
A general framework for estimating similarity of datasets and decision

trees: exploring semantic similarity of decision trees

Irene Ntoutsi † Alexandros Kalousis ∗ Yannis Theodoridis †

Abstract

Decision trees are among the most popular pattern
types in data mining due to their intuitive represen-
tation. However, little attention has been given on the
definition of measures of semantic similarity between
decision trees. In this work, we present a general frame-
work for similarity estimation that includes as special
cases the estimation of semantic similarity between de-
cision trees, as well as various forms of similarity estima-
tion on classification datasets with respect to different
probability distributions defined over the attribute-class
space of the datasets. The similarity estimation is based
on the partitions induced by the decision trees on the
attribute space of the datasets. We use the proposed
framework in order to estimate the semantic similarity
of decision trees induced from different subsamples of
classification datasets; we evaluate its performance with
respect to the empirical semantic similarity, which we
estimate on the basis of independent hold-out test sets.
The availability of similarity measures on decision trees
opens a wide range of possibilities for meta-analysis and
meta-mining of the data mining results.

1 Introduction

Decision tree (DT) models are one of the most popular
learning paradigms in the area of data mining thanks
to a number of attractive properties they possess, such
as scalability to large datasets and relative easiness of
interpretation, provided that their size does not exceed
certain limits. On the other hand, they are also noto-
rious for their instability; small changes in the train-
ing dataset may result to completely different DTs that
contain different tests on the predictive attributes or
even different predictive attributes. These DTs, though
structurally different, may describe the same concept,
i.e., they may be semantically similar or even identi-
cal to each other; in fact, two DTs are expected to
be semantically similar if they have been induced from
datasets that come from the same generating distribu-
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tion. Semantic similarity in the presence of structural
differences might arise for a variety of reasons, such
as superficially different tests on attributes which are
in fact equivalent, different attributes that convey the
same information due to attribute redundancy, or sim-
ply because the same concept can be described in differ-
ent ways which are nevertheless semantically equivalent.
To capture the degree of semantic similarity between
DTs we need a measure of the semantic similarity of
the concepts that they describe.

There is a plethora of reasons for which the defini-
tion of similarity measures between DTs and classifica-
tion datasets is required. By far, the most important is
on being able to report whether the differences observed
in DTs induced from different training sets (which, how-
ever, are thought to come from the same data generat-
ing distribution) are only structural and do not corre-
spond to semantic differences, or whether the concepts
described by the DTs are indeed semantically different.
In the latter case, a quantification of this semantic dif-
ference would be useful. Moreover, the availability of
a similarity measure on classification models makes it
possible to apply a number of standard mining tasks on
classification models rather than on raw data, result-
ing in what we could call meta-analysis or meta-mining
tasks. For example, the semantic similarity measures
can be used to cluster different sites into groups of simi-
lar behavior according to the DT models learned locally
on each of the sites, e.g. clustering the different branches
of a bank according to the credit strategy they adopt.

Similarity could be also employed in order to study
the effect of the DT learning parameters, like pruning
level, on the resulting models or to compare a DT model
to a golden standard model. Also, in case of dynamic
data, like data streams, similarity could be employed in
order to monitor the evolution of the induced models
or classification datasets across the time axis. A crucial
question in this case is whether the concept, which is
captured through the induced models, remains (about)
the same or there are concept drifts in the population.

In this paper, we propose a general similarity es-
timation framework that includes as special cases i)
the estimation of semantic similarity between DTs and
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ii) the estimation of similarity between different prob-
ability distributions that govern different classification
datasets, namely the marginal distribution of the at-
tributes, the joint attributes-class probability distribu-
tion and the attributes-conditional class distribution.
The framework is based on the comparison of the parti-
tionings that DTs define over a given attribute space
considering the probability distribution of the data
space over that partitioning. Similar ideas have been
previously used for dataset comparison, however, to the
best of our knowledge this is the first time that the
semantic similarity of DTs is explored. Depending on
the available information regarding the probability dis-
tribution that generated the data, we get different in-
stantiations of the DT semantic similarity measure. To
evaluate the proposed measures we compare them with
the empirical semantic similarity, which is estimated by
applying the DTs on independent test sets.

The rest of the paper is organized as follows: In
Section 2 we present the related work and some prelim-
inaries on DTs . The proposed similarity framework is
described in Section 3. The experimental evaluation of
the different instantiations for the DT similarity mea-
sures is reported in Section 4. Finally, Section 5 dis-
cusses conclusions and outlook.

2 Preliminaries on decision trees and related
work

Consider a classification problem described through a
vector of predictive attributes A = (a1, a2, ..., am) and
a class attribute C. Each predictive attribute, ai, has a
domain, d(ai) and the domain of the class attribute is
d(C) = {c1, c2, ..., ck}, where k is the number of classes.

To built a decision tree, a set D of training ex-
amples is provided as input to the DT induction al-
gorithm. Training examples are drawn from the joint
distribution P (A, C) of the predictive attributes and
the class attribute. The Cartesian products SA =
d(a1) × d(a2) . . . × d(am) and S(A,C) = SA × d(C) de-
fine the attribute and attribute-class spaces, respectively.
Training examples have thus the form (x, y) ∈ S(A,C),
where x ∈ SA and y ∈ d(C). Let U(A) denote
the uniform distribution over the attribute space and
P (A) =

∑
C P (A, C) denote the marginal distribution

also defined over the attribute space.
Although DT induction is an extensively studied re-

search area, limited work has been done on the problem
of DT comparison and more precisely on the computa-
tion of semantic similarity between DTs; the only no-
table exception is [7]. More recently, several approaches
have been proposed that utilize DT comparison as a
means for dataset comparison, e.g. [3, 5].

Turney [7] presented a framework for evaluating the

stability of a classification algorithm, namely the degree
to which it generates repeatable results, when trained
on different datasets drawn from the joint distribution
P (A, C). To quantify stability, Turney uses a semantic
similarity measure called agreement. The agreement of
two classifiers is defined as the probability of producing
the same prediction over instances drawn from U(A).
Note that, according to Turney, agreement is measured
over instances drawn from U(A) and not from P (A, C);
the underlying reason is that the agreement should
be examined over all possible input worlds. Turney
estimates the agreement of DTs empirically, by applying
them on artificial test sets of instances drawn from the
U(A) distribution.

Recently, several change detection methods have
been proposed that utilize DTs for dataset compari-
son. The intuition behind these approaches is that
the DT models capture interesting characteristics of the
datasets and thus they can be used for similarity assess-
ment between datasets. All the methods in this cate-
gory follow the same rationale: they combine DTs to
induce a “finer” DT structure, and then they compare
the distributions of the two datasets over this (common)
“finer” structure. Below, we describe some representa-
tive approaches in this category.

Ganti et al. [3] propose the FOCUS framework for
measuring the deviation between two datasets D1, D2

in terms of the corresponding decision trees DT1, DT2.
Each DT defines, via its leaf nodes, a set of non-
overlapping regions over the attribute space, whereas
by overlaying the regions of the two DTs a “finer”
structure arises. The authors compute the probability
of each region in the overlay by querying the original
raw datasets. Then, the distance between the two
datasets is computed by aggregating, for each region
in the overlay, the difference in the region probability
estimations between the two datasets.

Wang and Pei [9] quantify changes between two
datasets with class labels using as a common structure
for the comparison a set of random histograms. The in-
stances of the two datasets are projected into this struc-
ture and changes in their distributions are detected.

Recently, Pekerskaya et al. [5] proposed a method
for mining changing regions between two datasets. A
region is characterized as changing if it appears under
different class labels in the two datasets. The authors
extend the traditional DT structure by further splitting
the leaf nodes through clustering. The resulting model
is called cluster-embedded DT and provides a better ap-
proximation of the attribute space probability distri-
bution comparing to the approximation of a (simple)
DT. After extracting the cluster-embedded DT struc-
ture for each dataset, the overlay of the two structures
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is computed and its statistics are estimated without re-
querying the original raw datasets, as in FOCUS [3].
Rather, the authors approximate the measure compo-
nent of each region in the overlay by employing the
statistics of the corresponding cluster-embedded DTs.

Finally, there is a considerable amount of work on
comparing tree structures based on the edit distance,
e.g. [10]. These approaches are based on counting the
number and the cost of edit operations (insert, delete,
update) that are required in order to convert one tree
into the other. They work with symbolic trees where the
nodes are labeled with symbols from a given alphabet.
In DTs, though, the nodes are more complex since
they include conditions over the symbols-attributes and
furthermore, each DT path is assigned a weight based
on the number of instances that follow that path.

3 The similarity estimation framework

A decision tree DT induced from a dataset D partitions
the attribute space into a set of non-overlapping regions
RDT = {ri, i = 1 . . . |RDT |}, via its leaf nodes. The
partition RDT can be considered as an approximation
of the joint attribute-class probability distribution in
the form of a histogram (Section 3.1). Each bin of
the histogram corresponds to a region of the partition
and respectively, to a leaf node of the decision tree.
A bin-region is defined by the tests on the predictive
attributes encountered on the path from the root to the
leaf node associated with that region. The frequencies
of a given bin are the class counts of the instances that
belong to the given bin. Different decision trees result
in different partitions; in Section 3.2 we show how to
derive the overlay partition of two decision trees and
how to estimate its statistics depending on whether we
have access to the original raw datasets or not. Based
on the overlay partition, we define various similarity
measures for decision trees and classification datasets
(Section 3.3).

3.1 Decision tree partitions Each region r ∈ RDT

is characterized by a structure and a measure compo-
nent that are directly derived from the decision tree.

The structure component of the region is defined as
the conjunction of the test conditions on the attributes
along the corresponding tree path from the root to the
leaf node associated with that region:

r.s := {∧t(ai), i = 1 . . .m}
Test conditions are usually numeric and can be ex-
pressed in the form t(a) := mina(r) ≤ a ≤ maxa(r)
denoting the min and max values of attribute a in re-
gion r. Let us also define the length of a test condition
on a as: |t(a)| := maxa(r) − mina(r) and the length of

the domain of a as: |dom(a)| := maxa −mina. Note
here that, if an attribute a is not included in the struc-
ture component r.s of a leaf node, i.e., no test on that
attribute has been included in the path from the root
to the leaf node during the training phase, then the test
condition on that attribute is t(a) := mina ≤ a ≤ maxa,
i.e., a can take any value from its domain. Thus, the
structure component of a region contains test conditions
over all (i.e., m) predictive attributes of the problem.

The measure component of a region is defined as the
number of training instances that fall into this region for
each class, and it depends on the training set D:

r.mD := [nc1 , nc2 , . . . , nck
](3.1)

where nci , i = 1 . . . k is the number of instances that
fall into region r and belong to class ci. The size
of the measure component is: |r.mD| =

∑
1≤i≤k nci

and the class r.cl assigned to the region r is given by:
r.cl = argmaxci r.mD.

The probability of a region represents the probabil-
ity that some instance of the problem will follow the
corresponding DT path. Formally, this probability is
given by: P (r) =

∫
r
P (A)dA, where P (A) is the proba-

bility density function of the instances. However, since
we do not have access to the exact form of P (A), we
should use the data to estimate it. More specifically, if
we consider the dataset D used for the construction of
the DT , we can make a dataset dependent estimation
of P (r) as follows 1 :

PD(r) =
|r.mD|

ND
(3.2)

This estimation is simply the percentage of the training
set instances that fall in region r. The vector:

PD(A) = [PD(ri)|ri ∈ RDT ](3.3)

is an approximation of P (A), from the dataset D.
Except for P (A), we can also approximate P (A, C)

by exploiting the measure component of the regions,
which describe the distribution of training set instances
within the different problem classes. The matrix:

PD(A,C) = [
ri.mD

ND
|ri ∈ RDT ](3.4)

in which each row corresponds to a region ri ∈ RDT and
each column to a class cj ∈ C, is an approximation of
the joint distribution, P (A, C) from the dataset D.

1We denote the actual distribution by P and its estimation by
P.
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Furthermore, the measure component can provide
us with an estimation of the conditional probability of
the classes given the region r:

PD(C|ri) =
ri.mD

|ri.mD|(3.5)

Then, the estimate of the attributes conditional
distribution of the class is the matrix:

PD(C|A) = [PD(C|ri)|ri ∈ RDT ](3.6)

where each cell of the matrix corresponds to the prob-
ability of observing a specific region under a specific
class.

3.2 Decision tree partitions overlay Let RDT1

and RDT2 be the partitions defined by the decision
trees DT1 and DT2, respectively. Overlaying the two
partitions, a finer partition RDT1×DT2 arises, where
each region r in it is the result of overlaying some
region ri ∈ RDT1 with some region rj ∈ RDT2 , that
is r = ri ∩ rj . The goal is to estimate the region
probability P (r) and the region-class probability P (r, c)
for each region r ∈ RDT1×DT2 and each class c ∈ C. To
this end, we rely on the observation that each region
r in the overlay is also a hyperectangle and thus it
can be described through a structure and a measure
component.

3.2.1 Structure component of the overlay re-
gions The structure component of the overlay region
ri ∩ rj is easily defined through the intersections of the
DT regions that participate in its formation:

ri ∩ rj .s := {∧t(ai), i = 1 . . .m}
t(a) := min

a
(ri ∩ rj) ≤ a ≤ max

a
(ri ∩ rj)

min
a

(ri ∩ rj) := max(min
a

(ri), min
a

(rj))

max
a

(ri ∩ rj) := min(max
a

(ri), max
a

(rj))

If maxa(ri∩rj) ≤ mina(ri∩rj), the overlay region ri∩rj

is not defined since the regions are disjoint.

3.2.2 Measure component of the overlay re-
gions The estimation of the measure component of
ri ∩ rj is dataset dependent; the obvious choices for the
dataset are D1, D2 and D1 ∪ D2. However, even if we
do not have anymore access to any of these datasets, we
can still estimate the measure component of the overlay
regions based on the measure components of the regions
of the original partitions RDT1 and RDT2 .
Data dependent probability estimation: If we
have access to the original raw datasets, we can get

the exact measure component of the overlay regions by
simply projecting each dataset D ∈ {D1, D2, D1 ∪ D2}
on RDT1×DT2 . That is:

ri ∩ rj.mD = [n′
c1

, . . . , n′
ck

],(3.7)
where n′

ci
= |{(x, ci)}|,

x ∈ ri ∩ rj ,x ∈ D

which simply gives us the number of training instances
that fall within the ri ∩ rj region for the D dataset for
each of the problem classes.
Pattern dependent probability estimation: Even
if we do not have access to the original raw datasets, we
can still make an estimation of the expected measure
for each region ri ∩ rj ∈ RDT1×DT2 using the measure
components of the original regions ri ∈ RDT1 and
rj ∈ RDT2 (which are derived directly from the DTs).
The expected measure of ri ∩ rj according to D1 is:

ri ∩ rj.mD1 = ri.mD1

V (ri ∩ rj)
V (ri)

(3.8)

where the term V (ri∩rj)
V (ri)

represents the relative volume
of the intersection region ri ∩ rj with respect to the
volume of the region ri. Since the regions established
by a DT are axis parallel hyper-rectangles it holds that:

V (r) =
∏

ai

|t(ai)|
|dom(ai)|

where the term |t(ai)|
|dom(ai)| represents the relative impor-

tance of attribute ai in region r. If we assume a uniform
distribution U(A) of the instances over the attribute
space then V (r) = P (r). In Equation 3.8, though, we
adopt an intermediate assumption, namely that the D1

instances are uniformly distributed within the region ri

of RDT1 , instead of being uniformly distributed within
the whole attribute space. As in Equation 3.8, the ex-
pected measure of ri ∩ rj according to D2 is:

ri ∩ rj.mD2 = rj.mD2

V (ri ∩ rj)
V (rj)

(3.9)

Finally, if we assume that the two datasets come from
the same distribution P (A), we can get the expected
measure of ri ∩ rj according to the union, D1 ∪ D2:

ri ∩ rj.mD1∪D2 = ri ∩ rj.mD1 + ri ∩ rj.mD2

So far, we have shown how we can estimate
the probabilities of the overlay regions depending on
whether we have access to the original raw datasets or
not. As with the single DT partition case (c.f. Sec-
tion 3.1), we can use these estimations to approximate
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the distributions P (A), P (A, C), P (C|A). Depending
on which dataset, D ∈ {D1, D2, D1 ∪ D2}, we use to
calculate the measures of the overlay regions, we get
the corresponding estimations of PD(A),PD(A,C) and
PD(C|A) under the RDT1×DT2 partition. To distin-
guish between the case where the measure components
are computed by accessing the original raw datasets
(Equation 3.7) or under the uniform region distribution
assumption (Equations 3.8, 3.9), we use the superscripts
Q and U respectively.

3.3 Similarity measures on decision trees and
datasets In the previous section we described methods
for the estimation of PD(A),PD(A,C) and PD(C|A)
under the RDT1×DT2 partition and for the different
datasets D ∈ {D1, D2, D1 ∪ D2}. These estimations
can be used to compute similarities between either DTs
or datasets.

Before we proceed with the definition of the actual
similarity measures, we first provide a similarity func-
tion between histograms, since all our estimations come
in the form of histograms. Let P, Q be the probability
density estimations for a random variable X from two
different populations, in the form of histograms. We as-
sume that P and Q are defined over the same bins. The
affinity coefficient between P and Q is given by:

s(P, Q) =
∑

i

√
PiQi

Based on the affinity coefficient and the different
overlay partition statistics, we can now define a number
of similarity measures between DTs and datasets:

Case a: We can measure the similarity of two datasets
D1, D2 with respect to their attribute space probability
distributions PD1(A), PD2(A) by directly computing
their affinity coefficient:

s(PD1(A),PD2(A))(3.10)

This similarity measure can be used to determine if the
two datasets were generated from the same distribution
P (A). The estimations PDi

(A), i = {1, 2} can be
either PQ

Di
(A) or PU

Di
(A) depending on whether raw

data access is allowed or not.

Case b: We can measure the similarity of two DTs
DT1, DT2 with respect to their predictions. This is
a measure of their semantic similarity, i.e., how similar
are the concepts described by the DTs, and corresponds
to the percentage of times that they produce the same
predictions on instances drawn from a given attribute
space distribution.

We first define the vector:

I(C|A) = [I(ri.cl, rj.cl)|ri ∩ rj ∈ RDT1×DT2 ]

which indicates whether the two DTs agree or disagree
in their predictions over the regions of the overlay
partition RDT1×DT2 . I(ri.cl, rj .cl) returns 1 if the
predictions of the two DTs regarding the region ri ∩ rj

are the same, i.e., ri.cl = rj .cl, otherwise it returns 0.
The inner product 2:

S(DT1, DT2) = I(C|A)′P(A)(3.11)

computes the similarity in the predictions of DT1, DT2

under the P (A) distribution. The similarity score equals
to the sum of probabilities of the ri∩rj regions for which
the trees agree in their predictions.

One issue that rises here is which estimation of P (A)
we should employ. Possible choices include:

• the uniform distribution, U(A). In this case the
agreement will be examined over all possible input
worlds. Under this assumption, the probability of
a region ri ∪ rj is given by its hyper-volume. Thus,
the similarity between two DTs equals to the total
volume of the regions in which the two DTs agree in
their predictions. In this case, Equation 3.11 gives,
in a closed form, the semantic similarity between
the two DTs as it was defined by Turney [7]. Note
however that, in contrast to [7], we do not require
for this estimation the generation of an artificial
test set drawn from U(A).

• a dataset dependent distribution PD(A), where D
can be one of the D1, D2 and D1 ∪ D2 datasets.
In this case, instances are assumed to follow the
distribution of the dataset D ∈ {D1, D2, D1 ∪D2}.
The union, D1∪D2, is the most appropriate choice
if the trees are generated from datasets following
the same distribution and we are interested in
evaluating their similarity under that distribution.

• finally, P (A) might be a distribution that is differ-
ent from the distributions that govern the training
sets.

Case c: We can also measure the similarity of two
datasets with respect to the attribute conditional proba-
bility distribution of the class attribute P (C|A) that the
DTs, which were induced from these datasets, impose
over the attribute space. We first define the vector:

S(C|A) =
[s(PD1(C|A)[ri, ],PD2(C|A)[rj , ])|

ri ∩ rj ∈ RDT1×DT2 ]

2We denote by X′ the inverse of matrix X.
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S(C|A) has the same structure as I(C|A), but the
0/1 similarity function I(., .) has been replaced by
s(., .), which computes the similarity of the attribute
conditional class distributions of the ri ∩ rj region in
the D1 and D2 datasets. The inner product:

S(D1, D2) = S(C|A)′P(A)(3.12)

provides a measure of the similarity of the two datasets
with respect to their attribute conditional class distri-
butions under an attribute space that follows the P (A)
distribution.

Note here that this measure is similar to the mea-
sure that is used in [5] to rank the changing regions
between two datasets. In fact, their approach is equiv-
alent to introducing a distance measure of the form:

D(D1, D2) = D(C|A)′P(A)

where D(C|A) has the same structure as S(C|A) but the
similarity function is replaced by the Euclidean distance
and P (A) is approximated by:

P(A) =
1
2
(PD1(A) + PD2(A))

However, the authors in [5] do not go as far as to
define the D(D1, D2). They rather define the product
of D(C|A) and P (A), i.e., the vector consisting of
the pairwise products of the coordinates of the two
vectors, and use that in order to rank regions accord-
ing to their level of change from one dataset to the other.

Case d: Finally, we can measure the similarity of the
joint attribute-class probability distribution of the two
datasets PD1(A, C), PD2(A, C) by simply applying the
affinity coefficient:

s(PD1(A,C),PD2(A,C))(3.13)

PDi
(A,C) is the estimation of PDi(A, C) under the

overlay partition. Note here that if the two datasets
came from the same P (A) distribution then it can
be easily shown that this measure is equivalent to
S(D1, D2) given in Equation 3.12. In fact this is
the approach that was followed by FOCUS [3] for
measuring dataset deviation. The difference lies in the
fact that, instead of the affinity coefficient, FOCUS
employs a difference function f (e.g. absolute or relative
difference) to compute the measure similarity within
each region and an aggregation function g (e.g. sum
or max) to aggregate the scores of the overlay regions
into an overall score.

In this section, we presented a general framework
for similarity estimation between either DTs or datasets.

Under this framework, we can estimate the similarities
of classification datasets with respect to a number of
probability distributions: i) the attribute space distri-
bution P (A) (Equation 3.10), ii) the class attribute con-
ditional distribution P (C|A) (Equation 3.12) and iii)
the joint attribute-class distributions P (A, C) (Equa-
tion 3.13). We can also use this framework in or-
der to estimate the semantic similarity of DTs (Equa-
tion 3.11) under different assumptions for the attribute
space probability distribution. It is this direction that
we are going to explore and evaluate in more detail in
the next section.

4 Evaluation of the proposed similarity
measure on decision trees

The semantic similarity of any two classification models
M1, M2 is defined as the fraction of times that the two
models produce the same predictions over instances gen-
erated from a given attribute space probability distri-
bution P (A). As already mentioned, Turney [7] defined
a semantic similarity measure for classification models,
called agreement, as the probability that they will pro-
duce the same predictions over all possible instances
drawn from the uniform distribution on the attribute
space, U(A). Turney estimates the agreement between
two classification models empirically, by applying both
of them on a test set DH of instances drawn from the
U(A) distribution, and computing the percentage of
times that they produce the same predictions. The ar-
gument for employing U(A), instead of the distribution
P (A) that generated the data, was that the agreement
of two concepts should be examined in all possible input
worlds. Contrary, we argue that in a real world applica-
tion what is more important is not the similarity of the
DTs in all possible worlds, but rather similarity in the
world in which the data exist. So, unlike [7], in order
to estimate the semantic similarity, we draw the DH

dataset from P (A), the distribution that governs the
attribute space. We denote by SH(DT1, DT2) the se-
mantic similarity between DT1 and DT2; this similarity
is empirically estimated on the DH dataset by applying
the two DTs on DH and computing the number of times
that they produce the same predictions. SH(DT1, DT2)
provides the ground truth to which we will compare the
proposed DT semantic similarity measures.

4.1 Datasets We experimented with six different
datasets, a short description of which is given in Ta-
ble 1. The different mfeat datasets are versions of the
same pattern recognition problem in which the goal is
to classify handwritten numerals. The versions corre-
spond to different features used to describe the numer-
als: in mfeat-factors, attributes are profile correlations,
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dataset # inst # attrs # classes
mfeat-factors 2,000 21 10
mfeat-fourier 2,000 76 10
mfeat-karhunen 2,000 64 10
mfeat-zernike 2,000 47 10
segment-challenge 2310 19 7
waveform-5000 5,000 40 3

Table 1: Description of datasets.

in mfeat-zernike zernike moments, in mfeat-karhunen
Karnhunen-Love coefficients and in mfeat-fourier fourier
coefficients of the character shapes [4]. Waveform-5000
is an artificial dataset where classes correspond to dif-
ferent types of waves [2]. In the segment-challenge
dataset, [8], features are high level descriptors of regions
of images and the goal is to classify each region to the
correct class, e.g. sky, grass.

4.2 Experimental setup We need a systematic way
to generate DTs that exhibit varying degrees of semantic
similarity. To this end, we randomly divide a given
dataset D in two parts, a training set DT used during
the model construction phase, and a test set DH used
as the hold out set for the computation of SH (|DH | =
1
3 |D|). Then, we create random sub-samples of the DT

of size p (p = 5% . . . 95%) with a step of 5%. On each
sub-sample DTp, a decision tree is trained and compared
to the DT that was created on the complete training
set, DT100. Then, we compute the semantic similarity
between the complete DT and the sampled one, i.e.,
SH(DTp, DT100), on the hold out set DH .

First of all, we should verify that the procedure
we employed for the generation of the different DTs
DTp indeed results in trees that exhibit varying levels
of semantic similarity with respect to DT100. We
expect SH(DTp, DT100) to increase as p increases and
approaches 100%, since the training set Dp used in the
construction of DTp becomes more and more similar to
the training set D100 used in the construction of DT100.
This is indeed the case as one can see in Figure 1, where
we plot SH as a function of the sampling size p; there
is a smooth increase in the values of SH as p increases
towards 100%.

4.3 Evaluating semantic similarity The goal of
the experimental evaluation that we present in this sec-
tion is to examine how the different semantic similarity
measures that we propose correlate with SH .

The DT semantic similarity measure S(DT1, DT2)
that we propose (Equation 3.11) depends on the estima-
tion of the P (A) distribution that governs the attribute.
In fact, the computation of similarity makes sense for a

0 20 40 60 80 100
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mfeat−factors
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segment−challenge
waveform−5000

Figure 1: Evolution of SH(DTp, DT100)

given world, in which a specific distribution P (A) holds
for the attribute space. Then, S(DT1, DT2) is simply
the sum of the probability densities, under the chosen
P (A), of the ri ∩rj regions in which the two DTs agree.
As already mentioned, under the uniform distribution
assumption this sum equals to the sum of the hypervol-
umes of these regions. Moreover, under that assump-
tion, S(DT1, DT2) provides the semantic similarity of
Turney [7] without having to apply the learned models
on the hold out set. We will not further examine the
uniform assumption as a possible estimation for P (A).
Instead, we will experiment with three different instan-
tiations of S(DT1, DT 2) that differ with respect to the
estimation of P (A) they employ. In particular, we will
investigate the following estimations for P (A):

• P U
D1∪D2

: this is the estimation of P (A) that we
get when the measure components are computed
under the uniform region distribution assumption,
as in Equations 3.8, 3.9.

• PQ
D1∪D2

: this is the estimation of P (A) that we
get when the measure components are computed
from the direct application of the overlay partition
RDTp×DT100 on the Dp and D100 datasets.

• PQ
H : this is the estimation of P (A) that we get

from the direct application of the overlay partition
RDTp×DT100 on the hold out set DH .

Each of these estimations, PY
X , of P(A) results in a

different instantiation of S(DT1, DT2) which we denote
by SP Y

X
(DT1, DT2). We should note that the order in

which the different P Y
X are listed reflects an increasing

amount of knowledge about the P (A) distribution that
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Figure 2: Evolution of the DTs semantic similarity measures with the sampling rate (first column) and with SH

(second column) for datasets: mfeat-factors (top), mfeat-karhunen (middle), mfeat-zernike (bottom)
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governs the computation of the semantic similarity SH ,
which we use in order to evaluate the proposed sim-
ilarity measures. PU

D1∪D2
assumes the least knowledge

about P (A); to estimate the measure components of the
overlay tree, it only relies on the analysis of the struc-
tures of the respective DTs, under the assumption of
a uniform within region distribution. PQ

D1∪D2
requires

querying D1 and D2 in order to estimate the measure
components of the overlay tree; as a result, its estima-
tion of P (A) is more precise than the one provided by
PU

D1∪D2
. Finally, PQ

H has complete knowledge of P (A),
as this knowledge underlies in the DH dataset, since we
derive it by querying DH . As a result, SP Q

H
(DT1, DT2) is

expected to correlate perfectly with SH . In that sense,
SP Q

H
represents the ideal behavior that we get when we

have knowledge of the true P (A).
For each SP Y

X
(DTp, DT100), we show how its value

varies with respect to the sample size p, in the first
column of Figures 2, 3. All the measures exhibit
a similar pattern; similarity increases as p increases.
More particular, SP Q

D1∪D2
and SP Q

H
have a very regular

behavior, with an almost steady increase of values and
small fluctuations. In case of the SP U

D1∪D2
similarity,

the trend is also increasing but here the fluctuations
can be considerably larger, as it happens in the mfeat-
zernike, mfeat-factors, segment-challenge, mfeat-fourier
datasets. SP Q

D1∪D2
is constantly overestimating DT

similarity compared to SP Q
H

, while SP U
D1∪D2

considerably
underestimates it; recall here that SP Q

H
reflects the ideal

behavior.
In the second column of Figures 2, 3, we see how the

three different versions of SP Y
X

(DTp, DT100) correlate
with the actual evaluation measure SH(DTp, DT100).
As it was expected, SP Q

H
correlates perfectly since its

estimation of P (A) is taken from the DH dataset on
which SH(DTp, DT100) is computed. Consequently,
SP Q

D1∪D2
is constantly overestimating SH(DTp, DT100),

while SP U
D1∪D2

is considerably underestimating it. The
performance of SP Q

D1∪D2
is quite close to the ideal

performance of SP Q
H

with the most notable cases being
segment-challenge and mfeat-factors, while the highest
discrepancy appears in the case of mfeat-karhunen.
Note here that datasets Dp, DT and DH are all drawn
from the same P (A) distribution. The discrepancy
between the behavior of SP Q

D1∪D2
and SP Q

H
can be

explained by the inaccuracy in the sampling procedure.
As the number of instances increases, the behaviors of
SP Q

D1∪D2
and SP Q

H
will converge since the estimations of

P (A) that the two methods employ will also converge.
Alternatively, if we use repeated sampling over the

DH , DT and Dp datasets and subsequently average
over the different samples, the two measures would also
converge. On the other hand, the behavior of SP U

D1∪D2

will be similar to that of SP Q
H

only to the level that
the assumption of a within region uniform distribution
is a valid assumption for the P (A) governing DH ;
nevertheless, as it is apparent for the datasets we
have considered here, this is far from being a valid
assumption.

4.3.1 Quantitative analysis of the measures
In order to quantify the behavior of each of the
SP Y

X
(DTp, DT100) we computed their Pearson correla-

tion coefficient with SH(DTp, DT100). The results are
depicted in Table 2, where it seems that SP Q

D1∪D2
ex-

hibits a very strong correlation with SH(DTp, DT100).
For most of the datasets, the correlation is higher than
0.9, with the notable exception of waveform-5000 for
which a low correlation coefficient is recorded. SP U

D1∪D2

has also a strong correlation with SH(DTp, DT100) al-
though not as strong as SP Q

D1∪D2
, again with the remark-

able exception of waveform-5000 for which it exhibits
its highest correlation value.

The Pearson correlation coefficient is an estimate
of the linear correlation of two values, nevertheless it
does not indicate how good predictor one variable is
for the other. This is especially true in our case,
since the pattern of linear correlation of any given
SP Y

X
(DTp, DT100) with SH(DTp, DT100) changes from

dataset to dataset as it is obvious from Figures 2, 3.
In order to estimate the predictive value of the various
SP Y

X
(DTp, DT100) with respect to SH(DTp, DT100), we

compute their Mean Absolute Deviation (MAD). The
MAD of two variables a and b for which we have N
paired observations is given by:

MAD(a, b) =
N∑

i

|ai − bi|
N

,

The MAD results are given in Table 3. These results
indicate the good predictive performance of SP Q

D1∪D2
, its

average error (MAD) in predicting SH(DTp, DT100) is
0.1. The performance of SP U

D1∪D2
is considerably worse,

its average MAD is roughly 0.3.
The goal of the current section was to compare and

evaluate a number of different instantiations of a DT
semantic similarity measure. The different instantia-
tions are the result of different assumptions or differ-
ent ways of estimating the attribute space distribution
under which the semantic similarity computation will
take place. In fact, the semantic similarity computa-
tion of two DTs makes sense if we can assume a specific
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Figure 3: Evolution of the DTs semantic similarity measures with the sampling rate (first column) and with SH

(second column) for datasets: mfeat-fourier (top), segment-challenge (middle), waveform-5000 (bottom)
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dataset SP U
D1∪D2

SP Q
D1∪D2

SP Q
H

mfeat-factors 0.692 0.971 0.993
mfeat-fourier 0.852 0.927 0.999
mfeat-karhunen 0.858 0.910 0.999
mfeat-zernike 0.869 0.911 0.987
segment-challenge 0.831 0.951 0.986
waveform-5000 0.969 0.712 0.998

Table 2: Correlation coefficient of SP Y
X

(DTp, DT100)
with SH(DTp, DT100)

dataset SP U
D1∪D2

SP Q
D1∪D2

SP Q
H

mfeat-factors 0.504 0.063 0.014
mfeat-fourier 0.301 0.114 0.015
mfeat-karhunen 0.279 0.158 0.013
mfeat-zernike 0.316 0.108 0.022
segment-challenge 0.289 0.016 0.005
waveform-5000 0.120 0.140 0.003
Average 0.302 0.1 0.012

Table 3: Mean absolute deviation of SP Y
X

(DTp, DT100)
with SH(DTp, DT100)

probability distribution P (A) governing the attribute
space. The overlayed tree provides a partition of the
full attribute space, the agreement or disagreement of
the two decision trees in a given segment of that parti-
tion is more or less important depending on the density
of that region under P (A). If, for example, the two
DTs disagree on a given region this is not going to af-
fect their similarity, even if the volume of the region is
large, as far as the probability density of that region
under P (A) is zero. Alternatively, if we do not want
to assume a specific attribute space distribution and we
want to compute similarity under all possible worlds we
should make the assumption of a uniform distribution
on the attribute space, a case that is also covered by our
framework.

In order to evaluate our semantic similarity mea-
sures, we used the semantic similarity empirically es-
timated on a separate hold-out set. The performance
of the different instantiations of the semantic similar-
ity measures depends on how different was the estima-
tion of P (A) used in them from the P (A) governing
the hold-out set, on which the semantic similarity was
computed. In fact, the choice of the appropriate P (A)
should be done based on the knowledge of the appli-
cation domain. If we know that our learning problem
is governed by a specific P (A), then it is that P (A)
that should be “plugged” in the DT similarity measure.
Alternatively, if no such knowledge exists, we can esti-
mate P (A) from the datasets from which the DTs were

constructed, as it was done in the SP Q
D1∪D2

semantic

similarity measure.

5 Conclusions and Future Work
In this paper we presented a general framework for the
estimation of similarities between DTs and datasets,
within a classification problem setting. We employ the
DT models in order to compute either their semantic
similarity or the similarity of the datasets that were
used for their induction. The DT similarity is computed
in terms of the agreement of the class predictions they
return over the attribute space and, it corresponds
to the DT semantic similarity. The computation of
dataset similarity can be done on the basis of their
attribute space probability distribution P (A), their
attribute-class joint probability distribution P (A, C) or
their attribute conditional class probability distribution
P (C|A). All the above comprise special cases of our
framework.

Previous efforts have focused on comparing
datasets, either with respect to P (A, C) [3], or with re-
spect to P (C|A) [5]. On the other hand, in this paper,
we focused on the estimation of the semantic similarity
between DTs, i.e., the degree to which the DTs agree in
their predictions over the attribute space. To the best
of our knowledge, this is the first work towards this aim.
The critical point in the computation of the DT simi-
larity is the selection of an appropriate attribute space
probability distribution P (A) under which the compu-
tation will take place. This choice reflects our belief
about the real world on which the DTs would be ap-
plied. If no prior knowledge exists, we could simply
select the uniform distribution U(A) for P (A) and thus
we would examine the DT similarity over all possible
input worlds.

We experimented with different ways of estimating
the attribute space probability distribution P (A) and
we compared the resulting instantiations of the DT
semantic similarity measure with the actual semantic
similarity, as this was established by the application of
the DTs on an independent hold-out set. Depending on
the knowledge we have about the P (A) distribution that
governs the independent hold-out set, the computed DT
semantic similarity is a more or less good predictor of
the actual semantic similarity. More specifically, when
P (A) is computed by querying the actual datasets, the
corresponding DT similarity SP Q

D1∪D2
is a very good

predictor of the true semantic similarity. Actually, we
expect the value of SP Q

D1∪D2
to converge to the real value

of the semantic similarity as the size of the datasets
increases, since the estimated P (A) will converge to the
true P (A).
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We believe that the greatest contribution of a DT
semantic similarity measure is the potential that it of-
fers to determine whether the observed differences are
simply superficial structural differences or they reflect
real semantic differences on the described concepts, and
moreover, to quantify these differences - this is a prob-
lem that “deplores” DTs due to their high sensitivity to
training dataset changes.

The provision of a semantic similarity measure for
classification models, here decision trees, allows us to
perform a number of standard mining tasks that are
based on similarity/distance measures, not on the raw
data anymore, but rather on the classification models
extracted from these raw data, i.e., meta–mining. For
example, using the semantic similarity measure we can
cluster DTs and compute a representative DT for each
cluster. A typical application of that could be the
simplification of ensembles of decision trees, such as the
ones produced by boosting, bagging and random forests,
where only the prototype decision tree of each cluster
is retained. Another alternative to the simplification of
DT ensembles, that does not make use of the semantic
similarity measure, is the construction of the overlayed
tree from all the component DTs of the ensemble. Each
region of the overlayed tree will be labeled according to
the labels of the corresponding regions of the original
trees. The overlayed tree will have the same predictive
power as the ensemble, since it will make exactly the
same predictions, however its partitions will be much
finer than the partitions of the original trees thus having
a larger complexity than its constituents. Nevertheless,
it is possible to simplify the overlayed DT by applying
standard pruning techniques. The apparent advantage
of having a single DT, or a small set of DTs, instead
of the full ensemble is the much easier interpretation of
the learned model.

Also, in the ensemble research, a lot of work has
been done on measuring the diversity of the base
classifiers, since accuracy improvement can be achieved
only if the base classifiers are sufficiently diverse ([1],
[6]). Several measures have been proposed in order to
estimate deviation, e.g., error correlation. The proposed
semantic similarity measure could be also employed
towards this aim.

The idea of a representative DT for a set of DTs
could be also useful in a classification error estimation
scenario. Typically, in error estimation a re-sampling
technique is applied resulting in a number of different
models, the final result is an estimation of the classi-
fication performance of the algorithm and not that of
a single tree. The question is which model to choose
among the different models that were produced; one so-
lution would be to choose the median model, i.e., the

one that abstains the smaller distance from all the other
models.

Finally, there are several extensions/ improvements
over the basic framework. In the current version, we
restrict on continuous predictive attributes, however
categorical attributes should be also considered. Also,
in case of the pattern dependent probability estimation
(Equations 3.8, 3.9), we adopt the assumption that
instances are uniformly distributed within each region.
We plan to release this assumption by employing some
density approximation technique like histograms.
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