D under minSupport threshold σ.

The set of frequent itemsets forms the itemset lattice L in which the lattice
property holds: an itemset is frequent iff all of its subsets are frequent. The
lattice property allows as enumerating all frequent itemsets using more compact
representations like closed frequent and maximal frequent itemsets.

A frequent itemset X is called closed if there exists no frequent superset
Y ⊇ X with suppD(X) = suppD(Y ). Let Cσ(D) be the set of closed frequent
itemsets extracted from D under minSupport threshold σ. By definition, Cσ(D)
is a lossless representation of Fσ(D) since both the lattice structure (i.e. fre-
quent itemsets) and lattice measure (i.e. their supports) can be derived from
CFIs. On the other hand, a frequent itemset is called maximal if it is not
a subset of any other frequent itemset. Let Mσ(D) be the set of maximal fre-
quent itemsets extracted from D under minSupport threshold σ. Unlike Cσ(D),
Mσ(D) is a lossy representation of Fσ(D) since it is only the lattice structure
(i.e. frequent itemsets) that can be determined from MFIs whereas frequent
itemsets supports are lost [56]. Practically, CFIs can be orders of magnitude
less than FIs, and MFIs can be orders of magnitude less than CFIs [56].

Recalling the 2-component property of patterns we can say that in case of
frequent itemsets, the structure component consists of the itemset itself, i.e.
items that form it, whereas the measure component consists of itemset support.

The Association Rules Mining (ARM) problem was first introduced
in [45] motivated mainly by the market basket analysis domain and could be
defined as follows: Let D be a database of transactions, where each transaction
consists of a set of distinct items I, called itemsets. An association rule is a
implication of the form X → Y , where X ⊆ I, Y ⊆ I and X ∩Y = ∅ (X and Y
are itemsets). The rule is associated with a support s and a confidence c. The
rule X → Y is said to have support s, if s% of the transactions in D contain
X ∪ Y , whereas it is said to have confidence c, if c% of the transactions in D
that contain X also contain Y .

The Association Rules Mining problem consists of two steps. In the first
step the set of frequent itemsets is calculated which is then used as input to the
second step where the association rules are finally extracted. So, association
rules provide some additional information than frequent itemsets.
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Recalling the 2-component property of patterns we can say that in case of
association rules, the structure component consists of the left hand side (also
called head) and the right hand side (also called body) whereas the measure
component consists of rule confidence and support.

2.2 Decision Trees

Decision trees (DT), first introduced by Hunt et al [18], are commonly used
for classification due to their intuitive representation that makes them easy to
understand by humans.

In this section, we provide some basic concepts on decision trees (DT) fol-
lowing the work of Mitchell [42]. DTs are used to classify instances by sorting
them down to the tree from the root to some leaf node, which provides the
classification of the instance. Each internal node of the tree specifies a test of
some attribute of the instance w.r.t. to some of its values, and each branch
descending from that node corresponds to one of the possible values for this
attribute.

A leaf node corresponds to problem classes with some weight factor, which
depends on the amount of instances that follow the path down to the tree and fall
into this class. In the worst case, for each leaf node there is a weight associated
with all classes. In the simple case, however, each leaf corresponds to only one
class (actually this is the case of practical use).

More formally, let D be a set of problem instances to be classified. Let
A1, A2, . . . , Am be the attributes on which classification will be based (predictor
attributes), where attribute Ai has domain D(Ai). Let C be the class attribute,
i.e. the attribute to be predicted with domain D(C) = {C1, C2, . . . , Ck}, where
k is the number of classes. A decision tree T over D provides a classification of
D instances into the classes based on tests over the predictor attributes.

Predictor attributes might be either numeric, categorical or ordinal. Recall
that in a numerical attribute the domain is ordered (e.g. age, income), in a
categorical or nominal attribute the domain is a finite set without any natural
ordering (e.g. colors, gender), whereas in a ordinal attribute the domain is
ordered, but absolute differences between values is unknown (e.g. preference
scale). Usually, numerical attributes are discretized and treated as categorical
attributes.

According to FOCUS [22], a DT partitions the raw data space into a set of
regions. Each leaf node of the tree corresponds to one region and furthermore
each region is associated with a set of measures, each measure corresponding
to the fraction of problem instances that result in this region for some of the
problem classes.

Recalling the 2-component property of patterns, we can say that in case of a
decision tree, the structure component consists of a set of regions (one per leaf
node of the tree), whereas the measure component consists of a set of measures
associated with these regions (in the worst case a leaf node contains k measures,
i.e. one per class).
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2.3 Clusters and Clusterings

Clustering is the unsupervised classification of data into natural groups (called
clusters) so that data points within a cluster are more similar to each other
than to data points in other clusters [28]. The term unsupervised stands for
the fact that there is no a priori knowledge about the partition of the data. In
a more formal definition, we can state that a clustering Cl is the partition of
a data set D into sets C1, C2, , CK called clusters such that Ci ∩ Cj = ∅ and
∪K

j=1(Cj) = D. This definition stands for hard clustering, where a data set
instance is associated with only one cluster. A more ”relaxed” definition is that
of soft clustering where an instance is associated with every cluster to a certain
extent (or probability) indicated by a weight.

Clustering algorithms are based on some distance function that evaluates in
which cluster an object should be assigned. There is also an evaluation function
that evaluates how good the achieved clustering is. For example, minimizing
the distance of every data point from the mean of the cluster to which it belongs
could be thought of as such a criterion.

Due to its broad application areas, the clustering problem has been studied
extensively in many contexts and disciplines including data mining. As a result,
a large number of clustering algorithms exists in the literature (see [28] for a
survey). In fact, there is not only one correct answer in a clustering problem,
but many answers can be found.

Different clustering algorithms proposed in the literature use a variety of
cluster definitions. Han and Kamber [27] propose the following categorization
for the major clustering methods:

1. Partitioning methods that create K partitions of the data (K is defined
by the user) where each partition corresponds to a cluster. K-means and
K-medoids [27] algorithms belong to this category.

2. Hierarchical methods that create a hierarchical decomposition of the data
set. Depending on how the hierarchical decomposition is formed, i.e. in
a bottom-up or top-down fashion, they are classified into agglomerative
and divisive methods correspondingly. In both cases, a distance function
between clusters is required and as such minimum, maximum, mean or
average distance can be used [27].

3. Density-based methods that continue to grow a cluster as long as the den-
sity (i.e. number of data points) in its ”neighbor” exceeds some threshold.
DBScan [27] algorithm belongs to this category.

4. Grid-based methods that quantize the object space into a finite number
of cells that form a grid structure. STING and CLIQUE [27] algorithms
belong to this category.

5. Model-based methods that hypothesize a model for each of the clusters and
finds the best fit of the data to the given model. Statistical approaches like
COBWEB algorithm and neural network approaches are the two major
approaches in this category [27].
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Recalling the 2-component property of patterns we can state that in case of
clusters this property depends on the definition of the cluster itself. For example,
in case of a ”partitioning cluster”, its structure could be defined by its center
and radius as in case of K-means algorithm or by its centroid and radius as in
case of K-medoids algorithm. In case of a ”hierarchical cluster”, its structure
could be defined as the set of data points that fall into it. In case of a ”density-
based cluster”, its structure could be defined by the cluster distribution function
(i.e. the mean and the standard deviation of the distribution). Regarding the
measure component, a possible measure is cluster support (i.e. the percentage of
data set records that fall into this cluster). Other measures like the intra-cluster
distance within the cluster or the average distance of cluster records from the
center or the centroid of the cluster could be used as well.

3 Comparing FIM or ARM results

In this section we present the work performed so far regarding the comparison
of FIM results, i.e. sets of frequent itemsets, and ARM results, i.e. association
rules. In case of FIM results, related work demonstrates methods that utilize
the comparison between sets of frequent itemsets in order to compare the un-
derlying raw data sets. In case of association rules, related work gives emphasis
on the temporal aspects of rules, namely the necessary operations to maintain
and monitor rules evolution over time. However, these are ad hoc approaches
to measure the distance between association rules, as well as incremental tech-
niques to update previously discovered rules.

3.1 Comparing sets of frequent itemsets

In order to define the similarity between frequent itemsets, let us consider
two sets of itemsets (or itemsets lattices) A and B, like the ones illustrated
in Fig. 1. Each itemset is described through the 2-component property as a
pair < structure, measure >. Suppose also that both A and B were generated
under the same minSupport threshold from the data sets D and E respectively
which are defined over the same set of items I. The problem we try to deal with
is how similar to each other A and B are.

Figure 1: Two lattices of frequent itemsets

Parthasarathy and Ogihara [44] propose the following metric for the com-

7



parison of sets of frequent itemsets:

dis(A,B) = 1−
∑

X∈A∩B(max{0, 1− θ ∗ (suppD(X)− suppE(X))})
|A ∪B|

(1)

where θ is a scaling parameter that is specified by the user and reflects how
significant the variations in support are for the user. For θ = 0, the measure
component (i.e. support) carries no significance. For θ = 1, the measure com-
ponent is of equal importance with the structure component.

Recalling the example of Fig. 1, the intersection of the two sets is: A∩B =
{a}. Assuming θ = 1, dis(A,B) = 1 − max{0, 1 − θ ∗ |0.4 − 0.6|}/5 = 0.84,
according to Eq. 1.

In fact, the measure of Parthasarathy and Ogihara utilize frequent item-
sets comparison for data set comparison. Authors consider that dis(D,E) =
dis(A,B) based on the intuition that itemsets indicate the correlations within
the data sets to be compared.

Ganti et al [22] propose the FOCUS framework for quantifying the deviation
between two data sets D and E in terms of the pattern sets A and B, respec-
tively, they induce. In order to compare the pattern sets authors introduce the
notion of Greatest Common Refinement (GCR). The GCR is a kind of refine-
ment of the structure components (recall the 2-component property of patterns)
of the models to be compared (see Section 6 for more detail on FOCUS).

In case of frequent itemsets the GCR of the two sets to be compared is
their union. Using absolute difference as the difference function and sum as the
aggregation function, an instantiation of the FOCUS framework is as follows:

disabs(A,B) =
∑

X∈A∪B

(|suppD(X)− suppE(X)|) (2)

Since maximum distance occurs when A and B are totally different, the
normalized (in [0 . . . 1]) distance can be defined as:

dis(A,B) =
∑

X∈A∪B(|suppD(X)− suppE(X)|)∑
X∈A∪B(suppD(X) + suppE(X))

(3)

Especially for the frequent itemsets case, authors provide an upper bound
regarding the distance between the two pattern sets which does not require re-
querying the original raw data space. In this case, if an itemset X appears in
one of the pattern sets, e.g. in A, FOCUS considers that it also appears in B
with support equal to 0 without re-querying the original data set E from which
B has been extracted.

Recalling the example of Fig. 1, GCR(A,B) is given below in the form: <
X, suppD(X), suppE(X) > for each itemset X belonging to A∪B: GCR(A,B) =
{< a : 0.4, 0.6 >,< b : 0.2, 0 >,< c : 0, 0.4 >,< ab : 0.2, 0 >,< ac : 0, 0.4 >}.
Hence, dis(A,B) = (|0.4−0.6|+ |0.2−0|+ |0−0.4|+ |0.2−0|+ |0−0.4|)/(|0.4−
0| + |0.2 − 0| + |0.2 − 0| + |0.6 − 0| + |0.4 − 0| + |0.4 − 0|) = 1.4/2.2 = 0.64,
according to Eq. 3.
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As with the measure of Parthasarathy and Ogihara presented above, FOCUS
also utilizes frequent itemsets comparison for data comparison. Authors justify
that using pattern comparison for data comparison is meaningful since the in-
teresting characteristics of the data sets are captured by the induced pattern
models.

Li et al [32] exploit the dissimilarity between two sets of MFIs in order
to compare the data sets from which MFIs have been extracted. If A =
{Xi, suppD(Xi)} and B = {Xi, suppE(Yj)}, Xi, Yj are the MFIs in D, E re-
spectively, then their metric is defined as follows:

dis(A,B) = 1− 2 ∗ I3

I1 + I2
(4)

where
I1 =

∑
i,j

|Xi∩Xj |
|Xi∪Xj | ∗ log(1 + |Xi∩Xj |

|Xi∪Xj | ) ∗min(suppD(Xi), suppD(Xj)),

I2 =
∑

i,j
|Yi∩Yj |
|Yi∪Yj | ∗ log(1 + |Yi∩Yj |

|Yi∪Yj | ) ∗min(suppE(Yi), suppE(Yj)),

I3 =
∑

i,j
|Xi∩Yj |
|Xi∪Yj | ∗ log(1 + |Xi∩Yj |

|Xi∪Yj | ) ∗min(suppD(Xi), suppE(Yj))
I3 can be considered as a measure of ”mutual information” between A and

B; the term |Xi ∪ Yj |/|Xi ∩ Yj | represents the fraction of itemsets in common,
whereas the fraction 2/|I1 + I2| serves as a normalization factor.

Recalling the example of Fig. 1 and applying Eq. 4 it arises that dis(A,B) =
0.58.

Once more, the pattern space, MFIs in this case, has been exploited towards
evaluating similarity in raw data space. Authors support that using MFIs is
meaningful since MFIs encapsulate the information regarding the associations
among the data sets.

Concluding, we can state that the similarity measures between sets of item-
sets have been introduced in order to evaluate the similarity between the un-
derlying raw data sets and not per se. All of these measures, make use of the
structure (i.e. items that form an itemset) and of the measure components (i.e.
the support of an itemset) of frequent itemsets. The measures of Parthasarathy
- Ogihara and FOCUS are based on some kind of 1− 1 matching between item-
sets (i.e. an itemset of the first set is matched to only one itemset of the second
set and an ”optimal”, according to some criteria, score is calculated) whereas
the measure of Li et al utilizes N −M matching (all itemsets of the first set are
matched to all itemsets of the second set and an ”average” score is calculated).
Comparing the Parthasarathy - Ogihara and FOCUS measures we can state
that the measure of Parthasarathy - Ogihara is based on the intersection of the
two sets to be compared (A ∩ B), whereas the measure of FOCUS framework
also make use of the itemsets that appear in the difference sets (A−B,B−A).

All of these measures could be expressed as instantiations of the PANDA
framework [8] (see Section 6 for more details on PANDA). Following the PANDA
terminology, a frequent itemsets could be considered as a simple pattern, whereas
a set of frequent itemsets could be considered as a complex pattern. Several sim-
ilarity measure configurations might arise within the PANDA framework for the
FI comparison case, by just instantiating the following parameters: (a) how the
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similarity between two frequent itemsets (simple patterns) is evaluated (b) how
the simple patterns of the two sets (complex patterns) are matched and (c) how
the scores of the matched patterns are aggregated into an overal similarity score.

3.2 Comparing association rules

Comparison of association rules can be defined on rules features such as support,
confidence or their bit-vector representations. These direct features are very
limited in capturing the interaction of rules on the data and characterize only
a single rule.

Toivonen et al [51] proposed a first approach of defining distance between
rules based on the overlap of their market-baskets. More specifically, the authors
define the distance between two rules X ⇒ Z and Y ⇒ Z as the amount of
rows where the rules differ:

dis(X ⇒ Z, Y ⇒ Z) = |m(XZ) ∪m(Y Z)
m(XY Z)

|

= |m(XZ)|+ |m(Y Z)| − 2|m(XY Z)| (5)

where m(X) is the number of matching rows for attribute set X. The problem
with this metric is that it grows as the number of market-baskets in the database
increases.

In [26] authors argue that this can be corrected by normalization (i.e. di-
viding the measure by the size of the database). However, the measure is still
strongly correlated with support, as high support rules will on average tend to
have higher distances to everybody else. For example, two pairs of rules, both
pairs consisting of non-overlapping rules, may have different distances. This is
an undesired property. Furthermore, high support pairs have a higher distance
than low support pairs.

As an improvement to this metric, Gupta at al [26] proposed a new distance
measure based on a conditional probability estimate:

disi,j = P (B̄Si ∨ ¯BSj |BSi ∨BSj) = 1− |m(BSi, BSj)|
|mBSi||mBSj | − |mBSi, BSj |

(6)

where the set BSi is the union of items in the left and right hand sides of rule
i, and m(X) is the set of all transactions containing itemset X. This distance
function called the Conditional Market-Basket Probability (CMPB), results to a
distance of 1 for rules having no common MBs, while rules valid for an identical
set of baskets are at a distance of 0.

A specialized approach regarding similarity between association rules was
proposed in [31] where the authors consider the problem of clustering associa-
tion rules of the form A ∩ B ⇒ C where the left-hand side attributes (A and
B) are quantitative while the right-hand side attribute (C) is categorical. A
segmentation is defined as the collection of all clustered association rules for a
specific value C. Having as input a set of two-attribute association rules over
binned data, the methodology forms a two-dimensional grid where each axis
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corresponds to one of the left-hand side attributes. All the corresponding asso-
ciation rules for a specific value of the right-hand side attribute are plotted on
this grid. The goal is to find the minimum number of clusters that cover the
association rules within this grid. The authors introduce a series of algorithms
to form clusters of adjacent association rules in the grid.

A similar line of research concentrates on the statistical properties of rules
by considering their lifetime, meaning the time in which they are sufficiently
supported by the data. When data is continuously collected over a long period,
the concepts reflected in the data change over time. This requires the user to
monitor the discovered rules continuously. Except the well-known but applica-
tion dependent solution of an appropriate partitioning scheme, formal methods
have been proposed for application independent partitioning of data. In [11],
the authors focus on the identification of valid time intervals for previously dis-
covered association rules. They propose a methodology that finds all adjacent
time intervals during which a specific association holds, and furthermore all
interesting periodicities that a specific association has.

Such temporal aspects of rules are also taken into account in the rule monitor
of [2, 34, 33]. In [2], upward and downward trends in the statistics of rules are
identified using an SQL-like query mechanism. In [34], the authors count the
significant rule changes across the temporal axis. They pay particular attention
on rules that are ”stable” over the whole time period, i.e. do not exhibit signif-
icant changes, and contradict them with rules that show trends of noteworthy
increase or decrease. In [33], Liu et al study the discovery of ”fundamental
rule changes”. More analytically, they detect changes on support or confidence
between two successive timepoints by applying a X2-test.

In [4, 5, 7, 6] Byron and Spiliopoulou introduced Pattern Monitor (PAM),
a framework for efficiently maintaining data mining results. PAM builds on
a temporal rule model. More specifically, the temporal representation of the
patterns follow the Generic Rule Model (GRM) presented in [4, 5], where a rule
R is a temporal object with signature:

R = ((ID, query, body, head), {(timestamp, statistics)}) (7)

ID is an identifier, ensuring that rules with the same body (antecedent) and
head (consequent) have the same ID. The query is the data mining query,
while the statistics depend on the rule type. Support, confidence and certainty
factor of association rules are statistics considered in this work. Based on this
representation scheme the authors introduce a change detector mechanism, a
mechanism for identifying changes to a rules statistic which exhibit a partic-
ular strength. Statistical significance is used to assess the strength of pattern
changes. (see more detail on PAM in Section 6.)

Recently, a series of methods having intrinsic the notion of similarity have
emerged and focus on maintaining and updating previously discovered knowl-
edge, thus being able to deal with dynamic data sets. Such a popular approach
is that of incremental mining in which the knowledge about already extracted
association rules is re-used. Updating association rules was first introduced in
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[12, 15]. These approaches as well as subsequent ones are based on the abstract
framework of that the problem of updating association rules can be solved by
maintaining the large itemsets. In this initial approach the authors proposed
the Fast Update (FUP) algorithm (the framework of which is similar to that of
Apriori and DHP) for computing the large itemsets in the updated database.
Furthermore, optimization techniques for reducing the size of the database as
well as the pool of candidate itemsets during the update process are discussed.
In [13] the FUP algorithm was generalized for handling insertions to and dele-
tions from an existing set of transactions.

Subsequently, Ayan et al [3] proposed the Update With Early Pruning
(UWEP) algorithm, which employs a dynamic look-ahead pruning strategy in
updating the existing large itemsets by detecting and removing those that will
no longer remain large after the contribution of the new set of transactions. In
[48, 49], the concept of negative border [50], is used to compute the new set of
large itemsets when new transactions are added to or deleted from the database.

As inferred from the previous discussion, there are three main lines of re-
search regarding the similarity issue between association rules: (a) ad hoc solu-
tions which can only be applied to special forms of association rules (b) time-
oriented rule monitoring and (c) incremental approaches which focus on iden-
tifying change instead of measuring it. Naturally, an approach combining the
above characteristics is an emerging research issue in the domain.

4 Comparing Decision Trees

Ganti et al [22] argue that the difference between different decision tree models
is quantified as the amount of work required to transform one model decision
tree models is quantified as the amount of work required to transform one model
into the other, which is small if the two models are ”similar” to each other, and
high if they are ”different”. According to FOCUS [22], the decision tree induced
by a data set identifies a set of regions. Each region is described through a set of
attributes (structure component) and corresponds to a set of raw data (measure
component). If the structures extracted from the data sets to be compared are
identical, then the deviation between the data sets equals to their measures
deviation.

More specifically, the authors define the 2-component property of a decision
tree model M as 〈ΓM ,Σ(ΓM , D)〉 where ΓM = {1 ≤ i ≤ l} is the set of regions
defined as a subset of the attribute space, Σ(ΓM , D) = {σ(γi

M , D) : γi
M ∈ ΓM}

and σ(γi
M , D) is the selectivity of the region γi

M (the fraction of tuples in data
set D that correspond to this region). So, when the structural components
of the two models M1 and M2 are identical (ΓM1 = ΓM2) then, the amount
of work for transforming Σ(ΓM1, D1) into Σ(ΓM2, D2) is the aggregate of the
differences between σ(γi

M1, D1) and σ(γi
M2, D2), i = 1, ..., |ΓM1|. The difference,

at a region, between the measures of the first and the second models is given
by a difference function (not necessarily the usual difference operator ”-”), and
that the aggregate of the differences is given by an aggregate function. If f is a
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difference function and g is an aggregate function, the formal definition of the
deviation when the structural components of the two models are identical is:

δ1
f,g(M1,M2) = g({f(κ1

D1, κ
1
D2, |D1|, |D2|), ..., f(κl

D1, κ
l
D2, |D1|, |D2|)}) (8)

where l denotes the number of regions and (for j ∈ 1, 2), κi
Dj = σ(γi, Dj) ∗ |Dj |

denotes the absolute number of tuples in Dj that are mapped into γi
Mj ∈ ΓMj.

In the general case, however structures differ and thus a first step is required
to make them identical by ”extending” them to their GCR. This extension
involves splitting regions until they became identical. Then the measures com-
ponents for each region are computed either directly or by querying back the
raw data space. In this case the deviation of the two models is defined as:

δf,g(M1,M2) = δ1
f,g(〈ΓGCR(M1,M2),Σ(ΓGCR(M1,M2),D1)〉,

〈ΓGCR(M1,M2),Σ(ΓGCR(M1,M2),D2)〉) (9)

Another approach to quantify the deviation between two data sets D1 and
D2 is to find how well does a decision tree model M induced by the first data
set represent the second data set. To estimate this deviation, in [9, 36, 35]
the authors utilize the notion of misclassification error, which in the case of
decision trees corresponds to the fraction of tuples in a data set that a decision
tree misclassifies. In this particular case, let C be the class label predicted by
M for tuple t ∈ D2. If the true class of t is different from C then t is said to be
misclassified by M .

Thus the overall misclassification error MEM (D2) of M with respect to D2

is given by the following equation:

MEM (D2) =
|{t ∈ D2 ∧Mmisclassifies t}|

|D2|
(10)

An additional methodology that can be employed to measure differences
between two data sets is that of the chi-squared metric. A prerequisite for the
utilization of this metric is the ability to partition the attribute space into a
grid consisting of disjoint regions. This requirement, which is the base of the
FOCUS framework [22], is met by decision trees and has been utilized in [14]
as a means to indicate how the chi-squared metric describes whether two data
sets have the same characteristics. More specifically, the chi-squared metric for
D1 and D2 is given by the subsequent equation:

X2(D1, D2) =
∑

i = 1n|D2|
(mγi(D1)−mγi(D2))2

mγi(D1)
(11)

where r1, . . . , rn is the grid of disjoint regions and mr(Di) is the measure of a
region r with respect to Di.

Similarly with the incremental approaches for maintaining and updating
association rules, techniques that adjust decision trees inducted by dynamic
data sets have been also proposed. Such an approach introducing a series of
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tree-restructuring methods was firstly presented in [52, 53]. The disadvantage
of these techniques is that it is assumed that the entire database fits in main
memory and as such the subject of scalability with respect to data size is not
addressed.

This issue is handled in [25] where BOAT, an incremental algorithm for the
maintenance decision trees is introduced. In case of an ad hoc change, BOAT
adjusts a tree in a two-step process. Initially, it classifies the amount of change
at a node as drastic or moderate and depending on this categorization it adjusts
the corresponding splitting criterion following different tactics on numerical and
categorical criterions. The adjustment of a tree node is based on additional
information deliberately kept in the node. Such annotated information concerns
a confidence interval of around the point where the splitting occurs, the set of
tuples that fall within this interval, a histogram where each bin contains the
class distribution of the previously tuples in the range implied by the splitting
criterion and a list of the best splitting criterions at that node for the remaining
attributes.

The above description shows that the issue of similarity between decision
trees is an open research topic as some of the special features of decision trees,
basically emanating of their complicated structure, e.g. order of the splitting
attributes, are not handled in current efforts.

5 Comparing Clusters and Clusterings

The notion of similarity between two clusters is fundamental in clustering algo-
rithms. In fact the division of a data set into clusters is based on the similarity
between clusters, since the goal of clustering is grouping together the most sim-
ilar data points and assigning dissimilar data points into different clusters.

Several distance measures have been proposed in the literature in order to
compare two clusters as a step of cluster generation algorithms. The definition
of these measures assumes that we are able to quantify how similar two data
points are. In case of numerical data, this distance is usually expressed by some
p − norm based distance measure like the well known Manhattan distance (1-
norm distance), Euclidean distance (2-norm distance) etc. In case of categorical
data, alternative approaches have been exploited like the Jaccard coefficient
used by the ROCK algorithm [17]. In this case the similarity between two data
points (like for example two customers’ transactions) equals to the number of
common items of the two transactions divided by all items appearing in both
transactions.

Regarding the distance between two clusters, several measures, based on set
theory, are utilized by cluster generation algorithms [17]. The single linkage
distance calculates the smallest distance between an element in one cluster and
an element in the other. The complete linkage distance calculates the largest
distance between an element in one cluster and an element in the other. The
average distance calculates the average distance between the elements of the two
clusters. The centroid distance calculates the distance between the centroids of
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the two clusters (recall here that the centroid of a cluster is the mean of its
elements and it is not required to be an actual point in the cluster). The
medoid distance calculates the distance between the medoids of the two clusters
(recall here that the medoid of a cluster is a centrally located element in the
cluster).

There are also many paradigms in the literature the exploit the notion of
similarity between two clusters in order to perform clusters monitoring or spatial
clustering. Among others, we mention the work by Neill et al [43] on a new class
of space-time clusters for the rapid detection of emerging clusters demonstrated
for indicating emerging disease outbreaks. Their method consists of two parts:
time series analysis for computing the expected number of cases for each spatial
region on each day and space-time scan statistics for determining whether the
actual numbers of cases in some region are significantly higher than expected
on the last W days (W is the window size). Towards the same direction is
the work by Aggarwal [1] for modeling and detecting spatiotemporal changes
in clusters. Clusters are modeled through a kernel function and at each spatial
location X the kernel density is computed. For each time point t, two estimates
of density change are computed, the backward t− ht and the forward estimate
t + ht upon a sliding time window. Their difference is the velocity density
(or evolutiondensity) of the location X. This model also identifies the data
properties that mostly contribute to change.

Furthermore, some of the measures regarding clusterings comparison (to be
discussed in the sequel) could also be utilized in this case by considering that a
cluster is a clustering of size one, i.e. it contains only one cluster.

Concluding, we can state that several measures for cluster comparison has
been proposed in the literature either in the context of clustering algorithms or
in the context of cluster monitoring across the time axis. These measures exploit
both the data points that belong into the clusters and the features regarding
clusters structure like centroids, medoids or density functions. The different
measures, however, depend on the clustering algorithm used for the generation
of clusters and thus they cannot be applied for the comparison of patterns of
arbitrary type.

In the following section we discuss in more detail the comparison of clustering
results, a problem that appears quite often in the literature due to its broad
range of applications.

5.1 Comparing sets of Clusters

Defining similarity between sets of clusters (i.e. clusterings) results in a variety
of applications. Some approaches compare clusterings extracted from the same
data set but under different algorithms, thus evaluating the quality of the differ-
ent clustering algorithms. Other approaches compare clusterings extracted from
the same data set under the same algorithm but with different parameters (like
for example different K values in case of K-means algorithm) thus evaluating
the impact of the parameters on the resulting clusterings.

There are also more generic approaches that compare clusterings extracted
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from different but homogeneous data sets (i.e. data sets defined over the same
attribute space). In this case, the applications are broader. Consider for ex-
ample, the distributed data mining domain, where it is often required to group
together similar clusterings (e.g. group together branches of a supermarket with
similar customers profiles so as to apply common marketing strategies to each
group). In this case, grouping requires using some similarity function to com-
pare clusterings. Alternatively, consider monitoring of clusterings results over
time; in this case the notion of similarity between two clusterings is crucial
by means that monitoring is based on being able to quantify how similar two
snapshots of the pattern base are (e.g. detect changes in customers profiles of
a branch over time).

Generally speaking, we can think of clustering similarity as a way of accessing
the ”agreement” between two clustering results [38].

5.1.1 Comparing clustering results from the same data set

In order to define the similarity between two clusterings, let us consider a data
set D of n data points and two clusterings over D, namely Cl1, Cl2, of K1,K2

clusters respectively.
Meila [38] provides an overview of the related work on comparing different

clustering results produced from the same data set D under different mining pa-
rameters (different algorithms or different parameters over the same algorithm).

According to this work, the comparison between two clusterings Cl1, Cl2
can be virtually represented through a contingency matrix M of size K1XK2,
where the [Cl1i, Cl2j ] cell contains the number of data points that belong to
both clusters Ci (of clustering Cl1) and Cj (of clustering Cl2). The different
clustering comparison criteria are categorized into three types:

1. Criteria based on counting pairs

2. Criteria based on cluster matching

3. Criteria based on variation of information (VI)

In the next paragraphs we present more detail on each of these types (see a
thorough presentation and analysis in [38]).

The first category of criteria, criteria based on counting pairs, are based
on counting the pair of points on which the two clusterings agree/disagree. Let
us define the following quantities:

N11 : the number of data point pairs (xi, xj ∈ D) that are clustered in the
same cluster under both Cl1 and Cl2 clusterings.

N00 : the number of data point pairs (xi, xj ∈ D) that are clustered in different
clusters under Cl1 and Cl2 clusterings.

N10 : the number of data point pairs (xi, xj ∈ D) that are clustered in the
same cluster under Cl1 clustering but not under Cl2 clustering.
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N01 : the number of data point pairs (xi, xj ∈ D) that are clustered in the
same cluster under Cl2 clustering but not under Cl1 clustering.

It holds that N11 + N00 + N10 + N01 = n. Let also nk1, nk2 be the number
of data points belonging to clusters Ck1, Ck2 respectively and let nk1k2 be the
number of data points belonging to both Ck1 and Ck2 clusters.

The different measures proposed in the literature for this category make use
of the above mentioned parameters. We present some characteristic examples
(see [38] for a detailed representation):

Wallace [54] proposed the two following asymmetric criteria:

WI(Cl1, Cl2) =
N11∑

Ck1∈Cl1
(nk1 ∗ (nk1 − 1)/2)

,

WII(Cl1, Cl2) =
N11∑

Ck2∈Cl2
(nk2 ∗ (nk2 − 1)/2)

(12)

Where WI (respectively WII) represents the probability that a pair of data
points which are in the same cluster under Cl1 (respectively Cl2) are also in the
same cluster under Cl2 (respectively Cl1).

Fowlkes and Mallows [20] introduced the following symmetric criterion which
is based on the number of pair of data points clustered together:

F (Cl1, Cl2) =
√

WI(Cl1, Cl2) ∗WII(Cl1, Cl2) (13)

In [46], the Rand index criterion has been proposed which is defined as the
fraction of pair of data points for which there is an agreement in both clusterings:

R(Cl1, Cl2) =
N11 + N00

n ∗ (n− 1)/2
(14)

By just ignoring the ”negative” agreements, the well known Jaccard coeffi-
cient arises:

J(Cl1, Cl2) =
N11

n ∗ (n− 1)/2
(15)

Another criterion is the Mirkin distance metric [41] defined as:

M(Cl1, Cl2) =
∑

Ck1∈Cl1

(n2
k1) +

∑
Ck2∈Cl2

(n2
k2)− 2 ∗

∑
Ck1∈Cl1

∑
Ck2∈Cl2

(n2
k1k2) (16)

The second category of criteria, criteria based on set matching [38], are
based on finding for each cluster C1 ∈ Cl1 a cluster C2 ∈ Cl1 that consist ”best
match” of C1. The notion of ”best matching” is implemented as follows: The
contingency matrix M is scanned in decreasing order and the cluster C2 with
which C1 shares the larger number of data points (with respect to the other
clusters of Cl2) is considered to be its match. Ignoring the row and the column
of the contingency matrix for which the ”best matching” has been achieved and
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repeating the above procedure the ”second matching” is found and so on until
min(K1,K2) matches are found.

Based on this logic, several measures has been proposed. For example,
Larsen et al [30] proposed the following measure:

L(Cl1, Cl2) =
1

K1
∗

∑
k1

(maxk2(
2 ∗ nk1k2

nk1 + nk2
)) (17)

whereas Meila and Heckerman [40] proposed the following measure:

H(Cl1, Cl2) =
1

K1
∗

∑
k2=match(k1)

nk1k2 (18)

where k1 ∈ Cl1, k2 ∈ Cl2.

Van Dongen [16] proposed the following measure:

H(Cl1, Cl2) =
1

K1
∗

∑
k2=match(k1)

nk1k2wherek1 ∈ Cl1, k2 ∈ Cl2 (19)

In this category also belongs the ”classification error” (CE) clustering dis-
tance discussed in [39], which expresses the minimum error of classifying Cl2
results according to Cl1 results. CE distance measure is given by:

dCE(Cl1, Cl2) = 1− 1
n

max
σ

K1∑
k1=1

nk1,σ(k1) (20)

In the above formula it is assumed that K1 ≤ K2 and σ is an injective mapping
of clusters {1, . . . K1} of Cl1 to clusters {1 . . .K2} of Cl2. For each σ, a partial
correspondence between clusters of Cl1 and those of Cl2 is created and then
the classification error of Cl2 w.r.t Cl1 is computed (think of clustering as
a classification task). Among all the possible correspondences the one with
the minimum classification error is dCE . To find the ”best correspondence” a
naive solution is to examine all possible correspondences and then choose the
one with the minimum CE, however this is a solution of high complexity. A
polynomial time complexity solution is also available by reducing the problem
to the maximum bipartite graph matching problem of the graph theory domain
and use either the exact solution provided by the Hungarian algorithm [29] or
some approximate solution like in [21].

Meila [38] introduced the variation of information method which belongs
to the third category of clusterings comparison criteria, criteria based on
variation of information. This measure is based on the notion of the entropy
associated with a clustering which is defined as:

H(Cl) = −
K∑

k=1

P (k) ∗ logP (k) (21)
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and P (k) is the probability of occurrence of cluster k, defined as P (k) = nk/n.
The variation of information (VI) metric computes the amount of informa-

tion that is lost or gained in changing from one clustering to the other and is
expressed as:

V I(Cl1, Cl2) = H(Cl1) + H(Cl2)− 2 ∗ I(Cl1, Cl2) (22)

where I(Cl1, Cl2) is the mutual information between the two clusterings defined
as:

I(Cl1, Cl2) =
∑

Ck1∈K1

∑
Ck2∈K2

P (k1, k2) ∗ log
P (k1, k2)

P (k1) ∗ P (k2)
(23)

and P (k1, k2) is the joint probability that a point belongs to Ck1 in Cl1 and to
Ck2 in Cl2 and is defined as: P (k1, k2) = |Ck1∩Ck2|

n
Alternatively, the VI measure can be expressed as:

V I(Cl1, Cl2) = H(Cl1|Cl2) + H(Cl2|Cl1) (24)

where the first term expresses the loss in information about Cl1, whereas the
second term expresses the gain in information about Cl2 when going from Cl1
to Cl2. Although, as presented above, this measure stands for hard clustering
it can be extended to apply to soft clustering as well (in this case, however, it
is not a metric).

Summarizing, we can say that the first category of criteria, i.e. criteria based
on counting pairs, evaluates two clusterings by examining how likely it is for
them to group a pair of data points in the same cluster or separate it in different
clusters. This category is mainly based on the relationships between data points
and is restricted to hard clustering only [57].

The second category of criteria, i.e. criteria based on set matching, is based
on the notion of ”matching” between a cluster of the first clustering and one
among the clusters of the second clustering. This ”matching” is evaluated in
terms of the data points that are grouped together (i.e. in the same cluster)
under both clusterings. The proposed measures in this category are based on
some greedy technique so as to find the clusters matches. At each step the
matching with the greatest score is selected and finally the scores of the matched
clusters are aggregated to produce a total score. However this technique does
not lead to the global optimal matching score, but it can fall into some local
optima. An exception is the CE error measure, which finds the global optimal
solution. Furthermore, this category does not work well in cases of clusterings
that contain different number of clusters, since in this case some clusters might
be ignored during the comparison process [57].

The third category of criteria, i.e. criteria based on the variation of infor-
mation, is based on the amount of information loss/ gain as going from one
clustering to the other. The VI metric can be applied to soft clustering as well
but in this case it is not a metric.

All three categories are based on the membership of data points to clusters.
However, clusters are usually described not only by their members (i.e. data
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points) but also by other properties like cluster centroid/ medoid or some cluster
density function. The description of a cluster depends of course on the algorithm
used for its generation as mentioned earlier in this paper.

Towards this direction, Zhou et al [57] proposed a new measure which takes
also into account the distance between cluster representatives. The proposed
measure is a metric and stands for both hard and soft clustering. In fact, Zhou
et al [57] proposed two measures. The first one is based on the membership of
data points to clusters and comes from the Mallows distance - a metric between
probability distributions in statistics. The formula that stands for soft clustering
(the hard clustering is a special case of this formula) is as follows:

D(Cl1, Cl2) = min
wk,j

K∑
k=1

J∑
j=1

wk,j

N∑
i=1

|pi,k − qi,j | (25)

where pi,k (qi,j respectively) is the probability that the point i belongs to cluster
k (j respectively ) of Cl1 (Cl2 respectively) and wk,j is the ”weight” of matching
cluster k with cluster j. This weight depends on the importance of a cluster
within a clustering (a possible solution is to consider all clusters of equal impor-
tance or to define a weight based on the percentage of data points assigned to
the cluster with respect to the total number of data points). The Mallows dis-
tance can be interpreted as a global optimal cluster matching schema between
the two clusterings.

The second measure proposed by Zhou et al [57] takes also into account the
distance between clusters centroids yielding thus more intuitive results. This
measure is given by the following formula:

D(Cl1, Cl2) = min
wk,j

K∑
k=1

J∑
j=1

(1− 2
ak + bj

∗ wk,j) ∗
N∑

i=1

pi,k ∗ qi,j ∗ L(k, j) (26)

where L(k, j) is the distance between the centroids of cluster k (belonging to
Cl1) and of cluster j ( belonging to Cl2).

If we would like to place the measures of Zhou et al [57] into the catego-
rization of Meila [38], we could say that they belong to the second category
of clustering comparison criteria, those based on set matching. In contrast to
the majority of measures in this category, and together with the CE error mea-
sure, the Zhou et al measures provide a global optimal solution. Furthermore,
their second measure exploits also information regarding clusters structures, like
the distance between the centroids of the clusters, whereas previous measures
exploit only the data points participating in each cluster.

To conclude with measures for comparing clusterings results over the same
data set, we can say that a variety of such measures have been proposed in
the literature with applications in evaluating different clustering algorithms,
different clusterings criteria etc. The majority of these measures are based on
the membership of data points to clusters, whereas there are also approaches
that take also into account parameters concerning clusters structure, like the
distance between cluster centroids.
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5.1.2 Comparing clustering results from different data sets

The measures presented in the previous section have been introduced towards
comparison of clustering results over the same data set. In the general case
however, what is required is the comparison between clusterings resulted from
different homogeneous data sets, i.e data sets defined over the same attribute
space. Consider, for example, comparing clusterings of customers behavior pro-
duced by two different branches of a super market. Several measures have been
proposed towards this aim and we will present them in more detail. It is obvi-
ous that these measures could also be applied towards comparison of clusterings
results over the same data set presented in the previous subsection.

The FOCUS framework [22] proposes a way for clustering comparison based
on the GCR. A cluster model is a special case of the decision tree model men-
tioned above, however we will give some details on this correspondence for better
understanding. Each cluster corresponds to a region which is described through
a set of constraints over the attributes (structure component) and is associated
with the fraction of tuples in the raw data set that is assigned to this cluster
(measure component). The GCR of two clusterings resulted from data set D
and E is formed up by splitting clusters regions of the two clusterings until
they become identical. Then the deviation between the data sets equals to the
deviation between them over the set of all regions in the GCR (see 6 for more
detail on FOCUS).

The PANDA framework [8] could be exploited towards clusterings compar-
ison (see Section 6 for more detail on PANDA). According to PANDA termi-
nology, a cluster could be considered as a simple pattern, whereas a clustering
could be considered as a complex pattern. Defining how two clusters should be
compared, how simple clusters of the two clusterings should be matched and
how the scores of the matched clusters should be aggregated, a total score could
be calculated that expresses the similarity between the two clusterings to be
compared. Different instantiations of the PANDA framework result in several
different similarity configurations.

Moreover, some of the measures presented in the previous subsection could
also be utilized towards comparing clusterings results over different data sets.

To conclude with measures for comparing clustering results over different
data set, we can say that only a few attempts exist in the literature - most of
the work is towards comparing clusterings over the same data set. However,
performing comparison over different data sets clusterings results in a variety of
useful applications and could also be exploited towards clusterings monitoring
or towards second generation clustering (i.e. clustering over clusterings).

6 General Frameworks

Despite the individual approaches towards comparing specific pattern types,
more general approaches (frameworks) also have been proposed in the literature
(in fact there exist only a few attempts towards this direction). In this section,
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we will present these approaches in more detail.
Ganti et al [22] presented the FOCUS framework for measuring the deviation

between two data sets D and E. Although designed for data set comparison, the
FOCUS framework actually utilizes the comparison between the corresponding
pattern sets. The intuition behind this hypothesis is that interesting data char-
acteristics in a data set are captured by a model induced from the data set.
In that work authors introduced the 2-component property of patterns, already
discussed in Section 2.

If the induced models have different structure components, a first step is
required to make them identical by extending them to their Greatest Common
Refinement (GCR). For better understanding, we can think of GCR as a way
of refining the structure of the models to be compared, which is achieved by
splitting down the models to be compared until identical regions are formed.
Then, the deviation between the data sets equals to the deviation between them
over the set of all regions in the GCR. A difference function that calculates the
deviation of two regions and an aggregate function that aggregates all these
differences are required; depending on the choice of these functions, several
instantiations of the FOCUS framework might arise. Deviation computation
requires the measures of all regions in GCR to be computed with respect to
both data sets D and E, so the comparison in pattern space (patterns) also
involves the data space (raw data).

The FOCUS framework works for three well known data mining pattern
types, namely frequent itemsets, clusters and decision trees. The further details
on each case have already been presented in the corresponding sections of this
work.

Bartolini et al [8] proposed the PANDA framework for the comparison of
both simple and complex patterns. Simple patterns are those defined over raw
data (e.g. a cluster of data points) whereas complex patterns are those defined
over other patterns (e.g. a set of clusters, i.e. clustering). Authors adopt
the 2-component property of patterns introduced by FOCUS, thus patterns are
expressed through a structure and a measure component and their similarity is
evaluated in terms of both of these components.

The similarity between two simple patterns p1, p2 is evaluated by combin-
ing, by means of an aggregation function, faggr, the similarities between both
the structure (p1.s, p2.s respectively) and the measure components (p1.m, p2.m
respectively):

sim(p1, p2) = faggr(simstruct(p1.s, p2.s), simmeas(p1.m, p2.m)) (27)

Regarding the structural similarity, if the two patterns have the same struc-
ture, then their measures similarity is only considered. In the general case,
however, the patterns to be compared have different structural components,
thus a preliminary step is needed to ”reconcile” the two structures so as to
make them comparable (by calculating, for example, the amount of work re-
quired to turn one structure to the other). Regarding the measure components
similarity several measures could be used like absolute difference or relative dif-
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ference. Regarding the aggregation function, either sum or weighted sum could
be exploited.

The PANDA idea is depicted in Figure 2:

Figure 2: Assessment of similarity between two patterns

Evaluation of similarity between complex patterns follows the same logic
depicted in Figure 2. However, the structure of complex patterns now consists
of several other patterns. Within PANDA framework, the similarity between
structures of complex patterns depends in turn on the similarity between com-
ponent patterns. Similarity is conceptually evaluated in a bottom-up fashion,
and can be adapted to specific needs/constraints by acting on two fundamental
abstractions:

- the coupling type, which is used to establish how component patterns can
be matched;

- the aggregation logic, which is used to combine the similarity scores ob-
tained for coupled component patterns into a single overall score repre-
senting the similarity between the complex patterns.

Depending on the instantiations of the different blocks of the framework (cou-
pling type, aggregation logic, structure similarity and measure similarity) vari-
ous similarity functions configurations can be defined within the PANDA frame-
work.

Comparing the above frameworks, we can state that both FOCUS and
PANDA frameworks try to give a general solution to the problem of pattern
comparison between patterns of the same pattern type. PANDA framework
could be thought of as an extension of the FOCUS framework by means that it
provides a wide variety of matching criteria (coupling type) in contrast to the
specific type of GCR matching provided by FOCUS. Furthermore, it is more
generic since it can be applied to arbitrarily complex patterns, like Web site
structures and not only to patterns for which their GCR can be defined (like
frequent itemsets, decision trees and clusters). Also, it works exclusively in the
pattern space and does not involve the raw data space as well, thus it is more
efficient.

Except for frameworks for pattern comparison, frameworks for pattern mon-
itoring over time and efficient pattern updating have been also proposed in the
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literature. Their goal is monitoring and understanding pattern changes over
time (recall the dynamic nature of data); in some cases, however, monitoring
concerns raw data (instead of patterns) and utilizes corresponding patterns to-
wards this aim.

Ganti et al [23] proposed the DEMON framework for mining systematically
evolving data across the temporal dimension, where ”systematically” means
that data changes through additions or deletions of blocks of records (a block
is a set of records added simultaneously to the database). DEMON mainly fo-
cuses on efficient updating of models (i.e. pattern base) by detecting changes in
raw data. To find data changes authors build on their prior work, i.e. FOCUS
framework. After detecting (across the time dimension) the data blocks that
have been changed, these blocks are processed in order to maintain the corre-
sponding models. Also, authors describe efficient model maintenance algorithms
for frequent itemsets and clusters.

In [4, 5] Baron and Spiliopoulou introduced Pattern Monitor (PAM), a
framework for efficiently maintaining data mining results. In contrast to other
approaches which consider only part of a pattern, either its content, i.e., the
relationship in the data the pattern reflects, or the statistical properties of the
pattern, the authors model rules as integrated temporal objects, which may
exhibit changes in either of these two aspects of a rule.

PAM builds on the temporal rule model already presented in Section 3.2.
The core of PAM implements the change detector and a series of heuristics to
identify not only significant but also interesting rule changes which take different
aspects of pattern reliability into account.

The Occurrence-based Grouping Heuristic reveals not patterns observed within
a specific time interval but patterns that are present in each period and, as
such, reflect (part of) the invariant properties of the underlying data set. The
Corridor-based Heuristic defines a corridor (around the time series of a pattern)
as an interval of values, which is dynamically adjusted at each time point to
reflect the range of values encountered so far. In Interval-Based Heuristic the
range of values of the time series is partitioned into intervals of equal width, so
an alert for a pattern R is raised for each time point ti at which the value of
the time series is in a different interval than for ti−1.

Furthermore, due to the fact that the change detector returns at each time
point ti the set of all patterns, whose observed statistic measure has changed
with respect to the previous period and the fact that this set is usually large
as patterns overlap in content, the authors introduce the term atomic change
to identify a minimal set of patterns whose characteristic is that there are no
components (i.e. the body and the head) that have themselves experienced a
change.

In [7], authors distinguish rules into permanent rules that are always present
(though they may undergo significant changes) and temporarily rules that ap-
pear only temporarily and indicate periodic trends.

In [6], PAM was applied in a different case study following an evaluation
procedure intending to use the monitor not only to identify rule changes of a
particular strength, but also to check whether old rules still hold.
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Concluding the presentation of frameworks for pattern monitoring, we can
state that they are very important by means that they give insights on how
raw data and corresponding patterns evolve over time (recall that most of the
data collected nowadays are dynamic). These frameworks utilize methods for
pattern comparison in order to detect significant changes across the time axis.
Furthermore they can also be applied towards efficient maintenance of pattern
bases (i.e. data mining results). However, the DEMON framework gives more
emphasis on frequent itemsets and clusters, while the PAM framework focuses
mainly on association rules, thus there is not some generic approach supporting
all data mining pattern types monitoring and maintenance.

In this section we have presented the work performed so far towards de-
veloping generic frameworks for pattern comparison. The importance of such
frameworks is straightforward since there are several different pattern types in
the literature, so being able to deal with issues like comparison under a com-
mon framework forms an elegant solution. We also presented the work regarding
frameworks for pattern monitoring and maintenance, which are based on com-
paring consecutive snapshots of the database or pattern base.

Although some steps have already been done towards a generic, universal
way of comparison, the current methods concern specific pattern types and their
extension to other pattern types is not so straightforward.

7 Conclusions

In this work, we presented an overview of the research performed so far in
the area of data mining patterns comparison focusing on popular data mining
pattern types, namely frequent itemsets and association rules, clusters and clus-
terings, and decision trees. Despite individual approaches towards comparing
specific types of pattens, more general approaches (frameworks) have been also
presented.

As demonstrated by the related work, several ad-hoc approaches for similar-
ity assessment of particular pattern types have been proposed in the literature.
All of these measures utilize information regarding the pattern space that a pat-
tern describes (i.e. structure component) as well as information about how well
the pattern represents the underlying raw data space (measure component).

All of these measures are pattern type specific, and if we follow this ratio-
nale, new similarity measures should be defined each time a new pattern type
emerges. Its obvious that this solution is not so efficient, especially nowadays
where new types of data or patterns arise continuously from various domains,
e.g. bio-informatics, telecommunications, audio/visual entertainment, etc. A
nice solution to this problem would be some pattern type independent similar-
ity measure(s).

Furthermore, related work is currently limited to similarity assessment be-
tween patterns of the same pattern type. In the general case, however, even
patterns from different pattern types should be able to be compared. As a
motivating example, consider the problem of comparing a decision tree and a
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clustering both extracted from different branches of the same supermarket.
As demonstrated by the related work, similarity in pattern space has been

utilized towards similarity assessment in underlying raw data space, based on
the intuition that patterns encompass most of the information lying in the cor-
responding raw data. However, the effect of mining parameters on this corre-
spondence usually is ignored. In case of FIM problem, for example, minSupport
threshold used for the generation of patterns and the adopted lattice represen-
tation, i.e. frequent, closed frequent or maximal frequent itemsets, could be
considered as such parameters. Thus, a future direction would be associating
distance in pattern space with distance in the original raw data space from
which patterns have been extracted through some data mining process. This
direction would result in a wide variety of applications, since pattern space is
usually of lower complexity than raw data space.
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