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issue, which can be exploited, among others, to synthetically measure dissimilarities in
evolving or different datasets and to compare the output produced by different data mining
algorithms on a same dataset. In this paper, we present the Panpa framework for computing
the dissimilarity of both simple and complex patterns, defined upon raw data and other pat-
terns, respectively. In Panpa the problem of comparing complex patterns is decomposed
Pattern comparison into .simpler _sub—pro_blems on the component (simpl_e or complex) .paFte.rns. and so-
Pattern base management systems obtained partial solutions are then smartly aggregated into an overall dissimilarity score.
Data models This intrinsically recursive approach grants Panpa with a high flexibility and allows it to
Knowledge discovery easily handle patterns with highly complex structures. Panpa is built upon a few basic con-
cepts so as to be generic and clear to the end user. We demonstrate the generality and flex-
ibility of Panpa by showing how it can be easily applied to a variety of pattern types,
including sets of itemsets and clusterings.
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1. Introduction

A huge amount of heterogeneous data is collected nowadays from a variety of data sources (e.g., business, health care,
telecommunication, science). The storage rate of these data collections is growing at a phenomenal rate (over 1 exabyte
per year, according to a recent survey [1]). Due to their quantity and complexity it is impossible for humans to thoroughly
investigate these data collections through a manual process. Knowledge discovery in data (KDD) tries to solve this problem
by discovering hidden information using data mining (DM) techniques. DM results, called patterns, constitute compact and
rich in semantics representations of raw data [2]. Well-known examples of patterns are decision trees, clusterings, and fre-
quent itemsets. Patterns reduce the complexity and size of data collections, while preserving most of the information of the
original raw data; the degree of preservation, however, strongly depends on the parameters of the DM algorithms used for
their extraction.

The wide spreading of DM technology makes the problem of efficiently managing patterns an important research issue.
Ideally, patterns should be treated by pattern management systems as “first-class citizens”, in the same fashion that raw data
are treated by traditional database management systems. Along this line of research some interesting results, mainly con-
centrated on representation and querying issues, have been obtained [2,3]. In this paper, we address the relevant issue of
pattern comparison, i.e., how to establish whether two patterns are similar or not. Pattern comparison is valuable in
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monitoring and detecting changes in patterns describing evolving data (e.g., the purchasing behavior of customers over
time), as well as in a number of other scenarios, some of which are sketched in Section 1.1.

A principled approach to pattern comparison needs to address several problems. First, there is a large amount of heter-
ogeneous patterns for which a dissimilarity operator should be defined: since each of these pattern types could have its own
specific requirements on how the dissimilarity should be assessed, it seems almost impossible (and possibly meaningless) to
define a “universal” dissimilarity measure. Second, besides patterns defined over raw data (hereafter called simple patterns),
there also exist patterns defined upon other patterns, e.g., a cluster of frequent itemsets, an association rule of clusters, a
forest of decision trees, etc. For these patterns, hereafter called complex patterns, dissimilarity operators should also be de-
fined: how these are related to the corresponding ones defined for component patterns needs to be addressed. Third, one
should consider that two patterns can be more or less similar both in the data they represent and in the way they represent
such data. For instance, two clusters might differ either because of their “shape” or because of the amount of raw data they
summarize (or because of both).

Given the above, we can state a series of high-level methodological requirements that a framework for dissimilarity
assessment should satisfy:

General applicability: The framework should be applicable to arbitrary types of patterns.

Flexibility: The framework should allow for the definition of alternative dissimilarity functions, even for the same pattern
type. Indeed, the end user should be able to easily adjust the dissimilarity criterion to her specific needs.

Simplicity: The framework should be built upon a few basic concepts, so as to be understandable to the end user.
Efficiency: It should be possible to define the dissimilarity between patterns without the need of accessing the underlying
raw data. This requirement also encompasses privacy issues, e.g., when raw data are not publicly available.

The framework we propose, called Panpa,! addresses above requirements as follows. Generality is achieved by considering
that patterns can be (recursively) defined by means of a set of type constructors. To gain the necessary flexibility in defining
dissimilarity operators, Panpa adopts a modular approach. In particular, the problem of comparing complex patterns is reduced
to the one of comparing the corresponding sets (or lists, etc.) of component (simpler) patterns. Component patterns are first
paired (using a specific matching type) and their scores are then aggregated (through some aggregation function) so as to obtain
the overall dissimilarity score. This recursive definition of dissimilarity allows highly complex patterns to be easily handled and,
due to modularity, to change any component with an alternative one. To address the requirement of simplicity, Panpa adopts a
consistent approach to model patterns, which are viewed as entities composed of two parts: the structure component identifies
“interesting” regions in the attribute space, e.g., the head and the body of an association rule, whereas the measure component
describes how the pattern is related to the underlying raw data, e.g., the support and the confidence of the rule. When compar-
ing two simple patterns, the dissimilarity of their structure components (hereafter, structure dissimilarity) and the dissimilarity
of their measure components (hereafter, measure dissimilarity) are combined (through some combining function) in order to de-
rive the total dissimilarity score. Finally, considering the efficiency issue, Panpa only works in “pattern space”, i.e., raw data need
not to be accessed to evaluate patterns’ dissimilarity.

It has to be remarked that is not in the Panpa scope the issue of determining the “best” measure for every comparison
problem. Indeed, PanDa represents a conceptual environment within which specific, user- and/or application-dependent, dis-
similarity measures can be framed. Obviously, Panpa is also amenable to act as a software framework, in which case further
advantages are that of favoring the reusability of components and the easy development of user-defined building blocks into
ready-to-use libraries.

1.1. Motivating examples

In this section, we provide some illustrative examples which demonstrate the usefulness of a pattern comparison oper-
ation. A first application is as an alternative to the comparison of raw data collections, e.g., the monthly sales of a supermar-
ket. Approaches which use pattern sets in order to compare the original raw datasets already exist in the literature, e.g. [4,5]:
such approaches are based on the intuition that, since patterns condensate the information existing in the raw data, their
dissimilarity is a (either lossless or lossy) representation of the dissimilarity of the originating data [6]. Defining such a map-
ping between dissimilarity in the raw data space and that in the corresponding pattern space is really useful: if the compar-
ison between patterns does not show substantial differences, it is possible to avoid a thorough (and costly) analysis on the
raw datasets. In the same direction, pattern comparison might be helpful in the distributed database domain to analyze, for
example, differences of data characteristics across distributed datasets (e.g., customer transactions in branches of a super-
market or human reactions to chemical/biological substances). Other applications include pattern base synchronization
(i.e., keeping patterns up to date with respect to the original raw data), versioning support in a pattern management system
(getting a differential backup of the new version or compare versions of the pattern base so as to discover changes and
outliers), the discovery of unexpected or outlier patterns (by comparing them to a target pattern), the evaluation of DM

! Panpa stands for PAtterns for Next-generation DAtabase systems, an acronym used for the IST-2001-33058 project of the European Union, which proposed
and studied the PBMS (Pattern Base Management Systems) concept.
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algorithms (through the comparison of their outcomes), or secure DM where, due to privacy considerations, only patterns
(and not the underlying raw data) are available; in this latter case, the comparison should involve only pattern space char-
acteristics, since connection to raw data is lost.

We conclude this section by describing a few scenarios where similarity between patterns plays an important role.

Example 1. Consider a telecommunication company providing a package of new generation services with respect to
different customer profiles. Let a decision maker of the company request a monthly report depicting the aggregated usage
information of this package as extracted from a data warehouse. Such a report would be far more translatable by the decision
maker, e.g., for target marketing, if it was accompanied by the monthly comparison of the classification of the customer
profiles using such services, as these are portrayed, say, via decision tree models.

Example 2. A spatial DM application analyzes how much the density of population in a town correlates with the number of
car accidents. For privacy reasons, raw data are not available, rather only the distributions of population and car accidents in
the areas of the town can be used. Such distributions cannot only be compared on a per-area basis, because a high correlation
is only detected when the distributions of neighboring areas are compared. The definition of a similarity operator between
distributions should be flexible enough to take such correlation into account.

Example 3. A copy detection system developer has to experiment with different techniques for comparing multimedia doc-
uments, in order to select the most effective one. She is given a feature-based representation of the documents (e.g., list of
keywords with weights for the text, distribution of color for the images), and needs to setup a set of methods that take into
account all such features and return a score assessing how similar two documents are.

The rest of the paper is organized as follows: in Section 2, we describe the pattern model underlying the framework and
introduce two running examples. Section 3 is devoted to explain the basic concepts and mechanisms of the Panpa framework,
whereas Section 4 demonstrates how several comparison measures proposed in the literature can be modeled within the
framework. Further examples are included in Appendix A, together with actual experimental results as obtained from a pro-
totype software implementation described in Section 5. Related work is discussed in Section 6, while Section 7 concludes.?

2. Pattern representation

Our approach to pattern representation builds upon the logical pattern base model proposed in [9]; in the sequel we de-
scribe only the parts of the model relevant to our purposes (for a detailed presentation, please refer to [9]).

The model assumes a set of base types (e.g., Int, Real, Boolean, and String) and a set of type constructors, including list
(<--->),set ({---}), array ([--]), and tuple ((---)). Let us call 7 the set of types including all the base types and all the types
that can be derived from them through repeated application of the type constructors. Types to which a (unique) name is
assigned are called named types. Some examples of types are:

{Int} set of integers
XYPair = (x:Int,y:Int) named tuple type with attributes x and y
<XYPair> list of XYPairs

Definition 1 (Pattern type). A pattern type is a named pair, PT = (SS, MS), where SS is the structure schema and MS is the
measure schema. Both SS and MS are types in .7. A pattern type PT is called complex if its structure schema SS includes another
pattern type, otherwise PT is called simple.

The structure schema SS defines the pattern space by describing the structure of the patterns which are instances of the
particular pattern type. The complexity of the pattern space depends on the expressiveness of the typing system 7. The mea-
sure schema MS describes measures that relate the pattern to the underlying raw data or, more in general, provides quan-
titative information about the pattern itself. It is clear that the measure complexity also depends exclusively on 7.

A pattern is an instance of a pattern type, thus it instantiates both the structure and the measure schemas. Assuming that
each base type B is associated with a set of values dom(B), it is immediate to define values for any type in 7.

Definition 2 (Pattern). Let PT = (SS, MS) be a pattern type. A pattern p, instance of PT, is defined as p = (s,m), where p is the
pattern identifier, s (the structure of p, also denoted as p.s) is a value for type SS, p.s € dom(SS), and m (the measure of p, also
denoted as p.m) is a value for type MS, p.m € dom(MS).

Before describing the main concepts of the Panpa framework, we introduce here two running examples that will be used
throughout the paper to show the applicability of our framework to real cases, namely the comparison of clusterings and of
collections of documents. In particular, in the first example, each clustering (set of clusters) represent an image in a

2 This paper extends the concepts introduced in [7,8] by providing a more formal presentation, along with a significant number of new experiments and
examples of application of the framework.
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region-based image retrieval (RBIR) system, where images are retrieved according to their similarity to a provided query im-
age. Experiments on both running examples are detailed in Appendix A.

Example 4 (Clusterings (images)). We illustrate here the case of the Winpsurr image retrieval system [10], which applies a
clustering algorithm on visual characteristics of images so as to divide each image into regions of homogeneous pixels
(clusters), but the behavior of other RBIR systems can be modeled in a similar way. In details, Winpsurr applies a Discrete
Wavelet Transform to each image and the k-means algorithm is used to cluster together pixels sharing common visual
characteristic, like color and texture. Each region is then represented as a cluster using the centroid and the corresponding
covariance matrix for each color channel and wavelet sub-band (details can be found in [10]), while the cluster support (i.e.,
the fraction of image pixels contained in the region) is used as the pattern measure.
In terms of the PanpAa model, each region (simple pattern) is modeled as

Region = (SS: (bands : [(center : [Real]’, cov : [Reall’[)];),MS : (supp : Real)).
Images are then defined as sets of regions (clusters) with no measure:
Image = (SS: {Region},MS:1),

where L denotes the null type.

Example 5 (Collections of documents). The problem of comparing collections of documents is quite common in web mining
where, for example, it is used to find sites selling similar products.

The problem, in its basic form, assumes a collection (set) of textual documents, where each document consists of a set of
keywords. Each keyword k in a document is associated to its (normalized) weight in the document itself (e.g., representing
its frequency using tf /idf measures), and can therefore be modeled as a simple pattern:

Keyword = (SS: (term:String),MS: (weight :Real)).
A possible instance of this type is
p407 = ((term = database), (weight = 0.5)).
Consequently, documents and collections are represented respectively as

Document = (8§ : {Keyword},MS:1),
Collection = (SS:{Document}, MS:L).

3. The Panpa framework

In this section, we provide a framework for assessing the dissimilarity of two patterns, p; and p,, of the same type PT.
From Section 2, it is evident that the complexity of PT can widely vary and is only restricted by the adopted typing system
7.

Our framework is built upon two basic principles:

1. The dissimilarity between two patterns should be evaluated by taking into account both the dissimilarity of their struc-
tures and the dissimilarity of their measures.

2. The dissimilarity between two complex patterns should (recursively) depend on the dissimilarity of their component
patterns.

The first principle is a direct consequence of having allowed for arbitrarily complex structures in patterns. Since the struc-
ture of a complex pattern might include measures of its component patterns, neglecting the structure dissimilarity could
easily result in misleading results. For instance, comparing two Images, as defined in Example 4, obviously needs to take
into account the structure component, since the measure one is empty. Another motivation underlying this principle arises
from the need of building an efficient framework, which does not force accessing the underlying dataset(s) in order to deter-
mine the dissimilarity of two patterns, e.g., in terms of their common instances. To this end, we use all pieces of information
that are available in the pattern space, namely the structural description of the patterns and their quantitative measures with
respect to the underlying raw data.

The second principle provides the necessary flexibility to the Panpa framework. Although, for the case of complex
patterns, one could devise arbitrary models for their comparison, it is useful and, at the same time, sufficient for practical
purposes, to consider solutions that decompose the “difficult” problem of comparing complex patterns into simpler sub-
problems like those of comparing simple patterns, and then “smartly” aggregate the so-obtained partial solutions into an
overall score.

Besides the above principles, it is also sometimes convenient, in order to offer a better and more intuitive interpretation of
the results, to assume that the dissimilarity between two patterns yields a score value, normalized in the [0, 1] range (the
higher the score, the higher the dissimilarity). Unless otherwise stated, we will implicitly make this assumption throughout
the paper.
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We start by describing how the first principle is applied to the basic case of simple patterns, after that we show how to
generalize the framework to the case of complex patterns.

3.1. Dissimilarity between simple patterns
The dissimilarity between two patterns, p, and p,, of a simple pattern type PT is based on three key ingredients:

e a structure dissimilarity function, diS., that evaluates the dissimilarity of the structure components of the two patterns,
p,.s and p,.s,

e a measure dissimilarity function, diSmeqs, used to assess the dissimilarity of the corresponding measure components, p,;.m
and p,.m, and

e a combining function, Comb, also called the combiner, yielding an overall score from the structure and measure dissimilar-
ity scores.

The dissimilarity of two patterns is consequently determined as (see also Fig. 1)

dis(p,,p;) = Comb(diSstruct (P15, P2-S), diSmeas (P11, P2.1M)). (1)

If p; and p, share the same structure, then diSsuct(P;-S,D5-S) = 0. In the general case, in which the patterns have different
structures, two alternatives exist:

1. The structural components are somewhat “compatible”, in which case we interpret diSsuc(P;-S,D,-S) as the “additional
dissimilarity” one wants to charge with respect to the case of identical structures.

2. Structures are completely unrelated (in a sense that depends on the case at hand), i.e., diSsuct(P;-S,D,-S) = 1. In this case,
regardless of the measure dissimilarity, we also require the overall dissimilarity to be maximum, i.e., dis(p;,p,) = 1. This
restriction is enforced to prevent cases where two completely different patterns might be considered somehow similar
due to low differences in their measures.

Example 6. Continuing Example 5, consider two keywords k; = (t;,w;) and k;, = (t;,w,) to be compared. For the structure
dissimilarity function, if the two terms are the same, then diSs;uce(t1,t2) = 0. When t;#t,, if some information about the
semantics of the terms is available, such as a thesaurus or a hierarchical hypernymy/hyponymy ontology, like WordNet [11],
then one could set dissct(t1,t2) < 1 to reflect the “semantic distance” between t; and t, [12]; on the other hand, if no such
information is available, then dissct(t1,t2) = 1. A possible choice for the measure dissimilarity function is the absolute
difference of measures, i.e., diSmeqs (W1, W2) = |W; — w>|. Finally, a possible combiner for this example is, say, the algebraic
disjunction of the two dissimilarities:

dis(ky, kz) = diSstruce (t1, t2) + diSmeas (W1, W2) — QiSstruce (£1, £2) - AiSmeas (W1, W2), (2)
that correctly yields dis(ki, k;) = 1 when diSgee(t1,t2) = 1, and dis(kq, ka) = diSimeqs(W1, W2) when diSgge(t1,t2) = 0.

Example 7. Continuing our other running example (Example 4), Winpsurr uses the Bhattacharyya distance [10] to compare
regions, i.e., clusters structures:

p1.bands|b].cov+p, .bandsb].cov
det( 5

4
diSsiruce (D .5, Py.5)° = 1/2-1
Ssruce (P15 P2-S) ; / n\/det(pl.bands[b}.cov)-det(pz.bands[b].cov)

.bands[b].cov + p,.bands[b].cov\ '
+1/8 <(p1.bands[b}.c — p,.bands[b.c)" - (lh o] 3 P2 5] )
-(py.bandsb].c — pz.bands[b].c)>> ,

where det(-) denotes the determinant of a matrix. The measure dissimilarity is defined as

diSieas(P1-M, P,-M) = |Py.SUPP — P,.SUPP|.

pm

Z; Do.1 dis 04, %v:,m( D11, Py.1)
Comb \— dis(p,, p,)

2
dis ;
Dy-S struct dis,..(D\-5, D,-S5)

Fig. 1. Assessment of dissimilarity between (simple) patterns.
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Finally, the combining function simply averages the two distances.

It has to be observed that, in several cases, patterns have no measure at all; for instance, sets of strings have type:
Set = (SS: {String}, MS:1). In this case the assessed dissimilarity will depend only on how much the structural compo-
nents of the patterns differ, i.e., dis(p,,p,) = diSstruce (D1 -S, D2-S)-

It has to be remarked that our framework does not preclude the possibility of defining different dissyct, diSmeqss and Comb
functions for each pattern type of interest. Rather, the functions best suited to the case at hand should be chosen, possibly
depending on specific user’s needs, e.g., to focus the comparison only on some patterns’ properties, to trade-off accuracy for
computational costs, etc. (see also Section 5).

3.2. Dissimilarity between complex patterns

Although in line of principle one could define simple patterns with arbitrarily complicated structural components, this
would necessarily force dissimilarity functions to be complex as well and hardly reusable. Among the requirements stated
in the introduction, this “monolithic” approach would only comply with that of efficiency, however, failing to address any
of the other ones. In Panpa, we pursue a modular approach that, by definition, is better suited to guarantee flexibility, sim-
plicity, and reusability. Moreover, as it will be discussed later, this does not rule out the possibility of efficient
implementations.

Coherently with the second principle inspiring our approach, the dissimilarity of complex patterns is evaluated starting
from the dissimilarities of the corresponding component patterns. In particular, the structure of complex patterns plays here
a major role, since it is where pattern composition occurs.

Without loss of generality, in what follows it is assumed that the component patterns, p', p?,...,p", of a complex pattern
cp completely describe the structure of cp (no additional information is present in cp.s) and that they form a set, i.e.,

cp.s = {p',p?,...,p"}. At the end of this section, we describe how complex patterns built using other type constructors (lists,
vectors, and tuples) can be dealt with.
The structure dissimilarity of complex patterns cp,.s = {p},p?,... ,pq"} and cp,.s = {p},p3, ... ,p2’2} depends on two fun-

damental abstractions, namely:

o the matching type, which is used to establish how the component patterns of cp; and cp, can be matched, and
o the aggregation logic, which is used to combine the dissimilarity scores of the matched component patterns into a single
value representing the total dissimilarity between the structures of the complex patterns.

3.2.1. Matching type

A matching between the complex patterns cp,.s = {p},p?,...,pY"'} and cp,.s = {p},p3,...,p5?} is a matrix Xy, .y, = (i)
where each element x;; € [0,1] (i=1,...,Ny; j=1,...,N) represents the (amount of) matching between the ith component
pattern of cp; and the jth component pattern of cp,, i.e., between p} and p’é.

A matching type is a set of constraints on the x;; coefficients so that only some matchings are valid. Relevant cases of
matching types include:

1-1 matching: In this case, each component pattern of cp, (resp., cp,) might be matched to at most one component pattern
of cp, (resp., cp,). Partial matching occurs if N;#N,. The 1-1 matching type corresponds to the following set of
constraints:

N N, Ny N
in_jgl v, injé‘l Vi Zin_j:min{Nl,Nz}, X,‘J‘E{O,l} Vi, j
i=1 J=1

i=1 j=1

N—M (complete) matching: In this case, each component pattern of cp, (resp., c¢p,) is matched to every component pattern
of cp, and vice versa, i.e,, x;; = 1,Vi,j.

EMD matching: This matching type, introduced for defining the earth mover’s distance (EMD) [13,14], differs from previ-
ous ones in that each x;; might be real-valued, and represents the amount of p; “mass” that is matched with p),. The cor-
responding constraints on the matching matrix are:

N, ) N, ) Ny N N N
Soxg<wh Vi D xg<wh Vi Y x = min{ wi, w’z} xij € [0,1] Vi,j,
i1 = i=1 j=1 i=1 =
where wi (resp., w"2) is the weight (mass amount) associated to each component pattern p} (resp., p’Z) of cp, (resp., cp,).
Finally, note that dissimilarity functions rely, either explicitly or implicitly, on a specific matching type. For instance, the
N—M complete matching is used by the complete linkage algorithm to compare clusters. Variations of matching types de-

scribed above are also common, such as the one used by the dynamic time warping (DTW) distance [15] as well as related
distances for time series (see also Section 4.3).
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3.2.2. Aggregation

For computing the total dissimilarity between complex patterns, the dissimilarity scores of matched component patterns
have to be aggregated so as to obtain a single score. In general, this is represented by an Aggr function, which takes as input
the matrix Dy, v, = (dis(p} ,p’é))g of dissimilarities between pattern components and a matching matrix:

Aggr(D,X),

where the above usually takes the form:
Aggr((dis(p}. p5) x Xij)y),

i.e,, the x;; coefficients are used to weigh components’ dissimilarities (this is the case for all the examples in this paper).
Among all the valid matchings (as specified by the matching type), the rationale is to pick the “best” one, i.e., the one that
minimizes the aggregated structure dissimilarity:

diSstruct (CP1 S, €D S) = rrlxin{Aggr(D,X)}. (3)

Putting all together, the computation of structure dissimilarity of complex patterns can be summarized as in Fig. 2:

e The “Matcher” block is responsible for specifying which are the valid matchings, i.e., those respecting the constraints of the
chosen matching type.

o The “Aggregator” block, which states how scores of the matched component pairs should be aggregated so as to yield the
overall score.

e The “Optimizer” block is in charge of determining the best matching, i.e., the one with the lowest dissimilarity score. Note
that, in the general case, the logic of the optimizer depends on both the matching type and the aggregator chosen for the
case at hand (see also Section 5).

o In case of multi-level aggregations, the dissimilarity block (gray box in Fig. 2) might encompass the recursive computation
of dissimilarity between complex patterns.

Finally, the overall dissimilarity between cp, and cp, is as in Eq. (1), thus following the same approach as with simple
patterns.

Example 8. To complete Example 4, for comparing images Winpsurr has to match their regions. To this end, WINDSURF
provides two different modalities: the first one uses the 1-1 matching type and an aggregation function defined as the
average over the matched regions:

Ager — 221 }V:z1di5(pihpiz) X Xij
B8l = min{N;,N,}

The second modality applies EMD matching, and the aggregator:

S S dis(ph, ph) x g
Aggremp = Ny N, )
i 2 Xi
where the mass amount (weight) of each cluster equals its support. Note that, since regions’ supports are explicitly used by
the EMD matching, they are not to be used when comparing regions; it follows that the combiner at the region level only
takes into account the structure dissimilarity, i.e., dis(p}, p) = diSsruce (P} S, D-S)-

Example 9. Completing Example 5, we first show how two documents (complex patterns modeled as sets of weighted key-
words) can be compared. For simplicity, we only consider the case where the structure dissimilarity between keywords
yields a binary value, thus, according to Eq. (2), dis(k1,k2) = |w1 —ws|, if t1 = t3, and dis(kq, k,) = 1, otherwise. The distance

Optimizer
cp,.s . D
dis Aggregator
cp,.s
X 1 — dis, . (cp,.5,Cp,.5)
Matcher

Fig. 2. Assessment of structure dissimilarity between complex patterns.
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between documents considers differences in weight between matched (thus, equal) keywords plus a penalty value for
unmatched keywords. This can be represented, in our framework, by taking into account an 1-1 matching and averaging
over the number of distinct keywords in the two patterns:

2?21 ZJN:ZI dis(p} p’z) X Xij
[p1-sUP,.S| '

Finally, collections of documents are modeled as sets of documents and the 1-1 matching and avg aggregator can be con-
sidered, for example.

Aggr =

When the structure of a complex pattern consists of a list (or a vector) of component patterns (instead of a set), it is quite
common to forbid “inversions” in the matching, i.e., if p} is matched with p}, then p{ cannot be matched with p}, with i’ > i
and j' < j (see also Section 4.3): this results in additional constraints to the generation of valid matchings. The case of com-
plex patterns consisting of tuples of component patterns is even simpler, since only corresponding components can be
matched.

4. Implementing specific dissimilarity measures

In order to show the generality of the Panpa framework, in this section we describe how it can model specific dissimilarity
measures that have been proposed in the literature for some DM tasks.

4.1. Clusterings comparison

Among the many approaches available to compare clusterings obtained from a same dataset using different algorithms or
parameters (see [16] for a survey), the one based on variation of information [17] has to be appreciated for being grounded on
information-theoretical principles.

The variation of information measure considers the entropies, H(cp,) and H(cp,), of the two clusterings, cp; and cp,, as
well as their mutual information, I(cp,, cp,), that is

dvi(cps,cp,) = H(cpy) + H(epy) — 21(cps, €py),
where H(cp) = ZjH(pf) and I(cp,,cp,) = Z,.Zjl(p"1 ,p’é). In turn, the mutual information of two clusters, each represented as a
simple pattern (s =S,m =1), S being the set of points in the cluster, is defined as

o _‘pﬁ.smp’é.s‘ n~‘p§.smp"2.s‘
O s

where n is the total number of points in the dataset. To see how this fits our framework, define the distance between clusters
p'and p/ as

H(p}) , H(p))
N, N,
and consider an N—M (complete) matching type. Summing over all the possible pairs of clusters, it is obtained

dvi(cp;, cpy) = dis(cpy, cp,) = 30,3 dis(p}, ph).>

dis(pl, p) = diSsuruce (P} 5, Dy.5) = - 21(p},p))

4.2. Frequent itemsets comparison

Frequent itemset mining is one of the core tasks in DM, aiming at uncovering relationships between data items. Given a
set of items I, an itemset is any non-empty subset of I. A transaction is a set of items as well. Given a set of transactions T, the
support of an itemset x in T, supp;(x), is the fraction of transactions in T containing x. Given a minimum support value,
SUPPmin, X 1 A frequent itemset iff supp;(x) > supp.,. Several algorithms exist for efficiently computing the set of frequent
itemsets from a dataset T, including the well-known Apriori [18] algorithm.

The similarity measure proposed in [5] for comparing two sets A and B of frequent itemsets, derived from dataset T, and
Tg, respectively, is

> venns Max {0., 1 — o |suppy, (X) — suppy, (x)}}

sim(A,B) = AU

where o is an user-specified scaling parameter indicating the significance of the difference in support. This similarity mea-
sure can be converted into an equivalent distance measure fitting our framework as follows. A frequent itemset is a simple

3 To stay in line with the original formulation of dy; in [17], we have not normalized the dissimilarity score.
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pattern (s = S,m = supp), where S is the set of items (structural component) and supp € [0, 1] is the support of the itemset
(measure component). The distance between itemsets p' and p/ is defined as
) P 0 ifpis=ps,
dissruce ('S, P .S) = P .Iy ’
1 otherwise,

AiSmeqs(p'.m, p'.m) = min{o - |p'.m — p'.m|, 1},

dis(p',p)) =1 — (1 —dissruee (p'.5,P.5)) - (1 — diSieqs.(p'.m, p.m)).
To compare two sets of itemsets, cp; and cp,, an N—M matching is considered, while the aggregation function is a simple
average:

, . S (1= dis(p}, ph)
dis(cp;,cp,) = diSseruce (CP1.S,CP5.S) = 1 — 50U pys]

that is, dis(cp,, cp,) = 1 — sim(cp,, cp,).
4.3. Time series comparison

A time series is an ordered sequence of samples, where each sample value depends on the domain at hand, e.g., a real (the
stock value for a particular day) for stock market data, a two-dimensional point for trajectories/shapes, etc.

One of the most common measures for assessing the dissimilarity among time series is the dynamic time warping (DTW)
distance [15], that allows both the comparison of series with different length and the matching of samples at different time-
stamps. The computation of the DTW distance between two sequences is based on the concept of warping path. Given two
sequences, cp; = (cp;[1],...,cp;[N1]) and cp, = (cp,[1],...,cp,[N2]), and a base distance dis used to compare samples, one can
compute the Dy, ., = (dis(cp; [i], cp,[j])); matrix containing pairwise distances of the two sequences; a warping path W is
then a contiguous set of elements of D, wy = dis(cp; [ix], cp,[ji]), that satisfies the following constraints:

Boundary conditions: The first and the last samples of the two sequences should be matched together, i.e., i = j; = 1 and,
being K the length of W, ix = Nq,jix = N».
Continuity and monotonicity: Steps in the warping path should always proceed forward in time and match adjacent cells,
ie,0<ix—f1<1land 0 <j,—j_; <1

Each warping path has an associated cost that can be obtained by summing all its elements. The DTW distance is defined
as the minimum cost between all the warping paths:

K
TW(p,q) = min > Wi
pa

Note that, although an exponential number of warping paths exists, the DTW can be efficiently computed in ¢(N; x N,) time
using dynamic programming.

The DTW distance can be easily modeled within the Panpa framework by considering each sequence as a complex pattern
whose structure is a vector of samples (simple patterns). Clearly, each warping path defines a way to match elements of the
two sequences; the constraints on the paths can be translated, using our formalism, as

X; €{0,1}, x1=1, xnvn, =1, Xj=1=X_1j+Xj-1 + X151 =1

and the DTW distance is then defined as (again, the dissimilarity is not normalized)

N Ny
DTW(cpy, cp,) = dis(cpy, P;) = diSstruce (CP1 S, CP,.S) = mxin {Z Zdis(cp] [i], cp, [il) 'Xij}-

i=1 j=1
5. The software framework

The Panpa conceptual framework is amenable to be implemented as a software framework, which we did by coding a
number of basic building blocks in Java. These blocks include all the components of the conceptual framework, i.e., structure
and measure dissimilarities, combiners for the simple patterns case, as well as a set of optimizers for specific matching types.
The software framework is designed so that dissimilarity computation tasks can be performed in a modular way, coherently
with the conceptual framework.

4 The code is freely available for non-commercial use and also includes a sample application for the comparison of different kinds of patterns, like clusterings
and time series. Interested readers, please contact the authors for information on how to download it.
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Fig. 3. Software components needed to compare two collections of documents.

As an example, Fig. 3 shows the software components needed to evaluate the dissimilarity of two collections of docu-
ments. As discussed in Example 9, this first requires to compare simple keywords (checking whether keywords are the same,
then using the absolute difference of weights), then to match keywords (this is performed by the EqualMatch Optimizer that
only matches keywords common to two documents), and finally to match documents. Note that for the latter an assignment
problem has to be solved, thus an optimizer implementing the Hungarian algorithm [19] is required.

From both implementative and computational points of view, the optimizer is usually the most complex component in
the chain leading to determine the overall dissimilarity score. Since in many cases the number of valid matchings grows
exponentially with the number of component patterns (e.g., this is the case for the EMD distance, the 1-1 matching type,
and the DTW distance), any non-trivial implementation needs to avoid enumerating all of them. The Hungarian optimizer,
which runs in ¢(N?) time, as well as the optimizer needed to compute the EMD distance (whose complexity is ©(N° logN)),
can however represent a performance bottleneck in environments where the user is willing to use our framework to explore
alternative definitions of pattern dissimilarities. To this end, a simple solution is to (slightly) deviate from the definition of
dissimilarity as the minimum among all valid matchings and also consider sub-optimal (i.e., approximate) optimizers. For
instance, we implemented both an Hungarian optimizer as well as a greedy optimizer for the 1-1 matching type, the latter
typically providing one order of magnitude speed-up over the former for patterns with tens-hundreds of components and
often leading to similar results (see Appendix A.1).

Adopting the Panpa framework at the software level has the neat advantage of immediately favoring the reusability of
implemented software components, since each of them has a well-defined functionality. For the same reason, Panpba makes
easier to develop libraries of user-defined building blocks that can be freely combined so as to provide a rich set of ready-to-
use alternatives for dissimilarity assessment.

6. Related work

In this section, we compare our approach with other proposals related to pattern management, with the aim of making
clear the uniqueness of Panpa objectives. In Section 6.1, we contrast Panpa to FOCUS [4], which to the best of our knowledge is
the only other framework aiming to a principled approach for comparing patterns.

Works on inductive databases (IDBs) [20] stress the need for storing together data and patterns so as to uniformly retrieve
and manipulate them. The emphasis in IDBs has traditionally been on pattern querying and retrieval, leading to the devel-
opment of specialized query languages [21,22]. On the other hand, pattern comparison per se is not a major issue in IDBs.
This is also because IDBs only consider specific types of patterns, like association rules and string patterns, and do not deal
with complex patterns at all.

Pattern monitoring aims at observing the development of patterns over time and detecting their changes. Relevant solu-
tions for pattern monitoring are DEMON [23] and PAM [24]. Clearly, pattern monitoring builds upon pattern comparison in
order to detect changes across the temporal dimension; however, apart from this, emphasis is on completely different issues,
e.g., efficient update of the pattern base, assessment of the statistical significance of changes, etc.

Kernel methods are becoming quite popular in the DM community, since they can be applied to perform machine learning
tasks on complex data without the burden of running algorithms on high-dimensional data [25]. To this end, the dataset is
embedded in a linear space so that the kernel on any elements of the set corresponds to the inner product in such a space.
Somehow related to our work is the research on convolution kernels for structured data [26], whose basic idea is to capture
the semantics of composite/complex objects by means of a relationship among the object itself and its components. In this
way, the kernel on the complex object is obtained from the kernels defined on its parts. It is apparent that this approach
shares with ours the basic idea of recursive decomposition of complex patterns, the substantial difference being that Panpa
focuses on comparing the results of DM processes, whereas kernel methods are tools for supporting such processes. An inter-
esting research issue would be to exploit work on kernels to enhance our framework along the direction of dissimilarity rea-
soning, i.e., how to relate dissimilarity in data and pattern space.

Two notions of similarity among patterns are defined in [3]:

o The explicit similarity of two patterns is computed as the (normalized) intersection of their data members, i.e., of the data
the two patterns where extracted from; clearly, when two patterns come from different datasets, their similarity equals to
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zero. Moreover, assessing the similarity between two patterns requires accessing the underlying datasets, thus one of the
main requisites for an efficient pattern comparison (see Section 1) is violated.

o The implicit similarity of two patterns is defined as the volume of the intersection of the regions corresponding to the pat-
terns themselves. Obviously, this requires that patterns are defined over some vector space, i.e., SS = R". The generality of
such approach is clearly very limited, since several pattern types are not defined over a vector space, e.g., frequent item-
sets; moreover, this notion of similarity cannot be directly applied to complex patterns.

6.1. The FOCUS framework

FOCUS [4] provides a principled approach for measuring the deviation between two datasets, in terms of corresponding
extracted patterns. This has been demonstrated on three popular pattern types, namely frequent itemsets, decision trees and
non-overlapping clusterings.

The central idea of FOCUS, which has also been a major inspiration to the design of PAnDa, is to view patterns as made up
by structure and measure components. In FOCUS a pattern is modeled as a set of “regions” over the attribute space (the pat-
tern structure) to each of which a set of measures is associated. For instance, a decision tree over n attributes and classifying
tuples into m classes partitions the attribute space into a set of regions. Each region corresponds to a leaf node of the tree and
has m measures, one for each class, representing the fraction of tuples in that region that actually belong to that class.

For measuring the dissimilarity of two patterns, structural components, i.e., regions, have to be first “reconciled” by min-
imally refining/splitting them until the two structures become identical; the result is called the greatest common refinement
(GCR) of the two patterns. After that, the overall dissimilarity is computed by aggregating over all regions differences among
corresponding measures. For instance, the GCR of two decision trees is the decision tree whose regions are obtained by inter-
secting the sets of regions of the two trees. In general, this requires computing from the underlying datasets measure values
for the (new) regions in the GCR.

The comparison of FOCUS with Panpa reveals a number of limitations that prevent using the former as a general and flex-
ible framework for pattern comparison:

e FOCUS only considers patterns whose structure consists of a two-levels hierarchy, i.e., each pattern is composed of
regions, while Panpa supports the recursive definition of arbitrarily complex patterns. A number of interesting pattern
types are therefore left out by FOCUS. On the other hand, all the patterns types that are supported by FOCUS can be also
managed by Panpa.

e Because of the use of the GCR, FOCUS is not flexible enough concerning the matching of component patterns. This prevents
comparing patterns based on some “holistic” criterion, since FOCUS only considers a simple aggregation of differences of
measures on corresponding regions. As also shown by examples in Section 4, this kind of 1-1 matching type is not general
enough.

e The use of the GCR also prevents the applicability of FOCUS to a number of interesting patterns for which the notion of
common refinement cannot be defined. For example, several examples used in this paper cannot be modeled by FOCUS.

e Since FOCUS is concerned with the comparison of datasets, it requires a comparison of the raw data underlying the pat-
terns, whereas pattern comparison in PanpA is totally processed in the pattern space, thus an improvement is obtained in
efficiency (because costly accesses to the raw data are avoided), generality (we can deal with cases where raw data are not
available), and privacy (there is now no need to access the data that may contain private information).

7. Conclusions

In this paper, we have presented the Panpa framework for the comparison of patterns. The general model of Panpa is based
on the definition of patterns as two-components (structure and measure) entities and on the recursive definition of complex
patterns. The process of comparing patterns is built on a few basic notions in order to be easily applicable and understand-
able. In case of simple patterns, these notions are: the structure and measure dissimilarity defined over the corresponding
components of patterns, and the combining function, which defines how these scores are combined to produce a single dis-
similarity score. In case of complex patterns, additional notions are required, namely: the recursive definition of dissimilarity
in terms of their component (simple or complex) patterns, the matching type, which defines how the component patterns are
matched, and the aggregation logic, which aggregates the scores of the matched component patterns into an overall dissim-
ilarity score. The above mentioned notions constitute the building blocks of the Panpa framework, their instantiations result-
ing in (possibly different) dissimilarity functions configurations.

A number of interesting working issues are still left open. First, it would be interesting to understand if Panpa principles
could be somehow exploited to derive a complementary indexing framework for the efficient evaluation of dissimilarity que-
ries over large pattern bases. Although for specific dissimilarity measures one can adopt specific indexing solutions, a thing
we did by using M-tree [27,28] for some of the examples discussed in this paper, a general solution is still missing. A second
relevant issue would be to study the relationship between the dissimilarity computed over patterns and the one computed
over the underlying dataset(s). As observed in Section 6, work on kernel methods could be exploited to this end.
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Appendix A
Experiments using the Panpa framework

We have applied Panpa to three DM experimental scenarios, with the aim of (a) demonstrating its applicability to a wide
range of applications (generality) and (b) presenting how Panpa can be easily adapted to the peculiarities of each case
(flexibility).

A.1. Sets of itemsets

In this experiment, we use the synthetic dataset generator from the IBM Quest data mining group [29], which is assumed
to mimic the transactions in a retailing environment, to generate a dataset 2 of 1000 transactions with an average transac-
tion length of 10 attributes. For the extraction of frequent itemsets we use MAFIA [30] with a minSupport threshold of 20%.

Itemsets and sets of itemsets are modeled as in Section 4.2; however, differently from [5], we use an 1-1 matching type to
match itemsets and the average as the aggregation function. To compute the optimal match, we use both an exact Hungarian
optimizer and a greedy one, which at each step pairs together the least dissimilar unmatched patterns. Fig. 4 shows the soft-
ware components needed to run the experiment.

With the aim of investigating how differences in underlying data influence the dissimilarity of the corresponding pat-
terns, in the experiment we start from a dataset Z,, generated as above described and whose set of frequent itemsets is
Poy. Then, we compare P, with patterns P, (x = 10, 20,...,100) extracted from some noisy versions 2, of Z,, where Z, is ob-
tained by modifying x% of the transactions in 2y, for each of them changing 50% of its items.

As illustrated in Fig. 5, the dissimilarity at the pattern level reflects the increased dissimilarity between the datasets when
the amount of noise grows. Further, since results from the two optimizers are very similar, a practical conclusion of this
experiment is that the greedy optimizer can be safely chosen for the comparison of sets of frequent itemsets, since it yields
much faster response times (25x on average, in our case).

A.2. Clusterings (images)

Our second experiment deals with the comparison of images (see Example 4). In order to show how differences at the
data (image) level are reflected by the dissimilarity score computed at the pattern level, we consider a set of more than
2000 images (the same data used in [10,31]) and modify each image by introducing white noise. In detail, we add to the
RGB components of each image pixel a Gaussian value with mean 0 and standard deviation o in the interval [0,50]. Fig. 6
shows a visual example. We then compare each image with its noisy versions by using our framework, implemented as
in Fig. 7.

Average results are plotted in Fig. 8. As the graph clearly shows, the dissimilarity computed at the pattern level is indeed
able to capture the increasing dissimilarity between images when the amount of added noise at the raw data level increases.
As to the comparison of the Hungarian and the EMD optimizers, Fig. 8 shows that EMD is more sensitive to noise, although at
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Fig. 4. Software components for comparing sets of itemsets.



256 L. Bartolini et al./Data & Knowledge Engineering 68 (2009) 244-260

1.00
0.904 @Hungarian
0.801 mGreedy

0.70+
0.60
0.50+
0.40-
0.30+
0.20-

dissimilarity

10 20 30 40 50 60 70 80 90 100
% of noise

Fig. 5. Impact of dataset noise on the dissimilarity of sets of itemsets for the Hungarian and the Greedy optimizers.

Fig. 6. The original image (a) and noisy images: ¢ = 10 (b), 6 = 50 (c).
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Fig. 7. Software components for comparing images: (a) 1-1 matching, (b) EMD matching.

low noise levels (<15%) the average EMD dissimilarity is lower than the one obtained with the Hungarian optimizer. Con-
cerning execution times, both methods can compute the dissimilarity of two images in less than 1 ms.
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A.3. Collections of documents

Our final experiment refers to the comparison of collections of documents (see Example 5). Keywords are compared as in
Example 6, while complex patterns are compared as in Example 9 (software components for this experiment were illustrated
in Fig. 3).

Table 1
DBLP journals.
DBLP journal Abbreviation DBLP journal Abbreviation
Computer Journal Comp ] Computational Intelligence Comp Intell
Artificial Intelligence Al Distributed Computing Dist Comp
Computer Networks Comp N Advances in Computers Adv in Comp
Computers and Graphics Comp G Evolutionary Computation Evol Comp
Information Systems Info Sys Computational Complexity Comp Compl
Information Retrieval IR Comp. Networks and ISDN Syst. Comp Net & ISDN Sys
Computer Languages Comp Lang
—0.6
os
—0.4
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03 E
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Fig. 9. Comparing journals in the DBLP database.
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We consider a set of journals from the DBLP [32] database, each journal containing a set of articles referring to a same
topic (the one covered by the journal). Journals used in this experiment are listed in Table 1.
The results of the experiment are shown in Fig. 9, allowing us to draw the following interesting conclusions:

e The Computer Journal is quite similar to all other journals, a result that is reasonable since this journal provides a complete
overview of developments in the broad field of computer science.

e On the other hand, journals like Evolutionary Computation, Computational Intelligence, Computer Networks, ISDN Systems,
and Distributed Computing are very dissimilar to each other, since they cover specific and rather distinct topics in computer
science.

e The greatest distance found was the one between the Evolutionary Computation and the Distributed Computing journals,
which cover totally distinct topics.
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