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ABSTRACT 

Technological advances in sensing technologies and wireless 
telecommunication devices enable novel research fields related to 
the management of trajectory data. As it usually happens in data 
management world, the challenge after storing the data is the 
implementation of appropriate analytics that could extract useful 

knowledge. However, traditional data warehousing systems and 
techniques were not designed for analyzing trajectory data. Thus, 
in this work, we investigate how the traditional data cube model is 
adapted to trajectory warehouses in order to transform raw 
location data into valuable information. In particular, we focus our 
research on three issues that are critical to trajectory data 
warehousing: (a) the trajectory reconstruction procedure that takes 
place in order to transform sampled location data originated e.g. 

from GPS recordings into trajectories and load them to a moving 
object database, (b) the ETL procedure that feeds a trajectory data 
warehouse, and (c) the aggregation of cube measures for OLAP 
purposes. We provide design solutions for all these issues and we 
test their applicability and efficiency in real world settings. 

1. INTRODUCTION 
The usage of location aware devices, such as mobile phones and 
GPS-enabled devices, is widely spread nowadays, allowing access 
to large spatiotemporal datasets. The space-time nature of this 
kind of data results in the generation of huge amounts of 
trajectory data and imposes new challenges regarding their 
efficient management. To address this need, the traditional 
database technology has been extended into Moving Object 

Databases (MODs) that handle modeling, indexing and query 
processing issues for trajectories [7], [19]. Moreover, the analysis 
of such trajectory data raises opportunities for discovering 

behavioral patterns that can be exploited in applications like 
traffic management and service accessibility. Online analytical 
processing (OLAP) and data mining (DM) techniques have been 
employed in order to convert this vast amount of raw data into 
useful knowledge [9], [10], [13]. Indicatively, the variable number 
of moving objects in different urban areas, the average speed of 
vehicles, the ups and downs of vehicles‟ speed as well as useful 
insights, like discovering popular movements [5] can be analyzed 
in a Trajectory Data Warehouse (TDW). 

In this paper, we propose a framework for TDW that takes into 
consideration the complete flow of tasks required during a TDW 
development. The complete lifecycle of a TDW is illustrated in 
Figure 1 and it consists of various steps. A Trajectory 
Reconstruction process is applied on the raw time-stamped 
location data in order to generate trajectories, which are then 
stored into a MOD. Then, an Extract-Transform-Load (ETL) 
procedure is activated that feeds the data cube(s) with aggregate 

information on trajectories. The final step of the process offers 
OLAP (and, eventually, DM) capabilities over the aggregated 
information contained in the trajectory cube model. 
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Figure 1. The architecture of our framework. 

A modified version of this work appears in the Proceedings 

of ACM SIGMOD Workshop on Data Engineering for Wireless and 

Mobile Access (MobiDE'08). 

 



A MOD maintains object locations recorded at various time points 
in the form of trajectories. Formally, let D = {T1, T2, …, TN} be a 
MOD consisting of the trajectories of N moving objects  {o1, o2, 
…, oN}, where each trajectory Ti corresponds to a moving object 
oi. Assuming linear interpolation between consecutive sampled 

locations, the trajectory ),,(),...,,,(
111 iii inininiiii tyxtyxT  

consists of a sequence of ni line segments in 3D space, where each 
segment represents the continuous “development” of the 

corresponding object oi between consecutive locations ),(
jj ii yx  

sampled at time 
ji

t . Projecting Ti on the spatial 2D plane (temporal 

1D line), we get the route ri (the lifespan li, respectively) of oi. 
Additional motion parameters can be derived, including the 
traversed length len of route ri, average speed, acceleration, etc. 

Let us assume a MOD that stores raw locations of moving objects 
(e.g. humans); a typical schema, to be considered as a minimum 
requirement, for such a MOD is illustrated in Figure 2. 

OBJECTS (id: identifier, description: text, gender: {M | F}, birth-date: 

date, profession: text, device-type: text) 

RAW_LOCATIONS (object-id: identifier, timestamp: datetime, 

eastings-x: numeric, northings-y: numeric, altitude-z: numeric) 

MOD_TRAJECTORIES (trajectory-id: identifier, object-id: identifier, 

trajectory: 3D geometry) 

Figure 2. An example of a MOD. 

OBJECTS includes a unique object identifier (id), demographic 
information (e.g. description, gender, date of birth, profession) as 
well as device-related technographic information (e.g. GPS type). 
RAW_LOCATIONS stores object locations at various time stamps 
(i.e., samples), while MOD_TRAJECTORIES maintains the 
trajectories of the objects, after the application of the trajectory 
reconstruction process.  

Following the multidimensional model [1], a data cube for 

trajectories consists of a fact table containing keys to dimension 
tables and a number of appropriate measures. Dimension tables 
might have several attributes in order to build multiple hierarchies 
so as to support OLAP analysis whereas measures could be 
trajectory-oriented (e.g., number of trajectories, number of 
objects, average speed, etc.). For each dimension we define a 
finest level of granularity which refers to the detail of the data 
stored in the fact table.  

OBJECT_PROFILE_DIM

PK OBJPROFILE_ID

 GENDER

 BIRTHYEAR

 PROFESSION

 MARITAL_STATUS

 DEVICE_TYPE 

FACT_TBL

PK,FK3 INTERVAL_ID

PK,FK2 PARTITION_ID

PK,FK1 OBJPROFILE_ID

 COUNT_TRAJECTORIES

 COUNT_USERS

 AVG_DISTANCE_TRAVELED

 AVG_TRAVEL_DURATION

 AVG_SPEED

 AVG_ABS_ACCELER

SPACE_DIM

PK PARTITION_ID

 PARTITION_GEOMETRY

 DISTRICT

 CITY

 STATE

 COUNTRY

TIME_DIM

PK INTERVAL_ID

 INTERVAL_START

 INTERVAL_END

 HOUR

 DAY

 MONTH

 QUARTER

 YEAR

 DAY_OF_WEEK

 RUSH_HOUR

 

Figure 3. An example of TDW. 

 

Definitely, a TDW should include a spatial and a temporal 
dimension describing geography and time, respectively. Another 
dimension regarding conventional information about moving 
objects (including demographical information, such as gender, 
age, etc.) could be considered as well.  

Based on the above, we consider as a minimum requirement for 
our framework the following dimensions (Figure 3): 

 Geography: the spatial dimension (SPACE_DIM) allows us to 

define spatial hierarchies. Handling geography at the finest 
level of granularity could include (as alternative solutions) a 
simple grid, a road network or even coverage of the space 
with respect to the mobile cell network. According to the 
first alternative, the space is divided in (usually, rectangular) 
areas. For the purposes of this paper, we assume explicitly 
defined hierarchies based on a grid of equally sized 

rectangles (PARTITION_GEOMETRY in Figure 3), the size of 
which is a user-defined parameter, (e.g. 10×10 Km2).   

 Time: the temporal dimension (TIME_DIM) defines temporal 

hierarchies. Time dimension has been extensively studied in 
the data warehousing literature [1]. At the finest level of 
granularity, we assume user-defined time intervals (e.g. 1 
hour periods). 

 User Profile: the thematic dimension (OBJECT_PROFILE_DIM) 

refers to demographic and technographic information. 

Apart from keys to dimension tables, the fact table also contains a 
set of measures including aggregate information. The measures 
considered in the TDW schema of Figure 3 include the number of 
distinct trajectories (COUNT_TRAJECTORIES), the number of 
distinct users (COUNT_USERS), the average traveled distance 

(AVG_DISTANCE_TRAVELED), the average travel duration 
(AVG_TRAVEL_DURATION), the average speed (AVG_SPEED) and 
the average acceleration in absolute values (AVG_ABS_ACCELER), 
for a particular group of people moving in a specific spatial area 
during a specific time period. 

In order to build a TDW, several issues should be handled; we 
summarize these issues below accompanied with our 
contributions in this paper:   

 First, sampled positions received by GPS-enabled devices 
need to be converted into trajectory data and to be stored in a 
MOD; to this end, we propose a trajectory reconstruction 

technique that transforms sequences of raw sample points 
into meaningful trajectories. 

 Second, the TDW is to be fed with aggregate trajectory data; 

to achieve it we propose two alternative solutions: a (index-
based) cell-oriented and a (non-index-based) trajectory-
oriented ETL process. 

 Third, aggregation capabilities over measures should be 

offered for OLAP purposes (i.e., how the measures at a lower 
level of the cube hierarchy can be exploited in order to 
compute the measures at some higher level of the hierarchy). 
The peculiarity with trajectory data is that a trajectory might 
span multiple base cells (the so called distinct count problem 
[20]). This causes aggregation hindrances in OLAP 

operations. We provide approximation solutions for this 
problem, which turn out to perform effectively. 



As a proof of concept, the proposed solutions have been 
implemented in an integrated environment. The applicability and 
efficiency of our approach is evaluated through an extensive 
experimental study using a large real trajectory dataset. 

The rest of the paper is organized as follows: Section 2 presents 

basic concepts on trajectories and trajectory warehouses as well as 
the related work that motivated our work. Section 3 constitutes the 
core of the paper, where we discuss the trajectory reconstruction 
process, the ETL procedure for feeding the data cube, and the 
measures aggregation problem, putting emphasis on the distinct 
count measure that exhibits strong interest for the case of 
trajectory data. The implementation of our framework and 
empirical results are presented in Section 4. Conclusions and open 

research issues are outlined in Section 5. 

2. RELATED WORK 
Data warehousing has received considerable attention of the 
database community as a technology for integrating all sorts of 
transactional data, dispersed within organizations whose 

applications utilize either legacy (non-relational) or advanced 
relational database systems. Considerably, data warehouses form 
a technological framework for supporting decision-making 
processes by providing informational data. 

The pioneering work by Han et al. [8] introduces the concept of 
spatial data warehousing (SDW). The authors extend the idea of 
cube dimensions so as to include spatial and non-spatial ones, and 
of cube measures so as to represent space regions and/or calculate 

numerical data. In [18], the authors extend the concept of a 
traditional data cube to the spatial domain by proposing an 
appropriate operator, called “map cube”. The main idea is to 
enhance dimensions with cartographic visualization so as to 
combine standard operators (roll-up, drill-down etc) with the map 
view. 

One step further from modeling a SDW is modeling a TDW. The 
motivation here is to transform raw trajectories to valuable 
information that can be utilized for decision making purposes in 

ubiquitous applications, such as mobile marketing, location-based 
services and traffic control management. Trajectory warehousing 
[14] is in its infancy but we can distinguish three major research 
directions on this field: modeling, aggregation and indexing.  

From a modeling perspective, the definition of hierarchies in the 
spatial dimension introduces issues that should be addressed. The 
spatial dimension may include not explicitly defined hierarchies 
[9]. Thus, multiple aggregation paths are possible and they should 

be taken into consideration during OLAP operations. Tao and 
Papadias [19] propose the integration of spatial and temporal 
dimensions and present appropriate data structures that integrate 
spatiotemporal indexing with pre-aggregation. Choi et al. [3] try 
to overcome the limitations of multi-tree structures by introducing 
a new index structure that combines the benefits of Quadtrees and 
Grid files. However, the above frameworks focus on calculating 
simple measures (e.g. count customers).  

Very recently, an attempt to model and maintain a TDW is 
presented in [11], [12] where a simple data cube consisting of 
spatial / temporal dimensions and numeric measures concerning 
trajectories, is defined. In [2], authors introduce a new operator 
for group-by operations on trajectories but they mainly focus on 
computing groups of trajectories.  

The distinguishing features of our work are: 

i) the presence of a preprocessing phase dealing with the explicit 
construction of the trajectories, which are then stored into a 
MOD that offers powerful and efficient operations for the 
manipulation of such data;  

ii) the proposal of alternative ETL processes, a procedure 

underestimated so far in related work; and  

iii) the solutions proposed on the challenging issue of measure 
aggregation which occurs due to the trajectory oriented cube 
model.  

We emphasize that this work does not aim at proposing yet 
another TDW model. Instead, we provide efficient solutions to 
support the complete flow of processes in a TDW, from trajectory 
reconstruction to trajectory-oriented OLAP. 

3. PROPOSED SOLUTIONS 
So far, we have described a MOD that stores trajectory data 
reconstructed from raw location data (Figure 2) and a trajectory-
oriented data cube that offers multi-dimensional analysis 
capabilities (Figure 3). Besides, we have outlined the issues that 

should be taken into consideration when building real-world 
trajectory warehouses. In this section, we thoroughly describe our 
proposed solutions for the trajectory reconstruction problem 
(Subsection 3.1), the efficient ETL process for feeding the TDW 
(Subsection 3.2) and the distinct count problem that appears 
during measures aggregation (Subsection 3.3).  

3.1 Reconstructing trajectories 

As already discussed, collected raw data represent time-stamped 
geographical locations (Figure 4a). Apart from storing these raw 

data in the MOD, we are also interested in reconstructing 
trajectories (Figure 4b). The so-called trajectory reconstruction 
task is not a straightforward procedure. Having in mind that raw 
points arrive in bulk sets, we need a filter that decides if the new 
series of data is to be appended to an existing trajectory or not. 

 

Figure 4. a) raw locations, b) reconstructed trajectories.  

In this work, we assume this filter to be part of a trajectory 
reconstruction manager, along with a simple method for 
determining different trajectories, which applies it on raw 
positions. The notion of trajectory is a very controversial issue as 
it cannot be the same in every application. For this reason, we 

need some generic trajectory reconstruction parameters and the 
flexibility to appropriately modify their values to satisfy the 
requirements of different applications. Thus, we define the 
following parameters: 

 Temporal gap between trajectories gaptime: the maximum 

allowed time interval between two consecutive time-stamped 
positions of the same trajectory for a single moving object. As 
such, any time-stamped position of object oi, received after 
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more than gaptime time units from its last recorded position, 
will cause a new trajectory of the same object to be created 
(case a in Figure 4a) . 

 Spatial gap between trajectories gapspace: the maximum 

allowed distance in 2D plane between two consecutive time-
stamped positions of the same trajectory. As such, any time-
stamped position of object oi, with distance from the last 
recorded position of this object greater than gapspace, will cause 
a new trajectory to be created for oi (case b in Figure 4a). 

 Maximum speed Vmax: the maximum allowed speed of a 

moving object. It is used in order to determine whether a 
reported time-stamped position must be considered as noise 
and consequently discarded from the output trajectory. When a 
new time-stamped location of object oi is received, it is 
checked with respect to the last known position of that object, 
and the corresponding instant speed is calculated. If it exceeds 
Vmax, this location is considered as noise and (temporarily) it is 
not considered in the trajectory reconstruction process 

(however, it is kept separately as it may turn out to be useful 
again – see the parameter that follows) (case c in Figure 4a).  

 Maximum noise duration noisemax: Any sequence of noisy 

time-stamped positions of the same object will result in a new 
trajectory given that its duration exceeds noisemax. For 
example, consider an application recording positions of 
pedestrians where the maximum speed set for a pedestrian is 

Vmax = 3 m/sec. When he/she picks up a transportation mean 
(e.g., a bus), the recorded instant speed will exceed Vmax, 
flagging the positions on the bus as noise. The maximum noise 
length parameter stands for supporting this scenario: when the 
duration of this sequence of „noise‟ exceeds noisemax, a new 
trajectory containing all these positions is created (case d in 
Figure 4a). 

 Tolerance distance Dtol: the tolerance of the transmitted time-

stamped positions. In other words, it is the maximum distance 
between two consecutive time-stamped positions of the same 
object in order for the object to be considered as stationary. 
When a new time-stamped location of object oi is received, it is 
checked with respect to the last known position of that object, 
and if the distance of the two locations is smaller than Dtol, it is 
considered redundant and consequently discarded (case e in 
Figure 4a).   

The proposed TRAJECTORY-RECONSTRUCTION algorithm is 
illustrated in Figure 5. The input of the algorithm includes raw 
data points (i.e., time-stamped positions) along with object-id, and 

a list containing the partial trajectories processed so far by the 
trajectory reconstruction manager; these partial trajectories are 
composed by several of the most recent trajectory points, 
depending on the values of the algorithm parameters.  

As a first step (lines 1-6), the algorithm checks whether the object 
has been processed so far, and, if so, retrieves its partial trajectory 
from the corresponding list, while, in the opposite case, creates a 
new trajectory and adds it to the list. Then (lines 7-31), it 

compares the incoming point P with the tail of the partial 
trajectory (LastPoint) by applying the above mentioned trajectory 
reconstruction parameters: 

 it rejects P if it is closer than Dtol to LastPoint (lines 7-12) or 

 it rejects P when a speed greater than Vmax is calculated, 

unless the noisemax case is triggered (lines 13-18) or 

 it creates a new trajectory if the temporal duration between P 

and LastPoint is longer than gaptime (lines 8-12 and 24-27) or 
their spatial distance is greater than gapspace (lines 19-22); 

in any other case, it reports LastPoint in the partial trajectory and 
replaces it with P. 

 

 
Algorithm Trajectory-Reconstruction 

 (PartialTrajectories List, P Point, OId ObjectId) 

 

 1. 

 2. 

 3. 

 4. 

 5. 

 6. 

 7. 

 8. 

 9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

  IF NOT PartialTrajectories.Contains(OId) THEN 

    CTrajectory=New Trajectory; 

    CTrajectory.AddPoint(P); 

    PartialTrajectories.Add(CTrajectory); 

  ELSE 

    CTrajectory=PartialTrajectories(OId); 

    IF Distance(CTrajectory.LastPoint,P)<= DTOL THEN 

      IF P.T – CTrajectory.LastPoint.T > gapTime THEN 
        Report Ctrajectory.LastPoint; 

        CTrajectory.Id=CTrajectory.Id+1;              

        CTrajectory.AddPoint(P); 

      ENDIF 
    ELSEIF Speed(CTrajectory.LastPoint,P)> Vmax THEN 

      IF P.T – CTrajectory.LastPoint.T > noisemax THEN 
        Report CTrajectory.Noise; 

      ELSE 

        CTrajectory.AddNoise(P); 

      ENDIF 

    ELSEIF Distance(CTrajectory.LastPoint,P)> gapspace THEN 

      Report Ctrajectory.LastPoint; 

      CTrajectory.Id=CTrajectory.Id+1; 

      CTrajectory.AddPoint(P); 

    ELSE 

      IF P.T – CTrajectory.LastPoint.T > gapTime THEN 
        Report Ctrajectory.LastPoint; 

        CTrajectory.Id=CTrajectory.Id+1; 

        CTrajectory.AddPoint(P); 

      ELSE 
        CTrajectory.AddPoint(P); 

      ENDIF 

    ENDIF 

  ENDIF    
 

Figure 5. The TRAJECTORY-RECONSTRUCTION algorithm. 

The above procedure supports the reasonable requirement for 
detecting one trajectory per trip: Let us consider the case where a 
tracked user is traveling from home to work in the morning and 
from work to home in the evening, leaving his/her tracking device 
(e.g., GPS) always active. In this case, during the time the car is 
parked there are no spatial gaps, and no maximum speed problems 
which may cause a new trajectory creation. Moreover, the GPS 
outputs a position every second, so no temporal gaps initially 

exist; however, since the car is not moving, the algorithm 
eliminates all points reported during the non-moving interval, and, 
an artificial temporal gap is created (i.e., only the first point after 
the car parking and the last before starting moving again exist in 
the trajectory reconstruction algorithm). As a consequence, the 
algorithm detects the temporal gap and creates new trajectories, as 
needed, based only on the information that the tracked object 
stopped moving for a sufficiently large temporal period (i.e., 

greater than gaptime).  

3.2 ETL processing over trajectory data 

Once trajectories have been constructed and stored in a MOD, the 
ETL phase is executed in order to feed the TDW. Loading data 
into the dimension tables is straightforward; however, this is far 
more complex for the fact table. In particular, recalling Figure 3, 
the main task is to fill in the measures with the appropriate 
numeric values for each of the base cells that are formulated by 
the three foreign keys (PARTITION_ID, INTERVAL_ID, 

OBJPROFILE_ID) of the fact table. 



The COUNT_TRAJECTORIES measure for a base cell bc is calculated 
by counting all the distinct trajectory ids that pass through bc. The 
COUNT_USERS measure for a base cell bc is calculated similarly by 
counting all the distinct object ids that pass through bc.  

In order to calculate the AVG_DISTANCE_TRAVELED measure for a 

base cell bc we define an auxiliary measure, called SUM_DISTANCE 
as the summation of the length len(TP) of each portion TP of the 
trajectories lying within bc. More formally, 

bcTP

i

i

TPlenbcDISTANCESUM )()(_  

Then, the AVG_DISTANCE_TRAVELED measure is computed by 
dividing the SUM_DISTANCE by the COUNT_TRAJECTORIES measure: 

)(_

)(_
)(__

bcESTRAJECTORICOUNT

bcDISTANCESUM
bcTRAVELEDDISTANCEAVG

 

Similar is the case for the AVG_TRAVEL_DURATION measure: 

)(_

)(_
)(__

bcESTRAJECTORICOUNT

bcDURATIONSUM
bcDURATIONTRAVELAVG

 

where, SUM_DURATION is also an auxiliary measure defined as the 
summation of the duration lifespan(TP) of each portion TP of  the 
trajectories inside bc. 

bcTP

i

i

TPlifespanbcDURATIONSUM )()(_ . 

In the same fashion, the AVG_SPEED measure is calculated by 
dividing the auxiliary measure SUM_SPEED (i.e. the sum of the 
speeds of each portion TP inside bc) with COUNT_TRAJECTORIES: 

)(_

)(_
)(_

bcESTRAJECTORICOUNT

bcSPEEDSUM
bcSPEEDAVG  

where 

bcTP i

i

i
TPlifespan

TPlen
bcSPEEDSUM

)(

)(
)(_  

Likewise, the AVG_ABS_ACCELER is a suchlike fraction 

)(_

)(__
)(__

bcESTRAJECTORICOUNT

bcACCELERABSSUM
bcACCELERABSAVG  

where SUM_ABS_ACCELER is a supplementary measure that 
summates the absolute accelerations of all portions TP lying in bc  

bcTP i

iinitifin

i
TPlifespan

TPspeedTPspeed
bcACCELERABSSUM

)(

)()(
)(__  

and speedfin (speedinit) is the finally (initially, respectively) 
recorded speed of the trajectory portion (TPi) in bc. 

It is important to remark that all these measures are computed in 
an exact way by using the MOD. In fact our MOD Hermes [15], 
[16] provides a rich palette of spatial and temporal operators for 
handling trajectories. Unfortunately, rolling-up these measures is 
not straightforward due to the count distinct problem [20] as it 
will be discussed in detail in the next subsection. 

As already mentioned, in order to calculate the measures of the 
data cube, we have to extract the portions of the trajectories that 
fit into the base cells of the cube. We consider a MOD of U user 

profiles, N trajectories, M spatial partitions and K temporal 
intervals. We propose two alternative solutions to this problem: (i) 
a cell-oriented and (ii) a trajectory-oriented approach. 

According to the cell-oriented approach (COA), we search for the 
trajectory portions that lie within the base cells. The ETL 

procedure for feeding the fact table of the TDW is described by 
the proposed CELL-ORIENTED-ETL algorithm (Figure 6). First, we 
search for the portions of trajectories under the concurrent 
constraint that they reside inside a spatiotemporal cell C (line 4). 
Then, the algorithm proceeds to the decomposition of the portions 
with respect to the user profiles they belong to (lines 6-9). 
 
Algorithm Cell-Oriented-ETL(D MODTrajectoryTable) 

 1. 

 2. 

 3. 

 4. 

 5. 

 6. 

 7. 

 8. 

 9. 

10. 

// For each pair <Region, Interval> forming a s-t cell Cj 

FOR EACH cell Cj DO 

   // Find the set of sub-trajectories inside the cell 

   S = intersects(D, Cj); 

   // Decompose S to subsets according to object profile 

   FOR EACH subset S’ of S DO 

 // Compute the various measures 

 Compute_Measures(S’); 

   END-FOR 

END-FOR 

  

Figure 6. The CELL-ORIENTED-ETL algorithm. 

The efficiency of the above described COA solution depends on 
the effective computation of the parts of the moving object 
trajectories that reside in the spatiotemporal cells (line 4). This 
step is actually a spatiotemporal range query that returns not only 
the identifiers but also the portions of trajectories that satisfy the 
range constraints. To efficiently support this trajectory-based 
query processing requirement, we employ the TB-tree [17], a 
state-of-the-art index for trajectories that can efficiently support 

trajectory query processing. 

According to the trajectory-oriented approach (TOA), we 
discover the spatiotemporal cells where each trajectory resides in 
(line 6). In order to avoid checking all cells, we use (line 4) a 
rough approximation of the trajectory, its Minimum Bounding 
Rectangle (MBR), and we exploit the fact that the granularity of 
cells is fixed in order to detect (possibly) involved cells in 
constant time. Then, we identify the portions of the trajectory that 
fits into each of those cells (lines 8-15). This ETL procedure is 

described by the proposed TRAJECTORY-ORIENTED-ETL algorithm 
(Figure 7). 
 
Algorithm Trajectory-Oriented-ETL(D MODTrajectoryTable) 

 1. 

 2. 

 3. 

 4. 

 5. 

 6. 

 7. 

 8. 

 9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

// For each Trajectory Ti  

FOR EACH Trajectory Ti of D DO 

   // Find the Minimum Bounding Rectangle of Ti 

   MBRTi = Compute_MBR(Ti); 

   // Find the set of s-t cells C that overlap with the MBR 

   O = Overlap(C, MBRTi) 

   // Find the portions (P) of trajectory Ti inside each cell 

    FOR EACH O’ of O DO 

     P = singlet_intersects(Ti, O’); 

     //If the cell contains portions of the trajectory 

     IF(P NOT NULL) THEN 

      // Compute the various measures 

         Compute_Measures(P); 

     END-IF 

    END-FOR 

END-FOR 

 

 

 

 

 

 

 

 

Figure 7. The TRAJECTORY-ORIENTED-ETL algorithm. 



3.3 Addressing the distinct count problem 

During the ETL process, measures can be computed in an 
accurate way by executing MOD queries based on the formulas 
provided in the previous section. However, once the fact table has 
been fed, the trajectory and user identifiers are not maintained and 
only aggregate information is stored inside the TDW.  

The aggregate functions computing the super-aggregates of the 
measures are categorized by Gray et al. [6] into three classes 
based on the complexity required for this computation, starting 
from a set of already available sub-aggregates:  

 distributive (the super-aggregates can be computed from the 

sub-aggregates),  

 algebraic (the super-aggregates can be computed from the sub-

aggregates with a finite set of auxiliary measures), and  

 holistic (the super-aggregates cannot be computed from sub-

aggregates, even if we employ auxiliary measures). 

In our case, the aggregate functions to obtain super-aggregates for 
the main measures discussed in Subsection 3.2 are classified as 
holistic and as such they require the MOD data to compute super-
aggregates in all levels of dimensions. This is due to the fact that 
COUNT_USERS, COUNT_TRAJECTORIES and, as a consequence, the 
other measures defined in terms of COUNT_TRAJECTORIES are 

subject to the distinct count problem [20]: if an object remains in 
the query region for several timestamps during the query interval, 
instead of counting this object once, it is counted multiple times in 
the result.  

Notice that once a technique for rolling-up the 
COUNT_TRAJECTORIES measure is devised, it is straightforward to 
define a roll-up operation for the AVG measures. In fact the latter 
can be implemented as the sum of the corresponding auxiliary 

measures divided by the result of the roll-up of 
COUNT_TRAJECTORIES.  As such, diminishing the calculations in 
the numerator, hereafter, we focus on the (denominator) number 
of distinct trajectories (COUNT_TRAJECTORIES); COUNT_USERS is 
handled in a similar way. 

In order to implement a roll-up operation over this measure, a first 
solution is to define a distributive aggregate function which 
simply obtains the super-aggregate of a cell C by summing up the 

measures COUNT_TRAJECTORIES in the base cells composing C. In 
the literature, this is a common approach to aggregate spatio-
temporal data but, as we will show in Section 4, it produces a very 
rough approximation. Following the proposal in [11], an 
alternative solution is to define an algebraic aggregate function. 
The idea is to store in the base cells a tuple of auxiliary measures 
that will help us to correct the errors caused due to the duplicates 
when rolling-up. 

More formally, let C(x,y),t,p be a base cell, which contains, among 
the others, the following measures (it is worth noting that these 
measures are loaded without errors into the base cells, by 
exploiting the MOD functionalities): 

 C(x,y),t,p.COUNT_TRAJECTORIES: the number of distinct 

trajectories of profile p intersecting the cell (C(x,y),t,p.Traj for 
short). 

 C(x,y),t,p.cross-x: the number of  distinct trajectories of profile p 

crossing the spatial border between C(x-1,y),t,p and C(x,y),t,p, 

where C(x-1,y),t,p is the adjacent cell (on the left) along with x- 
axis. 

 C(x,y),t,p.cross-y:  the number of  distinct trajectories of  profile 

p crossing the spatial border between C(x,y-1),t,p and C(x,y),t,p, 
where C(x,y-1),t,p is the adjacent cell (below) along with y- axis. 

 C(x,y),t,p.cross-t: the number of  distinct trajectories of profile p 

crossing the temporal border between C(x,y),t-1,p and C(x,y),t,p , 
where C(x,y),t-1,p is the adjacent cell (below) along with t- axis. 

Let C(x’,y’),t’,p’ be a cell consisting of the union of two adjacent cells 
with respect to a spatial/temporal dimension, for example 

C(x’,y’),t’,p’ = C(x,y),t.p C(x+1,y),t,p (when aggregating along x- axis). In 

order to compute the super-aggregate corresponding to C(x’,y’),t’,p’, 
we proceed as follows: 

C(x’,y’),t’,p’.Traj = C(x,y),t,p.Traj + C(x+1,y),t,p.Traj – C(x+1,y),t,p .cross-x 

The other measures associated with C(x’,y’),t’,p’  can be computed as 
follows: 

C(x’,y’),t’,p’ .cross-x = C(x,y),t,p .cross-x 

C(x’,y’),t’,p’ .cross-y = C(x,y),t,p .cross-y + C(x+1,y),t,p .cross-y 

C(x’,y’),t’,p’ .cross-t = C(x,y),t,p .cross-t + C(x+1,y),t,p .cross-t 

The computation of C(x’,y’),t’,p’.Traj can be thought of as an 
application of the well-known Inclusion/Exclusion principle for 

sets: A B  = A  + B   A B . Note that in some cases 

C(x+1,y),t,p.cross-x is not equal to A B , and this may introduce 

errors in the values returned by this algebraic function. In fact, if a 
trajectory is fast and agile, it can be found in both C(x,y),t,p  and 
C(x+1,y),t,p  without crossing the X  border (since it can reach 
C(x+1,y),t,p  by crossing the Y  borders of C(x,y),t,p  and C(x+1,y),t,p).  

It is worth noticing that the agility of a trajectory affects the error 
in the roll-up computation. In fact, a trajectory coming back to an 
already visited cell can produce an error. In the following figures 
we illustrate the two main kinds of error that the algebraic 

aggregate function can introduce.  

In Figure 8a, if we group together the cells C3 and C4, we obtain 
that the number of distinct trajectories is C3.Traj + C4.Traj – 
C4.cross-x = 1+1–0 = 2. This is an overestimate of the number of 
distinct trajectories. On the other hand, in Figure 8b, if we group 
together C1 and C2 we correctly obtain C1.Traj + C2.Traj – 
C2.cross-x = 1+1–1 = 1, similarly by aggregating C3 and C4.  

However, if we group C1 C2 with C3 C4 we obtain C1 C2.Traj 

+ C3 C4.Traj – C1 C2.cross-y = 1+1–2 = 0. This is an 

underestimate of the number of distinct trajectories.  

  

Figure 8. a) Overestimate of Traj. b) Underestimate of Traj. 

In order to give a bound to this kind of errors, let us focus on a 
single trajectory. This is not a limitation because the values of the 
measures Traj, cross-x, cross-y, and cross-t can be computed by 
summing up the contributions given to such a measure by each 
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trajectory in isolation. Since the aggregation operations are linear 
functions, the above property also holds for aggregated cells.  

First of all, let us introduce the concept of uni-octant sequence. 
We call uni-octant sequence a maximal sequence of connected 
segments of a trajectory whose slopes are in the same octant. It is 

evident that a trajectory can be uniquely decomposed into uni-
octant sequences. 

A uni-octant sequence us can traverse a cell C only once, i.e. if us 
starts from C it can only exit from C, otherwise it can only enter 
once in C. As a consequence, if a trajectory consists of a single 
uni-octant sequence it does not produce any error in the roll-up 
computation for the measure COUNT_TRAJECTORIES. In fact, as 
discussed above, errors can only arise when a trajectory visits a 

cell at least twice. 

This can be generalised to a trajectory T composed by several uni-
octant sequences. In this case, the computed value of the measure 
Traj in an aggregated cell C is limited by the number of uni-
octant sequences of T intersecting C. This is an upper bound that 
can be reached, as shown in Figure 8a.  

Note that in order to face the distinct count problem when 
aggregating cells with different profiles, analogously to what we 

did for the spatial and temporal dimensions, it could be helpful to 
consider a measure cross-P, specifying the number of distinct 
trajectories changing their profile from one cell to an adjacent 
one. However, since profile changes are rather rare in real-world 
scenarios and only appear in long term situations, we omit 
computing cross-P and we simply use the distributive aggregate 
function sum for this kind of aggregations. (In any case, when 
there is need cross-P can be added in our framework without 

additional difficulty.) 

4. EXPERIMENTATION WITH A REAL-

WORLD TDW 
In this section, we evaluate the proposed solutions by 
implementing the TDW architecture (Figure 3) for a real-world 
application. More specifically, we used a large real dataset: a part 
of the e-Courier dataset [4] consisting of 6.67 millions of raw 
location records (a file of 504 Mb, in total), that represent the 
movement of 84 couriers moving in greater London (covered area 
66,800 km2) during a one month period (July 2007) with a 10 sec 
sample rate. For all the experiments we used a PC with 1 Gb 

RAM and P4 3 GHz CPU. 

Default values of the trajectory reconstruction parameters were set 
as follows: temporal gap 900 sec, spatial gap 5 Km, maximum 
speed 50 m/s, maximum noise duration 600 sec, and tolerance 
distance 20 m, and the volume of the raw locations dataset varied 
from 0.5 millions of records up to the full size available. This 
setting resulted in a maximum of 4263 trajectories (which 
corresponds to an average 1.64 trajectories per courier per day).  

We concluded in the above values of parameters after analyzing 
the behaviour of different candidate values and assessing the 
number of produced trajectories. As a first consideration, the 
selected value for maximum speed of vehicles is reasonable. 
Secondly, different values of distance accuracy parameter have 
not an effect on the number of produced trajectories. Below, we 
illustrate the results of analysis for the parameters: temporal gap 
(Figure 9), maximum noise duration (Figure 10) and the spatial 

gap parameters (Figure 11). As it is depicted for each parameter, 

the number of produced trajectories seems to stay stable from the 
point selected on. 
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Figure 9. The effect of temporal gap parameter 
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Figure 10. The effect of noise duration parameter 
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Figure 11. The effect of spatial gap parameter 

The next experiment, illustrated in Figure 12, is about the 
efficiency of the TRAJECTORY-RECONSTRUCTION algorithm, 
proposed in Subsection 3.1. It is clear that the TRAJECTORY-
RECONSTRUCTION algorithm performs linear with the size of the 

input dataset (and allows the processing of the full dataset in 
about 2 min). Furthermore, the average processing rate is almost 
stable (~ 50K records/sec). 
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Figure 12. Performance of trajectory reconstruction  

(solid line: processing time; dotted line: processing rate) 



In the next set of experiments, we evaluate the effectiveness of the 
TRAJECTORY-RECONSTRUCTION algorithm in the case of a large 
number of users and towards the goal of processing input in real-
time. In particular, we measure its processing time for various 
sample rates, as illustrated in Figure 13. According to this 

experiment, by choosing e.g. a 20 sec sample rate the algorithm 
can handle in real time up to 1000K objects, which is a really 
large number for real-world applications (at least nowadays). The 
conclusion from this experiment is that the proposed 
TRAJECTORY-RECONSTRUCTION algorithm is effective for real-time 
processing by keeping a trade-off between the number of users to 
be supported and the sample rate set for transmitting their 
location. 
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Figure 13. The effect of sample rate in real-time processing 

(solid line: objects in real-time; dotted line: processing rate) 

For the evaluation of the ETL process we compared the 
performance of the TOA vs. the index-based COA approaches. 

Both approaches are implemented on the MOD system, Hermes, 
presented in [15], [16]. We used two different granularities to 
partition the spatial and the temporal hierarchies; a spatial grid of 
equally sized squares of 10×10 Km2 (100×100 Km2, respectively) 
and a time interval of one (six, respectively) hours. The results of 
the four cases are illustrated in Figure 14, where it is clear that the 
choice of a particular method is a trade-off between the selected 
granularity level and the number of trajectories. 
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Figure 14. Comparison of alternative ETL processes 

We complete the experimental study with some results on the 
trajectory aggregation issue (Figure 15). We would like to assess 
the accuracy of the approximations of the measure 
COUNT_TRAJECTORIES computed in roll-up operations by using 
the distributive and the algebraic functions presented in 

Subsection 3.2. To this aim we consider the normalized absolute 
error proposed by Vitter et al. [21]:  For all the OLAP queries q in 
a set Q we define this error as follows: 

Qq
q

Qq
qq

M

MM
Error

||
 

where qM is the approximate measure computed for query q, 

while qM is its exact value.  

We assume, as base granularity g, a spatial grid of equally sized 
squares of 10×10 Km2 and a time interval of one hour. Then our 
queries compute the measure TRAJECTORIES for larger 
granularities g’ = n×g, with n > 1. 
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Figure 15. Distributive vs. algebraic aggregate functions 

The distributive aggregate function has an error which always 
exceeds 100% and quickly grows as the roll-up granularity 
increases. Instead, as expected, the computations based on the 

algebraic function are always more precise than those based on 
the distributive one and they are accurate for small granularities. 
Still, the error grows up for large granularities but it never exceeds 
100%. Although the corresponding experiments are not reported 
here, it is worth noting that starting from smaller base 
granularities g and using the algebraic function we get a better 
accuracy, with errors under 10% for small multiples of g. 

5. CONCLUSIONS 
In this paper, we propose solutions for the efficient and effective 
development of trajectory warehouses. To the best of our 
knowledge, this is the first work that supports all the required 
steps for building a TDW, from trajectory reconstruction and 
MOD loading, to data cube feeding and aggregating over 
summary information. More specifically, we proposed techniques 

for the solution of the trajectory reconstruction problem, for 
supporting ETL of trajectory data, and for addressing the problem 
of measure aggregation, giving particular attention to the distinct 
count problem. Our approach has been experimentally tested in a 
large real dataset and has been shown to be efficient enough to be 
considered as a candidate solution for real-time scenarios  

As part of our future work, regarding the trajectory reconstruction 
parameters, we would like to explore intelligent ways to 

automatically extract proper values of these parameters according 
to a number of characteristics of datasets. Furthermore, we plan to 
examine new measures for the trajectory warehouse, specifically 
suited for trajectories. An example of such a measure is the so-
called typical trajectory (e.g. [5], [10]) that describes the trend of 
movement within a cell. This is a rather challenging problem as it 
is not straightforward to derive the typical trajectory of a cell 
based on the typical trajectories of its sub-cells. In a similar line of 

research, other interesting measures could be investigated like the 
average direction measure of the trajectories within a cell. 
Finally, we plan to explore the analytical capabilities of the 



proposed framework by applying DM techniques over the 
aggregated data stored in the TDW. 
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