
Towards Subspace Clustering on Dynamic Data: An
Incremental Version of PreDeCon

Hans-Peter Kriegel Peer Kröger Irene Ntoutsi Arthur Zimek
Ludwig-Maximilians-Universität München

Oettingenstr. 67, 80538, München, Germany
http://www.dbs.ifi.lmu.de/

{kriegel, kroegerp, ntoutsi, zimek}@dbs.ifi.lmu.de

ABSTRACT
Todays data are high dimensional and dynamic, thus clus-
tering over such kind of data is rather complicated. To deal
with the high dimensionality problem, the subspace clus-
tering research area has lately emerged that aims at find-
ing clusters in subspaces of the original feature space. So
far, the subspace clustering methods are mainly static and
thus, cannot address the dynamic nature of modern data. In
this paper, we propose an incremental version of the density
based projected clustering algorithm PreDeCon, called in-
cPreDeCon. The proposed algorithm efficiently updates
only those subspace clusters that might be affected due to
the population update.

1. INTRODUCTION
Clustering is the unsupervised classification of data into nat-
ural groups/ clusters so that data points within a cluster are
more similar to each other than to data points in other clus-
ters. Cluster analysis has been studied extensively in many
contexts and disciplines including Data Mining, and as a
result a large number of clustering algorithms exists in the
literature [15], [16].

However, modern data impose new challenges and require-
ments for the clustering algorithms due to their special char-
acteristics. First of all, a huge amount of data is collected
nowadays as a result of the wide spread usage of computer
devices. Another new characteristic is the high dimension-
ality of modern data; an object might be described by a
large number of attributes (and each attribute might take
values within a large domain, as well) and there might be
correlations or overlaps between these attributes. In addi-
tion to their quantity and multidimensionality, modern data
are also characterized by a high degree of variability. Indeed,
most of today’s data is dynamic; new data records might be
inserted and existing data records might be deleted, as time
goes by. A special, particularly interesting category of dy-
namic data is stream data that continuously flow in and out

of systems at high-speed (e.g. Internet traffic data, sensor
data, position tracking data etc.).

Lately, a lot of work has been carried out on adapting tra-
ditional clustering algorithms in order to meet the require-
ments of modern systems or on proposing new algorithms
that are specialized on handling data with the above fea-
tures. In particular, several methods have been proposed
for clustering of large amounts of data, e.g., BIRCH [20],
DBSCAN [10], OPTICS [5], for clustering over data streams
e.g., STREAM [14], CluStream [2] and for change detection
and monitoring over evolving data e.g., [1], [19].

To deal with the high dimensionality of data, several dimen-
sionality reduction techniques have been proposed such as
feature transformation and feature selection. One of the lat-
est directions in this category, is subspace clustering which
deals with the problem of high dimensionality by detect-
ing clusters in different subspaces of the original feature
space. The main challenges in the subspace clustering prob-
lem are to find the correct subspace for each cluster and
the correct cluster in each relevant subspace. Several meth-
ods have been proposed which can be classified into the fol-
lowing categories: axis-parallel subspace clustering meth-
ods (that search for axis-parallel subspace clusters), pattern
based clustering methods (that rely on patterns in the data
matrix), arbitrarily oriented subspace clustering methods
(here clusters appear as hyperplanes of arbitrary dimension-
ality and orientation in the data space). Several algorithms
have been proposed for each category; see a recent survey
for further information [18]. So far however, the subspace
clustering methods deal mainly with static datasets.

In this work, we propose an incremental version of the den-
sity based subspace preference clustering algorithm PreDe-
Con [6]. PreDeCon belongs to the so called “projected
clustering” algorithms since it seeks to assign each point to
a unique cluster (thus, clusters are not overlapping), whereas
clusters might exist in different (axis-parallel, though) sub-
spaces. We choose the algorithm PreDeCon because it
relies on a density-based clustering model such that up-
dates usually do not affect the entire clustering structure
but rather cause only limited local changes.

The rest of the paper is organized as follows: In Section 2,
we discuss the related work. In Section 3, we present the
basic notions of PreDeCon which are necessary for the un-
derstanding of the incremental method. In Section 4, we

present the incremental version of PreDeCon, incPreDe-
Con. Initial experimental results are presented in Section 5,
whereas a discussion on the results and on the ongoing work
is presented in Section 6. Section 7 concludes this paper and
discusses future work.

2. RELATED WORK
So far, the subspace clustering methods (See [18] for an
overview) emphasize on the extraction of meaningful clus-
ters from different subspaces of the original feature space
and pay little attention to the application of such meth-
ods in dynamic data like data warehouses and data streams.
In the traditional clustering settings however, there exists
a lot of work on both incremental clustering methods and
stream methods; we overview below some representative ap-
proaches.

Traditional incremental clustering methods rely on the ex-
isting clustering at timepoint t− 1 (based on dataset Dt−1)
and on the update operations (insertions, deletions) at t
in order to derive the new clustering at t. In this cate-
gory belong methods like incDBSCAN [9] which comprises
the incremental version of the density based algorithm DB-
SCAN [10] and incOPTICS [17] which comprises the incre-
mental version of the density based hierarchical clustering
algorithm OPTICS [5]. Both incDBSCAN and incOPTICS
exploit the fact that, due to the density based nature of the
corresponding static algorithms (DBSCAN and OPTICS, re-
spectively), an update operation affects only some part of
the old clustering instead of the whole clustering. The up-
date process works directly upon raw data (although access
is restricted to only a subset of these data). Both these
methods produce the same results with the corresponding
static methods when the latest are applied over the accu-
mulative dataset Dt.

Charikar et al.[7] present an incremental K–Means method
which maintains a collection of k clusters as the dataset
evolves. When a new point is presented, either it is assigned
to one of the current k clusters, or it starts a new cluster
while two existing clusters are merged into one, so as the
total number of clusters does not exceed the threshold k.
Chen et al. [8] propose the incremental hierarchical clus-
tering algorithm GRIN which is based on gravity theory in
physics. In the first phase, GRIN constructs the initial clus-
tering dendrogram, which is then flattened and its bottom
levels are pruned in order to derive the so called tentative
dendrogram. For each cluster, the tentative histogram keeps
the centroid, the radius and the mass of the cluster. In the
second phase, new data instances are inserted one by one
and it is decided whether they belong to leaf nodes of the
tentative dendrogram or are outliers. If the tentative outlier
buffer exceeds some threshold, a new tentative dendrogram
is reconstructed. Both [7] and [8] are approximate methods,
by means that the resulting clustering after the update is not
assured to be identical to the one we would obtain if we ap-
plied from scratch the static versions of the algorithms over
the accumulative dataset Dt. This is due to the fact, that the
update process works upon cluster summaries rather than
upon raw data; the new data at t are actually “mapped” to
the closer cluster of the existing clustering (from timepoint
t− 1).

Data streams impose new challenges for the clustering prob-
lem since “it is usually impossible to store an entire data
stream or to scan it multiple times due to its tremendous
volume” [13]. As a result, several methods have been pro-
posed that first summarize the data through some summary
structure and then apply clustering over these summaries in-
stead of the original raw data. With respect to the clustering
quality, these summaries might be either lossy (that is, they
comprise some approximation of the raw data) or lossless
(that, is they exactly maintain the information contained in
the original raw data).

Agrawal et al. [2] propose the CluStream framework for clus-
tering of evolving data streams. The clustering process is
split into an online and an offline part: The online compo-
nent periodically stores summary statistics (the so called,
micro–clusters), whereas the offline component uses these
micro–clusters for the formation of the actual clusters (the
so called, macro–clusters) over a user–defined time horizon.
No access to raw data is required in this method, since the
clustering takes place over the microclusters, which comprise
a lossy representation of the original data. The incremen-
tal part in this case is the online component which updates
the micro–clusters, whereas the clustering process is applied
from scratch over these updated summaries.

In the context of their DEMON framework, Ganti et al. [11]
present BIRCH+, an incremental extension of BIRCH [20].
The original BIRCH [20] first summarizes the data into sub-
clusters and then it clusters those subclusters using some
traditional clustering algorithm. The subclusters are repre-
sented very concisely through cluster features. In BIRCH+,
the cluster features are maintained incrementally as updates
occur, and then the clustering step takes place as in BIRCH
over those (now updated) summaries. So, the incremental
part is that of summary structure update, whereas cluster-
ing is then applied from scratch over the updated summary
structure. The incremental version produces the same re-
sults as the static version when applied on the accumulative
dataset Dt.

Gao et al. [12], propose DUCStream, an incremental data
stream clustering algorithm that applies the idea of dense
units introduced in CLIQUE [4] to stream data. As in
CLIQUE [4], the data space is split into units and a cluster
is defined as a maximal set of connected dense units. Their
method relies on incrementally updating, according to the
update operation, the density of these units and on detecting
units that change from dense to non-dense and the inverse.
After the grid update phase, they identify the clusters using
the original procedure of CLIQUE. DUCStream does not
require access to the raw data of the past time points, but
only over the summary grid structure. The incremental ver-
sion produces the same results as the static version when
applied to the accumulative dataset Dt. Note that although
CLIQUE is a subspace clustering algorithm, the proposed
method [12] updates incrementally only the grid summary
structure, whereas the clusters are discovered from scratch
over the (now updated) grid. This is a clear difference to our
work, where the goal is to incrementally update the existing
clustering (at t− 1) based on the dataset updates at t, so as
to finally derive the new clustering at t.

Agrawal et al. [3] extend the idea of CluStream [2] to high di-
mensional data streams by proposing HPStream, a method
for projected data stream clustering. A summary structure,
the so called fading cluster structure, is proposed which com-
prises a condensed representation of the statistics of the
points inside a cluster and can be updated effectively as
the data stream proceeds. The input to the algorithm in-
cludes the current cluster structure and the relevant set of
dimensions associated with each cluster. When a new point
arrives, it is assigned to the closest cluster structure or if this
violates the limiting radius criteria, a new cluster is created
and thus some old cluster should be deleted in order for the
total number of clusters to not exceed the maximum num-
ber k. In each case, the cluster structure and the relevant
dimensions for each cluster are dynamically updated. Al-
though HPStream is a subspace clustering method and we
propose an incremental subspace clustering method in this
work, there are core differences between the two approaches
and their scopes. In particular, HPStream is targeted to
stream data and thus works upon summaries and provides
an approximation solution to the clustering problem. On
the other hand, our incPreDeCon method works upon dy-
namic data, requires access to raw data (although this ac-
cess is restricted to only a subset of the original dataset)
and provides exact solution to the clustering problem (i.e.,
we obtain the same results with those obtained by applying
the static PreDeCon on the acumulated dataset Dt).

3. THE ALGORITHM PREDECON
PreDeCon adapts the concept of density based clusters, in-
troduced in DBSCAN [10], to the context of subspace clus-
tering. To this end, the notion of subspace preferences for
each point is introduced that defines which dimensions the
point prefers. Roughly speaking, a point prefers a dimension
if along this dimension the point “builds” a neighborhood of
small-variance. Intuitively, a subspace preference cluster is
a density connected set of points associated with a certain
subspace preference vector.

In this section, we present a brief description of PreDe-
Con including the definitions that are required for under-
standing the incremental version as well. LetD be a database
of d-dimensional points (D ⊆ Rd), where the set of at-
tributes is denoted by A = {A1, A2, . . . , Ad}. Let dist :
Rd ×Rd → R be a metric distance function between points
in D. Let Nε(p) be the ε-neighborhood of p ∈ D, i.e., Nε(p)
contains all points q ∈ D: dist(p, q) ≤ ε.

First the notion of variance along an attribute/dimension
Ai is defined for the neighborhood of a point p, in order to
derive preferred dimensions for p and then, the preference
weighted similarity between two points is defined. Next, the
notions of core member property, direct density reachability,
density reachability, density connectivity of DBSCAN are
adapted to the concept of preferred dimensions.

Definition 1 (Variance along an attribute).
Let p ∈ D and ε ∈ �. The variance of Nε(p) along an
attribute Ai ∈ A, denoted by VarAi(Nε(p)), is defined as
follows:

VarAi(Nε(p)) =

∑
q∈Nε(p)

(dist(πAi(p), πAi(q)))
2

|Nε(p)|

Ai is considered a preferable dimension for p, if p builds a
dense area in Ai, i.e., the variance with respect to Ai in its
neighborhood is smaller than threshold δ.

Definition 2 (Subspace preference dimensionality).
Let p ∈ D and δ ∈ �. The number of attributes Ai with
VarAi ≤ δ is called the subspace preference dimensionality
of Nε(p), denoted by PDim(Nε(p)).

Definition 3 (Subspace preference vector).
Let p ∈ D, δ ∈ � and κ ∈ � be a constant with κ �
1. Then, the subspace preference vector of p is defined as
follows:

w̄p = (w1, w2, ...wd)

where wi is:

wi =

{
1 if VarAi(Nε(p)) > δ
κ if VarAi(Nε(p)) ≤ δ

This vector distinguishes preferable dimensions from non
preferable ones.

Definition 4 (Preference weighted similarity).
The preference weighted similarity measure associated with
a point p is defined as follows:

distp(p, q) =

√√√√ d∑
i=1

wi · (πAi(p)− πAi(q))
2

where wi is the i-th component of w̄p.

The preference weighted similarity measure overweights the
original data points distance with a constant parameter k >>
1 if the attribute variance is small. Thus preferable at-
tributes are weighted considerable lower comparing to non–
preferable attributes.

Since the above distance is not symmetric, a symmetric ver-
sion of it is defined as follows:

Definition 5 (General preference similarity).
The general preference weighted similarity of two arbitrary
points p, q ∈ D, denoted by distpref (p, q), is defined as the
maximum of the corresponding preference weighted similar-
ity measures of p (distp) and q (distq), formally:

distpref (p, q) = max{distp(p, q), distq(q, p)}.

The preference weighted ε−neighborhood of a point p is now
defined, containing all those points that are within prefer-
ence weighted distance ε from p.

Definition 6 (preference ε-neighborhood).
Let ε ∈ �. The preference weighted ε-neighborhood of a
point o ∈ D, denoted by N w̄o

ε (o), is defined by:

N w̄o
ε (o) = {x ∈ D | distpref (o, x) ≤ ε}.

The preference weighted core points are now defined as fol-
lows:

Definition 7 (preference weighted core points).
Let ε, δ ∈ � and μ, λ ∈ �. A point o ∈ D is called pref-
erence weighted core point w.r.t. ε, μ, δ, and λ (denoted

by Corepref
den (o)), if the preference dimensionality of its ε-

neighborhood is at most λ and its preference weighted ε-
neighborhood contains at least μ points, formally:

Corepref
den (o) ⇔ PDim(Nε(o)) ≤ λ ∧ |N w̄o

ε (o) | ≥ μ.

The notions of direct reachability, reachability and connec-
tivity in DBSCAN [9] are now extended in order to take into
consideration the notion of preferences.

Definition 8 (direct preference reachability).
Let ε, δ ∈ � and μ, λ ∈ �. A point p ∈ D is directly pref-
erence weighted reachable from a point q ∈ D w.r.t. ε, μ, δ,
and λ (denoted by DirReachpref

den (q,p)), if q is a preference
weighted core point, the subspace preference dimensionality
of Nε(p) is at most λ, and p ∈ N w̄q

ε (q), formally:

DirReachpref
den (q, p) ⇔

(1) Corepref
den (q)

(2) PDim(Nε(p)) ≤ λ

(3) p ∈ N w̄q
ε (q).

Definition 9 (preference reachability).
Let ε, δ ∈ � and μ, λ ∈ �. A point p ∈ D is preference
weighted reachable from a point q ∈ D w.r.t. ε, μ, δ, and
λ (denoted by Reachpref

den (q,p)), if there is a chain of points
p1, . . . , pn such that p1 = q, pn = p and pi+1 is directly pref-
erence weighted reachable from pi, formally:

Reachpref
den (q, p) ⇔

∃p1, . . . , pn ∈ D : p1 = q ∧ pn = p ∧
∀i ∈ {1, . . . , n− 1} : DirReachpref

den (pi, pi+1).

Definition 10 (preference connectivity).
Let ε, δ ∈ � and μ, λ ∈ �. A point p ∈ D is preference
weighted connected to a point q ∈ D, if there is a point o ∈ D
such that both p and q are preference weighted reachable from
o, formally:

Connectpref
den (q, p) ⇔

∃o ∈ D : Reachpref
den (o, q) ∧ Reachpref

den (o, p).

Definition 11 (subspace preference cluster).
Let ε, δ ∈ � and μ, λ ∈ �. A non-empty subset C ⊆ D is
called a subspace preference cluster w.r.t. ε, μ, δ, and λ,
if all points in C are preference weighted connected and C is
maximal w.r.t. preference weighted reachability, formally:

ConSetpref
den (C) ⇔

Connectivity: ∀o, q ∈ C : Connectpref
den (o, q)

Maximality: ∀p, q ∈ D : q ∈ C ∧Reachpref
den (q, p) ⇒ p ∈ C.

As in DBSCAN, in PreDeCon a cluster is uniquely deter-
mined by any of its preference weighted core points. As far
as such a point is detected, we can discover the associated
cluster by detecting all points that are preference weighted
reachable from it. The pseudocode of the algorithm Pre-
DeCon is depicted in Figure 1.

algorithm PreDeCon(D, ε, μ, λ, δ)

for each o ∈ D do

compute the subspace preference vector w̄o;
for each unclassified o ∈ D do

expandCluster(D,o, ε, μ, λ);

function expandCluster(D, o, ε, μ, λ)

if Coreprefden (o) then // expand a new cluster

generate new clusterID;
insert all x ∈ N w̄o

ε (o) into queue Φ;
while Φ �= ∅ do

q = first point in Φ;

compute R = {x ∈ D |DirReachpref
den (q, x)};

for each x ∈ R do
if x is unclassified then

insert x into Φ;
if x is unclassified or noise then

assign current clusterID to x
remove q from Φ;

else // o is noise

mark o as noise;

end.

Figure 1: Pseudo code of the PreDeCon algorithm.

4. INCREMENTAL PREDECON
The goal of incremental PreDeCon is to update the so far
built clustering model (at timepoint t−1) as new data arrive
at t, and thus to derive a valid clustering model at t.

The key observation is that the preference weighted core
member property1 of some object might change due to the
update and as a result, the existing clustering model might
also change, e.g., new clusters might arise, old clusters might
be abolished etc. The challenge is to exploit the old cluster-
ing model at t− 1 (both clusters and subspaces where these
clusters exist) and to adjust only that part of it which is af-
fected by the update at t. Due to the density based nature
of the algorithm, such an adjustment is expected (although
not ensured in general) to be restricted to some part of the
clustering instead of the whole clustering.

We consider a dynamic environment where data are coming
sequentially and the underlying clustering model is updated
so as to be compatible with the data. Our methodology is
lossless, that is the incrementally updated model at t (which
is based on the clustering model at t − 1 and on the data
updates at t) is the same as the one we would obtain if we
applied from scratch the traditional PreDeCon algorithm
over the accumulated dataset Dt.

Due to the density based nature of PreDeCon, a prefer-
ence weighted cluster is determined uniquely by one of its
preference weighted core points. So, the key idea for the

1For simplicity, we omit from now on the term preference
weighted and refer to a preference weighted core point sim-
ply as a core point

incremental version of PreDeCon is to check whether the
update operation affects the preference weighted core mem-
ber property of some point. If a non-core point becomes
core, new density connections might be established. On the
other hand, if a core point becomes non-core, some density
connections might be abolished. There is also another case
in PreDeCon, when a core point remains core but under
different preferences. Such a change might cause either the
establishment of new connections or the abolishment of ex-
isting ones.

We first present the effect of the update on the core mem-
ber property (Section 4.1) and on the cluster membership
in general (Section 4.2). The reorganization of the old clus-
tering starts with seed objects defined in Section 4.3. The
actual reorganization is described in Section 4.4.

4.1 Effect on the core member property
The insertion of a point p directly affects the points that
are in the ε-neighborhood of p, i.e., all those points q ∈
D : dist(p, q) ≤ ε. In particular, the neighborhood of q,
Nε(q), might be affected, since the newly inserted object p
is now a member of this neighborhood. Since Nε(q) might
change, the variance of Nε(q) along some dimension Ai ∈ A
might also change causing Ai to turn into a preferable/ non-
preferable dimension. This might cause changes in the sub-
space preference dimensionality of q, PDim(Nε(q)). Also,
the subspace preference vector of q, w̄q, might change; this
in turn, might result in changes in the preference weighted
ε-neighborhood of q, N w̄

ε (q)q.

As a result, the core member property of q might be affected.
According to Definition 7, two conditions should be fulfilled
in order for a point q to be core: In terms of condition i),
the preference dimensionality of q must contain at most λ di-
mensions (i.e., PDim(Nε(q)) ≤ λ). In terms of condition ii),
the preference weighted ε-neighborhood of q should contain
at least μ points (i.e., |N w̄q

ε (q) | ≥ μ). So, we have to check
how the update operation affects both these conditions for
object q. Since the definition of the preference weighted ε-
neighborhood of q (condition ii) relies on the subspace pref-
erence dimensionality of q (condition i), it is reasonable to
start with the examination of the first condition.

Let p be the new point, and let D∗ = D ∪ {p} be the new
dataset after the insertion of p. As already stated, the ad-
dition of p, might affect the core member property of any
object q ∈ Nε(p). In particular, since Nε(q) changes, the
variance along some attribute Ai ∈ A, i.e., VarAi(Nε(q))
might also change.

• If Ai was a non-preferable dimension (that is,
VarAi(Nε(q)) > δ), it might either remain non-preferable
(if still VarAi(Nε(q)) > δ) or it might turn into prefer-
able (if now VarAi(Nε(q)) ≤ δ).

• If Ai was a preferable dimension, it might either re-
main preferable (if still VarAi(Nε(q)) ≤ δ) or it might
turn into non-preferable (if now VarAi(Nε(q)) > δ).

A change in the preference of Ai might result in changes in
the subspace preference vector of q, w̄q, since some dimen-

sion might swap from preferable to non preferable and vice-
versa. Thus, we can have more or less preferable dimensions
comparing to the previous state (quantitative differences)
or we can have the same dimensionality but under differ-
ent preferred dimensions (qualitative differences). A change
in w̄q, might cause changes in both the subspace prefer-
ence dimensionality of q, PDim(Nε(q)), and in the preferred

neighborhood of q, N w̄q
ε (q).

If the subspace preference dimensionality of q, PDim(Nε(q)),
changes the first condition of Definition 7 might be violated.
In particular, if |PDim(Nε(q))| > λ, the point q cannot be
core. So, if q was a core point, it now looses this property
(core → noncore), whereas if it was a non-core it still re-
mains non-core. This is the first condition to be checked,
and it is quantitative since it is based on the number of
preferred dimensions (whether they exceed δ or not).

If after the insertion of p, this condition holds (that is,
|PDim(Nε(q))| <= λ) then we can proceed to the evaluation
of the second condition of Definition 7 to check whether q is
core after the update.

• If q was a core point, and now |N w̄
ε (q)q| < μ, then

q looses its core member property (core → noncore).
Otherwise, it remains core.

• If q was not a core point, and now |N w̄
ε (q)q| ≥ μ then

q turns into core (noncore → core). Otherwise, it
remains non core.

• There is also another case of change for q, where it still
remains core (core → core) but under different pref-
erences (this might happen e.g., when there are qual-
itative changes in w̄q). Note that, although q might
remain core its neighborhood might change due to dif-
ferent preferred dimensions.

To summarize, the possible effects of an insert operation in
the core member property of an object are the following:

• core → noncore

• noncore → core

• core → core but under different preferences

Note that, as already presented, the objects with a changed
core member property are all located in Nε(p), since such a
change is due to the insertion of p.

4.2 Affected objects
So far, we referred to the objects in Nε(p) that are directly
affected by the insertion of p and we presented when and
how their core member property might change.

Note however, that a change in the core member property
of an object q might cause changes in the objects that are
preference weighted reachable from q. For example, if q was
a core point before the insertion and it becomes non-core
after the insertion, then any density connectivity that relied
on q is destroyed. On the other hand, if q was a non-core

point before the insertion and it turns into core after the
insertion, then some new density connectivity based on q
might arise.

We denote by AffectedD(p) the set of points in D that
might be affected after the insertion of p. This set con-
tains both directly affected points (those located in Nε(p),
which might change their core member property after the
update) and indirectly affected objects (those that are den-
sity reachable by some point in Nε(p), which might change
their cluster membership after the update).

Definition 12 (Affected objects).
Let D be a dataset and let D∗ = D∪{p} be the new dataset
after the insertion of object p. We define the set of objects
in D affected by the insertion of p as follows:

AffectedD(p) = Nε(p) ∪ {q|∃o ∈ Nε(p) :

REACHpref
den (o, q) in D∗}

Any other object in the database is not affected by the spe-
cific update.

4.3 Seed objects for the update
The update of p might cause changes in the cluster member-
ship of only some object q ∈AffectedD(p). A naive solu-
tion would be to reapply the static PreDeCon over this set
in order to obtain the new clustering model for the set of af-
fected data. This way however, although we would restrict
reclustering over only this subset of the data, we actually
ignore any old clustering information for this set and build
it from scratch.

Our solution is based on the observation that any changes
in AffectedD(p), are exclusively initiated by objects that
change their core member property, i.e., those in Nε(p). So,
instead of examining all objects in AffectedD(p), we can
start searching from objects in Nε(p) and “discover” the rest
of the affected object on the road (those objects would be-
long to AffectedD(p) though). Note also that there is no
need to examine each q ∈ Nε(p) since some objects might
have not change their core member property so related den-
sity connections from the previous clustering would be still
valid. So, we need to examine only those objects in Nε(p)
that change their core member property after the insertion
of p, instead of all objects in Nε(p), so as to avoid rediscov-
ering density connections. As already described, a possible
change in the core member property of an object after the
insertion of p falls into one of the following cases: i) core →
noncore, ii) noncore → core and, iii) core → core but under
different preferences.

When the core member property of a point q ∈ Nε(p) changes
as described above, we should consider as seed points for
the update any core point q′ ∈ Nε(q). That is, the update
process starts from core points in the neighborhood of the
objects with changed core member property (which, in turn
are all located in Nε(p)).

Definition 13 (Seed objects for the update).
Let D be a dataset and let D∗ = D∪{p} be the new dataset

algorithm incPreDeCon(D, Inserts, ε, μ, λ, δ)

for each p ∈ Inserts do

D = D ∪ p;
compute the subspace preference vector w̄p;
// update preferred dimensionality and
// check changes in the core member property in Nε(p)
for each q ∈ Nε(p) do

update w̄q;
check changes in the core member property of q;
if change exists, add q to AffectedCore;

compute UpdSeed based on AffectedCore
for each q ∈ UpdSeed do

expandCluster(D,q, ε, μ, λ);
end;

Figure 2: Pseudo code of the incPreDeCon algo-
rithm.

after the insertion of p. We define the seed objects for the
update as:

UpdSeed = {q | q is core in D∗,∃q′ : q ∈ Nε(q
′) and

q′ changes his core member property in D∗}

4.4 Updating the model
After the insertion of a new object p new density connections
might be established whereas existing connections might be
abolished or change. We can detect these changes starting
with the seed objects in UpdSeed. The expandCluster()
procedure of PreDeCon is then invoked starting from ob-
jects in UpdSeed and considering the results of the so far
built clustering. The pseudocode of the algorithm is dis-
played in Figure 2. After the insertion of a point p, its
subspace preference vector is computed and the subspace
preference vectors of objects in its neighborhood Nε(p) are
updated. For each of these neighborhood points, we ex-
amine whether some change in the core member property
has occurred as a result of the insertion of p. Next, we
derive the seed objects for the update and start the re–
organization of the old clustering, which involves some call
to the expandCluster() function of PreDeCon.

This is a generic solution that works on every effect caused
by the update of p, i.e., objects turning into core or/and the
opposite. Of course, there are simpler cases where we can
deal with the update without invoking the expandCluster()
procedure of PreDeCon. For example, if the update of p
does not affect the core member property of its neighbor-
hood and its neighborhood belongs to exactly one cluster
before the update, then p is also added to this cluster (ab-
sorption). However there are many such special cases, since
as already stated the update of pmight cause both destroy of
old density connections and creation of new density connec-
tions depending on the changes in the core member property
of its neighborhood. So, we opt for the generic solution.

5. EXPERIMENTS
In this section, we present early-stage results to evaluate the
efficiency of incPreDeCon versus PreDeCon. Note that
the incremental version produces the same results as the
static version when applied over the accumulated dataset,
so there is no need for quality evaluation. So, we compare
the performance of incPreDeCon versus the performance

of PreDeCon in terms of the range queries required by
each version, since these are the only operations requiring
page accesses.

PreDeCon: The preferred dimensionality vector for each
object has to be computed; such a computation is based on
the result of a range query and thus, totally |D| range queries
are required for this preprocessing phase. Also, checking the
core member property and expanding a preference weighted
cluster requires for each object the evaluation of a range
query, thus totally |D| range queries are required for clus-
tering. So, the static version of the algorithm requires 2×|D|
range queries in total, where |D| is the size of the database.

incPreDeCon: The initialization of the model, which takes
place once requires 2×|D| range queries as described above.
When a new point p is inserted, the preferred dimensional-
ity vector of p should be computed and also the preferred
dimensionality vectors of any point q ∈ Nε(p) should be up-
dated, this requires 1+ |Nε(p)| range queries. Next, objects
in Nε(p) should be examined for any change in their core
member property, this requires Nε(p)| range queries. Fi-
nally, the reorganization of the old clustering starting from
the objects in UpdSeed requires range queries, which in the
worst case equal to the number of AffectedD(p). So, the
maximal number of range queries after each insert is

1 + 2× |Nε(p)|+ |AffectedD(p)|.

We evaluated incPreDeCon using 3 synthetic datasets con-
sisting of |D1| = 1.000, |D2| = 5.000, |D3| = 10.000 points.
For each dataset, we performed 100 random inserts and
compared the number of range queries required by PreDe-
Con and incPreDeCon. The results for D1, D2, D2 are
depicted in Figures 3, 4, 5 respectively. As it seems from
these figures incPreDeCon outperforms PreDeCon in all
datasets. The speed up factor achieved by incPreDeCon af-
ter all the insertions is about 22, 29 and 36 for datasets
respectively.

From the above results, it seems that incPreDeCon out-
performs PreDeCon in terms of the required range queries.
As the dataset size increases we see that the speed up fac-
tor increases, which is reasonable since PreDeCon has to
do reclustering from scratch over the new bigger database,
whereas incPreDeCon exploits the so far build clustering
model and only reorganizes the affected part of the old clus-
tering instead of the whole clustering.

6. DISCUSSION
Although the first experimental results are promising, fur-
ther experimentation should be done considering larger datasets
and real world datasets as well. Also, we should experiment
with the number of dimensions and the number of generated
clusters and see how the performance of both incPreDe-
Con and PreDeCon is affected. Anyway, this is an early-
stage work that is also intended to draw the attention of the
research community to the problem of clustering high di-
mensional data streams and initiate discussions for research
challenges and novel solutions.

So far, we presented the effect of an insertion on the result-
ing clustering model. A deletion might also occur, which as

Figure 3: Comparing range queries for D1

Figure 4: Comparing range queries for D2

Figure 5: Comparing range queries for D3

with the insertion case might result in both the creation of
new density based connections and the abolishment of ex-
isting ones. This is due to the fact that the deletion might
change the preferred dimensions of a point and thus the con-
ditions of Definition 7 might now be fulfilled or not. What
we described for the insertion case in Section 4 also holds
for the deletion case. In particular, the deletion of an object
might affect the core member property in its neighborhood
as described in Section 4.1, whereas the general affected ob-
jects are those described in Section 4.2. The reorganization
of the clusters should be initiated by seed objects defined
in Section 4.3, whereas the reorganization process is as de-
scribed in Section 4.4. However, we should run experiments
with deletes also so as to evaluate the performance of the
proposed method.

Furthermore, in this work we considered only single update
operations. We are investigating the case of batch updates;
the idea is to treat the effects of all these updates together
instead of treating each update independently. The rationale
is that the batch might contain updates that are related to
each other (e.g., one update belongs to the neighborhood
of the other). Consider for example, news data: when a
story arises usually within a small time interval there exists
a“burst”of news articles all referring to this story. In case of
batch updates, both PreDeCon would perform since reclus-
tering would take place once the batch is processed and also
incPreDeCon would perform better since the update of the
preference weighted vectors of the affected points, changes in
the core member property and cluster re-organization would
take place once considering the accumulative effect of all up-
dates in the batch. Again, experiments are required in order
to evaluate the performance improvement of our method.

7. CONCLUSIONS
In this paper, we presented the first incremental subspace
clustering algorithm, based on the algorithm PreDeCon.
The update strategy, exploits the density based nature of
clusters managing to restructure only that part of the old
clustering that is affected by the update. Our initial exper-
imental results demonstrate the efficiency of the proposed
method against static PreDeCon. Further evaluation ex-
periments are already described in Section 6 and those com-
prise part of our ongoing work.

The incPreDeCon method described here is suitable for
slowly changing environments, where we also have access
to the raw data. Data Warehouses are such an application
where the data and models are maintained at different levels
of granularity and are updated according to changes in the
data on a regular basis, e.g., every night. As a next step, we
are going to examine dynamic subspace clustering over fast
changing dynamic environments and data streams. Since,
having access to raw data is not the case for such kinds of
environments, one has to consider some condensed structure
for the summarization of the so far built subspace clustering
model and use this summary as the basis for model update.

Also, except for the model update problem, which we inves-
tigate in this work, it is also important to track changes with
respect to the old clustering (e.g., some new cluster might
arise, two or more old clusters might merge into a new sin-
gle cluster or a cluster might change orientation). Finding

such kind of changes is challenging in these settings, since
a cluster is now defined not only in terms of its members
but also in terms of its preferred dimensions. Defining and
efficiently detecting subspace cluster changes comprises part
of our future work.

Finally, there are several methods for subspace clustering
in correspondence to the traditional clustering methods. In
this work, we deal with a specific density based subspace
clustering algorithm. It will be interesting to investigate
other methods as well, and find some unified framework for
turning these methods into dynamic methods.

8. REFERENCES
[1] C. C. Aggarwal. On change diagnosis in evolving data

streams. IEEE Transactions on Knowledge and Data
Engineering, 17(5):587–600, 2005.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. Yu. A
framework for clustering evolving data streams. In
VLDB, pages 81–92, 2003.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for projected clustering of high dimensional
data streams. In VLDB, pages 852–863, 2004.

[4] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. ACM
SIGMOD Record, 27(2):94–105, 1998.

[5] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander. OPTICS: Ordering points to identify the
clustering structure. In SIGMOD, pages 49–60, 1999.

[6] C. Bohm, K. Kailing, H.-P. Kriegel, and P. Kröger.
Density connected clustering with local subspace
preferences. In ICDM, pages 27–34, 2004.

[7] M. Charikar, C. Chekuri, T. Feder, and R. Motwani.
Incremental clustering and dynamic information
retrieval. SIAM Journal on Computing,
33(6):1417–1440, 2004.

[8] C.-Y. Chen, S.-C. Hwang, and Y.-J. Oyang. An
incremental hierarchical data clustering algorithm
based on gravity theory. In PAKDD, pages 237–250,
2002.

[9] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and
X. Xu. Incremental clustering for mining in a data
warehousing environment. In VLDB, pages 323–333,
1998.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD, pages
226–231, 1996.

[11] V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon:
Mining and monitoring evolving data. IEEE
Transactions on Knowledge and Data Engineering,
13(1):50–63, 2001.

[12] J. Gao, J. Li, Z. Zhang, and P.-N. Tan. An incremental
data stream clustering algorithm based on dense units
detection. In PAKDD, pages 420–425, 2005.

[13] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying
and mining data streams: you only get one look a
tutorial. In SIGMOD, pages 635–635, 2002.

[14] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice. IEEE Transactions on Knowledge and Data

Engineering, 15(3):515–528, 2003.

[15] J. Han and M. Kamber. Data mining: concepts and
techniques. Morgan Kaufmann Publishers Inc., 2000.

[16] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM Computer Surveys,
31(3):264–323, 1999.

[17] H.-P. Kriegel, P. Kröger, and I. Gotlibovich.
Incremental optics: Efficient computation of updates
in a hierarchical cluster ordering. In DaWaK, pages
224–233, 2003.

[18] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering
high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation
clustering. IEEE Transactions on Knowledge and Data
Engineering, 3(1):1–58, 2009.

[19] H. Yang, S. Parthasarathy, and S. Mehta. A
generalized framework for mining spatio-temporal
patterns in scientific data. In KDD, pages 716–721,
2005.

[20] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A
new data clustering algorithm and its applications.
Data Mining and Knowledge Discovery, 1(2):141–182,
1997.

