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Abstract. Comparison between sets of frequent itemsets has been tra-
ditionally utilized for raw dataset comparison assuming that frequent
itemsets inherit the information lying in the original raw datasets. In
this work, we revisit this assumption and examine whether dissimilarity
between sets of frequent itemsets could serve as a measure of dissimilarity
between raw datasets. In particular, we investigate how the dissimilar-
ity between two sets of frequent itemsets is affected by the minSupport
threshold used for their generation and the adopted compactness level of
the itemsets lattice, namely frequent itemsets, closed frequent itemsets
or maximal frequent itemsets. Our analysis shows that utilizing frequent
itemsets comparison for dataset comparison is not as straightforward as
related work has argued, a result which is verified through an experi-
mental study and opens issues for further research in the KDD field.

1 Introduction

Detecting changes between datasets is an important problem nowadays due to
the highly dynamic nature of data. A common approach for comparing datasets
is to utilize the patterns extracted from these datasets. The intuition behind this
approach is that patterns encapsulate (to some degree) the information contained
in the original data. In [3], authors measure the deviation between systematically
evolving datasets, like the buying habits of customers in a supermarket, in terms
of the data mining models they induce. In [5l4], authors measure the dissimilarity
between distributed datasets using the corresponding sets of frequent itemsets.

In this work we elaborate on this assumption about the equivalence of dissimi-
larity in pattern space with the dissimilarity in raw data space, for a very popular
pattern type, the frequent itemset patterns. More specifically, we provide a the-
oretical analysis that shows the dependency of dissimilarity in pattern space on
frequent itemsets mining (FIM) settings, namely (a) on the minSupport thresh-
old used for the generation of itemsets and (b) on the adopted compactness
level for the itemsets lattice (frequent itemsets-FI, closed frequent itemsets-CFI
or maximal frequent itemsets-MFT). Regarding the minSupport threshold, our
analysis shows that the larger this threshold is, the higher the dissimilarity in
pattern space is. Regarding the different lattice representations, it turns out that
the more compact the representation achieved by the itemset type is, the higher
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the dissimilarity in pattern space is. Moreover, we describe the different dis-
similarity measures proposed so far in the literature ([BI45]) through a general
common dissimilarity schema and verify the above theoretical results through an
experimental study. The results indicate that utilizing pattern comparison for
data comparison is not as straightforward as argued by related work and should
only be carried out under certain assumptions (e.g., FIM settings).

The rest of the paper is organized as follows: Section [2] describes basic FIM
concepts. Section [3] discusses the related work and describes a general formula
through which the proposed measures can be described. In Section ] we present
the FIM parameters that affect dissimilarity. In Section [l we experimentally
evaluate the effect of the different parameters on dissimilarity. In Section [ we
present conclusions and outlook.

2 Background on the FIM Problem

Let I be a finite set of distinct items and D be a dataset of transactions where
each transaction T' contains a set of items, T'C I. An itemset X is a non-empty
lexicographically ordered set of items, X C I. The percentage of transactions
in D that contain X, is called the support of X in D, suppp(X). An itemset
is frequent if suppp(X) > o, where o is the minSupport threshold. The set of
frequent itemsets (FIs) extracted from D under o is given by: F,(D) = {X C T |
suppp(X) > o}. An itemset is frequent iff all of its subsets are frequent (apriori
property). This property allows us to enumerate frequent itemsets lattice using
more compact representations like closed frequent itemsets (CFIs) and maximal
frequent itemsets (MFIs).

A frequent itemset X is called closed if there exists no frequent superset
Y O X with suppp(X) = suppp(Y’). The set C,(D) is a subset of F,(D) since
every closed itemset is also frequent.

Cy(D)=F,(D)-{X € F,(D):Y D X = suppp(X) = suppp(Y),Y € F,(D)}

(1)

On the other hand, a frequent itemset is called mazimal if it is not a subset

of any other frequent itemset. The set M, (D) is also a subset of F,(D) since
every maximal itemset is frequent.

M,(D) = F,(D)—{X € F,(D):Y 5 X = Y € F,(D)} (2)
By definition, C, (D) is a subset of M, (D):
M,(D)=Cy(D)—{XeC,(D): Y DX=Y eC,(D)} (3)

C,(D) is a lossless representation of F, (D) since both the lattice structure
(i.e., frequent itemsets) and the lattice measure (i.e., itemset supports) can be
derived from CFIs [7]. Unlike C, (D), M,(D) is a lossy representation of Fi, (D)
since it is only the lattice structure that can be determined from MFIs whereas
the measures are lost [7]. By Eq. [ [ and Bl it follows that:

My(D) € C5(D) C Fy(D) (4)
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Fig. 1. Two lattices of frequent itemsets to be compared: A (lef), B (right)

Table 1. List of symbols

Symbol Description

D a dataset
X an itemset
suppp(X) the support of itemset X in dataset D
o the minSupport threshold
F,(D) the set of frequent itemsets generated from D under o
C,(D) the set of closed frequent itemsets generated from D under o
M, (D) the set of maximal frequent itemsets generated from D under o
dis(A, B) dissimilarity between two set of itemsets A, B

Let us consider for comparison (Fig.[Il) two sets of frequent itemsets A, B gen-
erated under the same minSupport threshold o from the original datasets D and
E, respectively. Each itemset is described as a pair <structure, measure> denot-
ing the items forming the itemset (structure) and the itemset support (measure).

The question is how similar to each other A and B are. There are many cases
where the two sets might differ: An itemset, for example, might appear in both
A and B sets but with different supports, like the itemset < a > in Fig.[Il Or, an
itemset might appear in only one of the two sets, like the itemset < b > which
appears in A but not in B. In this case, two things might have occurred: either
< b > does not actually exist in the corresponding dataset F or < b > has been
pruned due to low support (lower than the minSupport threshold o).

Since the generation of A, B depends on the FIM parameters, namely the
minSupport threshold o used for their generation and the adopted lattice repre-
sentation (FI, CFI or MFI), we argue that the estimated dissimilarity score also
depends on these parameters. Furthermore, since dissimilarity in pattern space
is often used as a measure of dissimilarity in raw data space we argue that the
above mentioned parameters also affect this correspondence.

Table [I] summarizes the symbols introduced in this section.

3 Comparing Frequent Itemset Lattices

Parthasarathy-Ogihara approach: Parthasarathy and Ogihara [5] present a
method for measuring the dissimilarity between two datasets D and F by using
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the corresponding sets of frequent itemsets (A and B, respectively). Their metric
is defined as follows:

dis(AB) =1 - > xeanp Mmax{0,1 — 0« |suppp(X) — suppp(X)[} 5)
|AU B

In the above equation, € is a scaling parameter that reflects how significant

are for the user the variations in the support values. This measure works with

itemsets of identical structure, i.e., those appearing in AN B. Itemsets that only

partially fit each other like < ab > and < ac > are considered totally dissimilar.

FOCUS approach: The FOCUS framework [3] quantifies the deviation be-
tween two datasets D and E in terms of the FI sets (A and B, respectively)
they induce. A and B are first refined into their union (AU B) and the support
of each itemset is computed with respect to both D and E datasets. Next, the
deviation is computed by summing up the deviations of the frequent itemsets in
the union:

dis(A, B) = > xeaus [suppp(X) — suppp(X)| 6)
Y xeasuppp(X) + 37 xe g suppr(X)
FOCUS measures the dissimilarity between two sets of Fls in terms of their
union. Partial similarity is not considered. Indeed, FOCUS tries to find itemsets
with identical structures. If an itemset X appears in A with suppp(X) but not in
B, then the corresponding data set E of B is queried so as to retrieve suppg(X).
An upper bound on dissimilarity is provided, which involves only the induced
models and avoids the expensive operation of querying the original raw data
space. In this case, if an itemset X does not appear in B, it is considered to
appear but with zero measure, i.e., suppg(X) = 0.

Li-Ogihara-Zhou approach: Li Ogihara and Zhou [4] propose a dissimilar-
ity measure between datasets based on the set of MFIs extracted from these
datasets. Let A = {X;, suppp(X;)} and B = {Y}, suppr(Y;)} where X;,Y; are
the MFIs in D, E respectively. Then:

213

dis(A,B)=1—
is( ) I + 1o

(7)
L= Y dX,X)), L= > dY.,Y;), = Y  dX,)Y)
X, X;€EA Y;,Y,€B X€eAYEB

_1xny]
X UY]|

X NY|

d(X,Y) XUY|

*log(1+ ) * min(suppp(X), suppe(Y))
This measure works with the average dissimilarity between pairs of MFIs. Partial
similarity is considered; itemsets that have some common part in their structure

are compared and their score is aggregated to the total dissimilarity score.
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3.1 Common Background of the Three Approaches

All approaches express the dissimilarity between two sets of frequent itemsets
as an aggregation of the dissimilarities of their component itemsets:

dis(A,B)= Y dis(X,Y) (8)

X€EAYEB

where dis(X,Y’) is the dissimilarity function between two simple frequent item-
sets, defined in terms of their structure and measure components, as follows:

dis(X,Y) = f(disstruct (X, Y), dismeas(X,Y)) 9)

The function dissiryuct() evaluates the dissimilarity between the structure com-
ponents (i.e., frequent itemsets), whereas the function dis,,cqs() evaluates the
dissimilarity between their measure components (i.e., supports). The function f
aggregates the corresponding structure and measure scores into a total score.

All approaches follow the rationale of Eq. 8 and differentiate only on how
disstruct(X,Y), dismeas(X,Y) and f are instantiated. Below, we present how
these functions are defined for each of the proposed measures.

In case of the Parthasarathy-Ogihara measure, Eq. [0l can be written as:

dis(X,Y) = max{0,1 — disstruct(X,Y) — 0 % diSmeas(X,Y)}

0,if X=Y

d’LSstruct(Xa Y) = { 1 , otherwise

|suppp(X) — suppe(Y)| ,if X =Y

dismeas(X,Y) = {0 , otherwise

For the FOCUS approach, Eq. [ is initialized as:
dis(X,Y) = (1 — disstruct(X,Y)) * diSmeas(X,Y)

0,if X=Y

dzsstruct (X7 Y) = { 1 , otherwise

[suppp(X) — suppp(Y)|,f X, Y € ANBand X =Y
diSmeas(X,Y) = { suppp(X) ,if XeA-B
suppe(Y) ,ifYeB—-A

Finally, for the Li-Ogihara-Zhu approach, Eq. @ becomes:
dis(X,Y) = disstruct (X, Y) % 1og(1 + disstruct (X, Y)) * dismeas(X,Y)

XNy
X UY]|

dismeas (X, Y) = min{suppD (X)a SuppE(Y)}

disstruct (X7 Y)
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4 Effect of Mining Parameters on Dissimilarity

In the following subsections, we investigate how the dissimilarity between two
sets of frequent itemsets depends on the minSupport threshold o used for their
generation and on the adopted lattice representation (FI, CFI or MFI).

4.1 Effect of minSupport Threshold on Dissimilarity

Let 0,04+ 6 (0 < 0,6 <o+ 6 <1) be two minSupport thresholds applied over
a dataset D and let F,, F,4s be the corresponding sets of frequent itemsets
produced by (any) FIM algorithm. The difference set F, — F,,s contains all
those itemsets whose support lies between o and o + 6:

Z=F,—Foys={XCI|o<supp(X) <o+ 6} (10)

In Fig. Bl an example is depicted which illustrates how the resulting lattice
is affected by the increase ¢ in the minSupport threshold. As it is shown in
this figure, with the increase of 8, the lattice is reduced.Below, we describe how
each of the presented measures is affected by the increase ¢ in the minSupport
value.

..........

aaiem oo ed 05

:«l, D.B>.
Fig. 2. Effect of § increase on the lattice structure (o = 0.1)
Parthasarathy-Ogihara [5] approach : From Eq. [} it holds that:

max{0,1 — 6 x |suppp(X) — suppp(X
Gis(Fy, Fyog) = 1 — 2Ny |suppp (X) (X))

|FU U Fo+6|
L ZX€F0+6 max{0,1 — 0}
|Fo |
Fy
= dis(F,,Fyps) =1— | |F+|‘5| (11)

From the above equation, we can conclude that the greater the increase in the
minSupport threshold value 6 is, the smaller the enumerator |F,4s| will be (cf.
Eq.[I0) and thus the greater the distance between the two sets will be.
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FOCUS [3] approach: Recalling Eq. 6l and Eq. [T it holds thadl:

ZXGFGUFUH |suppp(X) — suppp(X)|

dis(Fy, Foys) =
( +0) > xer, suppp(X) + X xep, ,, suppp(X)

(12)
o ZX:0'<suppD (X)<o+6 suppD(X)
2% ZXEFU suppD(X) - ZX:O’<suppD(X)§U+6 SuppD(X)
For simplicity, let C' = ZX:a<suppD(X)§a+6 suppp (X).
. C
= dis(Fy, Fyis) = (13)

2 % ZXeFa suppp(X) —C
In the above equation, if the value of ¢ increases, the numerator C' will also
increase whereas the denumerator will decrease (cf. Eq. [0 as well). Thus, as §

increases, the dissimilarity also increases.

Li-Ogihara-Zhou [4]approach: From Eq.[dand Eq.[I0 it holds that:

h+hL= Y dXY)+ > dX)Y)

X, YeF, X YEF 45
=2% Y  dX)Y)- > d(X,Y)
X, Y€EF, X:o<supp(X)<o+6

Y:o<supp(Y)<o+6

Iy= > dX,)Y)= > dX)Y)- > d(X,Y)

X€EeF, X, YeF, X:o<supp(X)<o+6
YEF,45 Y:io<supp(Y)<o+6

For simplicity, let G = ZX;0-<3upp(X)§J+6 d(X,Y).
Y:o<supp(X)<o+6

2-[3 1 2([1 — G) G

5(Fy, Fogs) = 1 - —1- -
= dis( +6) I + I o, -G 2, -G

(14)

As ¢ increases, the enumerator G also increases, whereas the denumerator (217 —
G) decreases. Thus, dissimilarity increases as ¢ increases.

To summarize, Eq. [Tl and [[4] state that, for all approaches, the larger
the increase in the minSupport threshold value § is, the larger the computed
dissimilarity score, dis(F,, Fyys), will be.

! Some further explanations on the notation: the term 3y FoUF, s |suppp(X) —
suppp(X)| corresponds to the sum of the supports of all those itemsets that appear
in (Fy — Fy45). As far, as this set is not empty, this term is > 0.
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<bcd 0.2> <bed, 0.2> ‘ <bcd, 0.2> ‘
<ac, 0.2>| [<bc,0.2>| |<bd, 0.3> <cd,0.2>‘ }<ac,0.2>| <bd, 0.3>| <ac,0.2>‘
‘ CFI
<a,0.25> || <b,0.3>| | <¢,0.3> <d,0.3>‘ <c,0.3>‘
FI MFIL

Fig. 3. Effect of representation (FI, CFI, MFI) on the lattice structure (o = 0.1)

4.2 Effect of Lattice Representation on Dissimilarity

Let Fy(D), Cy(D), Mys(D) be the sets of Fls, CFIs and MFIs, respectively,
extracted from D under (fixed) minSupport threshold o. The example in Fig.
illustrates the effect of the different representations (FI, CFI, MFI) in the lattice.
These figures affirm Eq. @] which states that the greater the compactness level
is, the “smaller” the resulting lattice will be.

Parthasarathy-Ogihara [5] approach: From Eq. [ it holds that:

GOy — 1 - Sxernc, max{0,1 = 6 lsump(X) = suppp (X))}

|F, UC,|
> xec, max{0,1 -0} |Cy|
—1- - =1- (15)
‘Fﬂ‘ ‘F17|
dis(Fy, M,) =1 — ZXeFaﬂMU max{0,1— 0 * [suppp(X) — suppp(X)|[}
|F, U M,|
> xem, max{0,1—0} | M|
—1- - =1- (16)
| Fo| | Fo|
From Eq. I3 [0 it holds that:
dis(F,,Cy,) < dis(F,, M) (17)
FOCUS [3] approach: Recalling Eq. [ it holds that:
dis(F,,C,) = 2 xer,u0, [$uPPp(X) = suppp(X)| (18)
e Y oxer, Suppp(X) + > xce, suppp(X)
(19)

_ ZXeFafCU suppp(X)
2% ZXEFG suppp(X) — ZXGFG—CG suppp(X)
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> xer o, |suppp(X) — suppp (X))

dis(F,, M, 20
( )= Yoxer, Suppp(X) + > xcpr, suppp(X) (20)
(21)
_ ZXeFC,fMU suppp(X)
2% ZXeF,, suppp(X) — ZXeF,,—M,, suppp(X)
where F, — C, is given by Eq. [l and F, — M, is given by Eq.

From Eq.[I8 and Eq. 20, for the FOCUS measure it holds that:

dis(F,,Cy,) < dis(F,, M) (22)

Li-Ogihara-Zhou [4]approach: From Eq.[d it holds that:

I +1, = Z d(X,Y) Z d(X,Y)
X, YEF, X, Yel,

Y oAxy)- ) dX)Y)=2«L- Y  dX)Y)

X,YEF, X,YEF,—C, X,YEF,—C,

Iy= > dX,Y)= > dX)Y) > dXx,Y)

X€eF, X,YEF, X,YEF,—Cy

YeCs
=hL- )  dX)Y)
X,YEF,—C,

Let K =3 yvycp, o, dX,Y). Then:

2, -K) K

di Fo’7 o) =1-— =
is(Fg, Co) of, - K 2l - K

(23)

also it holds that:

Lh4L= Y dX)Y)+ > dX)Y)
X, YeF, X,YeM,

dooAdxy)- ) dX,Y)=2«L— ) dX,Y)

X,Y€EF, X,YEF,—M, X.YEF,—M,

= ) dX)Y)= > dX.)Y) > dX.Y)

XeF, X, YeF, X, YeF,—M,
YeM,
=hL- >  dX)Y)
X,YeF,—M,
Let L=3 vyer, n, d(X,Y). Then:

2 ~L) L

dis(Fy, M,) = 1 — _
is( ) of, - L 2L — L
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From Eq. 23 and Eq. 24, for the Li-Ogihara-Zhou measure it holds that:
dis(F,,C,) < dis(F,, M) (25)

Equations [, 2], 23 state that the more compact the adopted lattice repre-
sentation (MFIs vs CFIs vs FIs) is, the larger the computed distance becomes.

5 Experimental Evaluation

To evaluate the theoretical results, we experimented with the different dissimi-
larity measures on datasets from the FIM repository [2]. In particular, we used
a real, dense dataset (Chess), which consists of 3196 transactions of 76 distinct
items and has average transaction length 37. Also, we used a synthetic, sparse
dataset (T1014/D100K), which consists of 100,000 transactions of 1,000 distinct
items and has average transaction length 10. For the extraction of Fls, CFIs
and MFTs we used MAFIA [1]. In the case of FOCUS, we used the upper bound
of the dissimilarity measure without re-querying the original raw data space.
This decision is justified by the fact that we are interested on how patterns cap-
ture similarity features contained in the original raw data. For the case of the
Parthasarathy-Ogihara measure, we used 6 = 1, considering that both structure
and measure components contribute equally to the final dissimilarity score.

5.1 Comparing Dissimilarity in Data and Frequent Itemsets Spaces

In this section, we evaluate the argument that dissimilarity in pattern space
can be adopted to discuss dissimilarity in data space. In particular, we select a
popular pattern representation (FIs) and a specific minSupport threshold o for
their generation, while we modify the dataset by adding different proportions of
noise. Then, we compare the dissimilarity measured in the FI space with respect
to the dissimilarity enforced (by adding noise) in the original raw data space.

Starting with an initial dataset D and for a specific minSupport threshold
o, we extracted F, (D). Then, in every step, we modified an increased number
0%,5%, ...,50% of the transactions of D. The selection of the transactions to
be affected was performed in a random way, and for each selected transaction we
modified a certain percentage (in particular, 50%) of its items. The modification
we made was that the selected item values were reset to 0 (in a preprocessing
step both datasets of the experiments where transformed into binary format). As
such, the derived pattern sets Fi,(D,y) were subsets of the initial set F,,(Dgg).
Then, we compared the noised pattern sets I, (D) with the initial “un-noised”
pattern set Fy,(Dpyy). Regarding the generation of the pattern sets, we used
o = 80% for Chess and o = 0.5% for T10/4D100K . The results are illustrated
in Fig. @ where it seems that as the dataset becomes noisier, the distance between
the initial (clean) pattern set and the new (noisy) pattern set becomes larger,
for all approaches and all datasets.

A comparative study of the two figures shows that the effect of noise is more
destructive for the dense dataset (Chess), where at is shown in Fig. @l (right), the
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Fig. 4. Impact of dataset noise on FI dissimilarity: T10/4D100K (o = 0.5%) on the
left, Chess(o = 80%) on the right

dissimilarity increases quickly up to the upper bound 1. This can be explained by
the fact that small changes in a dense dataset may cause critical changes in the
produced FI lattice. This is not the case for the sparse dataset (T101/D100K)
which appears to be more robust in the dataset noise (Fig. [ left).

5.2 Effect of minSupport Threshold

In this section, we evaluate the effect of the minSupport threshold on the com-
puted dissimilarity scores. The scenario is as follows: For each dataset D, we
fixed initial minSupport threshold ¢ and varied the increase ¢ in minSupport
in the range 8¢, 61,...,0,(c + 8; < 1). Then, we generate the corresponding
FIs for the different minSupport values, namely o + 6y, 0 + 01,...,0 + 6,. Af-
ter that, we compare Fl,s, with the initial FI,;s,. We choose different o, ¢
parameters for the two datasets based on their cardinality analysis presented
in [6]. Since our analysis does not depend on specific support values we choose
parameters that yield a reasonable amount of patterns. Thus, in the case of the
D =T10I4D100K dataset, we choose for the initial support the value o = 0, 5%
and for minSupport increase ¢ values: 0%, 0.5%, . ..,4.5%, whereas in the case
of the D = Chess dataset we choose as initial support value ¢ = 90% and for
minSupport increase § values: 0%, 1%, ..., 9%.

The results are illustrated in Fig. Bl Both charts show that the larger the
increase in the minSupport threshold values ¢ is, the larger the dissimilarity
between the corresponding pattern sets is, for all approaches. More specifically,
the Parthasarathy-Ogihara approach provides the greatest dissimilarity scores
because it only considers for comparison items with identical structure (those
belonging to A N B). On the other hand, FOCUS considers items appearing in
the union of the two sets (i.e., AN B, A — B, B — A), thus its dissimilarity
scores are lower comparing to those computed by the Parthasarathy-Ogihara.
As for the Li-Ogihara-Zhu approach, the rationale behind it is slightly different:
It considers partial similarity and performs a many-to-many matching between
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Fig. 5. Impact of minSupport increase 6 on FI dissimilarity: 7'10I4D100K (o = 0.5%)
on the left, Chess(c = 90%) on the right

the itemsets of the two sets. This is in contrast to the other two approaches that
perform a one-to-one matching between itemsets that belong to the intersection
(Parthasarathy-Ogihara) or to the union (FOCUS) of the two sets.

To summarize, experiments in this subsection have confirmed our theoretical
analysis regarding the dependency of the dissimilarity between pattern sets on
the minSupport threshold that was used for their generation. Indeed, as the
minSupport becomes more selective, the dissimilarity increases. Generalizing
this result, we can state that the more selective the minSupport threshold is,
the less informative the set of FIs becomes with respect to the raw data space.

5.3 Effect of Lattice Representation

We set the value of the minSupport threshold parameter o to a fixed value
and calculate the dissimilarity scores between the different lattice representa-
tions under the same noise level, namely dis(Fy(D,y ), Co(Dp)), dis(Fy(Dpy),
M (Dy))-

The results for FI - CFI, FI - MFI dissimilarity cases are illustrated in Fig.
These charts point out the dependence of the dissimilarity scores on the adopted
frequent itemsets lattice compactness level. More specifically, it is clearly shown
that CFIs can very well capture the behavior of FIs whereas MFIs cannot; this
is true for both datasets.

However, the degree of difference between FI-CFI and FI-MFI dissimilarities
scores seems to be subject to the dataset characteristics (sparse vs. dense). More
specifically, in case of the sparse dataset (T10/4D100K), CFIs manage to fully
capture the behavior of FIs at every noise level while MFIs approximate FIs as
the dataset becomes more noisy. On the other hand, in the case of the dense
dataset (Chess) we observe that CFIs are closer to FIs than MFIs. In this case
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Fig. 6. Impact of noise on dissimilarity for FI-CFI (dotted lines), FI-MFTI (solid lines):
T10I4D100K (o = 0.5%) on the left, Chess(c = 80%) on the right

however the noise effect is more destructive by means that it causes a slower
decrease in the differences of CFIs and MFTs from FIs.

To summarize, experiments in this subsection show that the adopted represen-
tation for the itemsets lattice affects the derived dissimilarity scores, confirming
our theoretical analysis regarding the dependency of dissimilarity on the lattice
representations. Also, it seems that CFIs are very good representatives for Fls,
whereas this is not the case for MFIs. It turns out that the more compact the
representation of the pattern space is, the less informative this space becomes
with respect to the initial data space from which patterns were extracted.

6 Conclusions and Future Work

In this work, we investigated whether dissimilarity between sets of frequent item-
sets could serve as a measure of dissimilarity between the original datasets.
We presented the parameters that affect the problem, namely the minSupport
threshold used for itemsets generation and the compactness level achieved by the
lattice representation (FI, CFI or MFI). Both theoretical and experimental re-
sults confirmed that the more “restrictive” the mining parameters are, the larger
the dissimilarity between the two sets is. Thus, utilizing pattern comparison for
raw data comparison is not as straightforward as related work has argued but it
depends on the mining parameters.

As part of our future work, we plan to experiment with more datasets of
different characteristics (e.g.,synthetic vs real, dense vs sparse). We also plan to
investigate some dissimilarity measure that will better preserve the original raw
data space characteristics in the pattern space.
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