
Summarizing Cluster Evolution in Dynamic
Environments

Irene Ntoutsi1,3, Myra Spiliopoulou2, Yannis Theodoridis3

1Institute for Informatics, Ludwig-Maximilians-Universität München, Germany
http://www.dbs.ifi.lmu.de

ntoutsi@dbs.ifi.lmu.de
2School of Computer Science, University of Magdeburg, Magdeburg, Germany
http://omen.cs.uni-magdeburg.de/itikmd/home/index.html

myra@iti.cs.uni-magdeburg.de
3Department of Informatics, University of Piraeus, Greece

http://infolab.cs.unipi.gr/
ytheod@unipi.gr

Abstract. Monitoring and interpretation of changing patterns is a task of paramount
importance for data mining applications in dynamic environments. While there is
much research in adapting patterns in the presence of drift or shift, there is less
research on how to maintain an overview of pattern changes over time. A ma-
jor challenge lays in summarizing changes in an effective way, so that the nature
of change can be understood by the user, while the demand on resources remains
low. To this end, we propose FINGERPRINT, an environment for the summariza-
tion of cluster evolution. Cluster changes are captured into an “evolution graph”,
which is then summarized based on cluster similarity into a fingerprint of evo-
lution by merging similar clusters. We propose a batch summarization method
that traverses and summarizes the Evolution Graph as a whole, and an incremen-
tal method that is applied during the process of cluster transition discovery. We
present experiments on different data streams and discuss the space reduction and
information preservation achieved by the two methods.

1 Introduction

Data streams are used in many modern applications and impose new challenges for the
data management systems because of their size and high degree of variability. One of
the challenges is the efficient detection and monitoring of changes in the underlying
population. For example, changes in the patterns known to a network intrusion detec-
tion system may indicate that intruders test new attacks and abandon old, already known
(and blocked) intrusion patterns. In general, monitoring of change is essential for appli-
cations demanding long–term prediction and proaction. While much research has been
recently devoted to pattern change detection, little work has been done on the efficient
maintenance of the pattern changes.

The maintenance and summarization of pattern changes upon a stream is a new
problem. Summarization of data (rather than patterns), however, has been studied ex-
tensively: Popular summarization methods include histograms and wavelets, and there

is much work on the efficient maintenance of these structures and on the adaptation of
their contents when data change; however, these methods do not show how the data
change nor do they maintain the changes themselves. There is also research on storing,
modifying and querying patterns in inductive or conventional databases (e.g. [4]); how-
ever, those approaches have not been designed for patterns over streams and, although
there is provision for modifying patterns when new data arrive, there are no solutions
on the efficient maintenance of changes over time. Finally, there are methods for pattern
change detection (e.g. [1, 12, 13]), in which different types of change can be identified
and highlighted; however, the efficient long-term maintenance of the changes over an
“infinite” stream is not considered.

Evolution is a permanent characteristic of streamed data, thus long-term perusal
requires a space-efficient accommodation of the evolving patterns and a representation
that highlights remarkable changes while suppressing trivial pattern perturbations. In
this study, we propose a graph representation of pattern changes/transitions and two
algorithms that condense this graph into a “fingerprint” - a structure in which similar
patterns are efficiently summarized, subject to an information loss function.

The rest of the paper is organized as follows: Related work is discussed in Section 2.
In Section 3, we present our graph model for the representation of cluster transitions.
The criteria for the summarization of cluster changes and the actual summarization
methods are presented in Section 4. Experiments are presented in Section 5. Section 6
concludes our work.

2 Related Work

Summarization methods: Summarization for a set of transactions with categorical at-
tributes is studied by Chandola and Kumar [6]. In one of their methods, they derive
summaries by clustering the transactions, extracting the feature/value pairs supported
by all transactions in a cluster and using them as cluster summaries. They do not address
the issue of cluster change upon a stream, but propose two metrics that characterize
the output of the summarization algorithm, “compaction gain” and “information loss”.
Quite naturally, our metrics are similarly motivated and have similar names. However,
they summarize static data using clusters, while we summarize evolving clusters upon
an “infinite” stream.

Summarization and change are considered by [10], who study changes of database
content summaries. They define as “content summary” for a database a set of key-
words, weighted on their importance within the database. Meta-search services use
such summaries to select appropriate databases, towards which they issue keyword-
based queries. The reliability of such a summary deteriorates as the contents of the
database change over time. So, the authors propose methods to quantify and detect sum-
mary changes. This study addresses both the issue of summarization over the evolving
database and the discovery of changes. However, the maintenance of the summaries
themselves in a condensed form is beyond the scope of their work. On the other hand,
the proposed FINGERPRINT method emphasizes on the summarization of the discov-
ered population transitions.

The discovery and representation of cluster changes for text streams are studied
by [12]. They apply soft clustering with mixture models at each time period, extract the
representative keyword-list (“theme”) for each cluster and then monitor the evolution of
these lists by tracing divergences between a current keyword list and past ones. Theme
transitions are maintained on a “theme evolution graph”, which is then used to extract
the life cycle of themes (through Hidden Markov Models). The graph structure is used
to reflect pattern changes, but the maintenance of this evergrowing graph is not studied
and the need for summarizing it without losing information is not anticipated.

Stream clustering: Relevant to our work is the work on stream clustering. Usually,
storing an entire data stream or scanning a stream multiple times is impossible due to its
tremendous volume [9]. To this end, several clustering algorithms have been proposed
which aggregate the stream online through some appropriate summary structure and
cluster these summaries offline. This rationale was first introduced in CluStream [2]; the
summary structure, called micro-cluster, is a temporal extension of the cluster feature
vector of BIRCH [15]. CluStream starts with k initial micro–cluster summaries and
as new points arrive, the summaries are updated such that a total of k micro-clusters is
maintained at each time point. The clusters are detected offline using a modified version
of k-Means over summaries instead of raw data; the user chooses the summaries to be
considered by specifying the time interval. Micro-clusters can be observed as cluster
summaries and are indeed designed to reduce space demand. Nonetheless, CluStream
focuses on combining them into clusters rather than in summarizing them. Also, the
information loss effected through summarization is not discussed. The same holds for
DENstream [5] and DStream [7], which also follow the online–offline rationale.

Change detection: Change detection methods are also relevant to our work. Aggar-
wal [1] models clusters through kernel functions and changes as kernel density changes
at each spatial location of the trajectory. The emphasis is on computing change veloc-
ity and finding the locations with the highest velocity - the epicenters. This model of
change is very powerful, but is restricted to data over a fixed feature space. Kalnis et
al [11] propose a special type of cluster change, the moving cluster, whose contents
may change while its density function remains the same during its lifetime. They find
moving clusters by tracing common data records (based on their IDs) between clus-
ters of consecutive timepoints. Yang et al [14] detect formation and dissipation events
upon clusters of spatial scientific data. Their framework supports four types of spa-
tial object association patterns (SOAP), namely Star, Clique, Sequence, and minLink,
which are used to model different interactions among spatial objects. Such methods
however, assume that the feature space does not change. Thus, they cannot be used for
dynamic feature spaces, e.g.n text stream mining, where features are usually frequent
words. Furthermore, hierarchical clustering algorithms cannot be coupled with such a
method. Cluster transition modeling and detection methods are presented in the MONIC
framework of [13], where both changes in the data and in the feature space are antic-
ipated. Differently from the model of [1], MONIC covers changes that involve more
than one cluster (external transitions), such as split and absorption, allowing insights in
the whole clustering. Internal transitions, i.e. changes within a single cluster (shrink,
shift etc.), are also supported. The transition tracking mechanism of MONIC is based
on the contents of the underlying data stream, thus it is independent of the clustering

algorithm and of the cluster summarization method (differently from [12]). For these
reasons, we use the cluster transition model of MONIC as input to our methods for the
summarization of cluster changes.

3 Building the Evolution Graph

We model cluster evolution across a sequence of timepoints t1, . . . , tn and denote as
ξ1, . . . , ξn the clusterings discovered at those timepoints. A clustering ξi, i > 1 may be
the result of a complete re-clustering at ti or of the adaptation of clustering ξi−1. We
further denote as di the substream of data records seen in the interval (ti−1, ti] and as
Di the substream of records, on which ξi is based. Depending on whether data ageing is
considered or not,Di may be equal to the set of all records seen thus far (Di = ∪ij=1dj)
or to the substream seen within a time window.

The Evolution Graph EG ≡ G(V,E) spans the whole period of observation (n
timepoints). The set of nodes V corresponds to the set of clusters seen during this time
period, i.e. V = {ξ1, . . . , ξn}. The set of edges E contains the cluster transitions; For
each e = (v, v′) ∈ E, there is a timepoint ti, 1 ≤ i < n such that v ∈ ξ, v′ ∈ ξi+1.
By this specification of the Evolution Graph, the edges connect nodes/clusters found at
adjacent timepoints. An example is depicted in Fig. 1: A dotted/green edge denotes a
“split” of the source cluster to multiple target clusters. A dashed/orange edge describes
an “absorption”; the source cluster is contained in the target cluster. A solid/blue edge
indicates a “survival”; the source cluster has survived into the target cluster with minor
changes, such as changes in size or homogeneity [13]. This example graph depicts three

Fig. 1. Example of an Evolution Graph (EG)

types of cluster transitions: split, absorption and survival [13]. In the next subsection,
we describe how we assign the semantics of those transitions to the edges of the graph.

3.1 Semantics of the Graph Nodes

A node c ∈ V represents a cluster found at timepoint ti, i.e. belonging to clustering ξi.
A node in the evolution graph is adorned with a “label” c.label or ĉ, i.e. an intensional/

summarized representation of its members. There are many elaborate summarized rep-
resentations proposed in the literature, including micro-clusters [2] and “droplets” over
text data [3]. We opt for two simple representations, the cluster’s centroid for clusters
over arbitrary numerical data and the cluster’s topic for clusters over text data.

Definition 1 (Centroid as Label). Let c be a cluster in an m-dimensional space of
numerical properties. Its centroid is the vector of the mean values c.label ≡ ĉ :=<
µ1 . . . µm >, where µl is the average of the data records’ values across the lth-dimension.

Definition 2 (Keyword-based label). Let c be a cluster of text documents, where each
document di ∈ c is a vector in the feature space of the keywords {k1, . . . , km}. The
cluster label is defined as c.label ≡ ĉ :=< wk1

, . . . , wkm
>, where wkl

is (a) the
frequency of the lth-keyword within c, if this frequency exceeds a boundary b and (b)
zero otherwise.

3.2 Semantics of the Graph Edges

An edge e = (c, c′) ∈ E denotes that a cluster c ∈ ξi found at ti has been “succeeded”
by a cluster c′ ∈ ξi+1 of the next timepoint. Succession means that among the clusters
of ξi+1, the cluster c′ is the one most similar to the cluster c. The semantics of cluster
succession can be designed according to any of the approaches proposed for cluster
evolution monitoring (e.g. [1, 12, 13]). We have opted for the MONIC approach [13]
because it is independent of the the clustering algorithm and can thus be used for any
type of clusters (in contrary to e.g. [1]). Also, it considers ageing of data which is
important for streams. In MONIC, cluster succession is based on the notions of cluster
overlap and cluster matching: Let c be a cluster in clustering ξi at ti and c′ be a cluster
in clustering ξi+1 at ti+1. The overlap of c and c′ is defined as: overlap(c, c′) = |c∩c′|

|c| .
This means that the overlap depends on the members of c that are still remembered at
ti+1. Then, the “best match” or simply “match” of c in ξi+1 is the cluster c′ ∈ ξi+1

that has the maximum overlap to c, subject to a threshold τmatch. If the threshold is not
reached, then there is no match for c in ξi+1, i.e. c has disappeared/died.

The transitions that a cluster might encompass are:

1. survival, denoted as c → c′: c ∈ ξi survives into c′ ∈ ξi+1 iff c′ is the match for c
and there is no other cluster z ∈ ξi, for which c′ is the match.

2. absorption, denoted as c ⊂→ c′: c ∈ ξi is absorbed by c′ ∈ ξi+1 iff c′ is the match
for c and there is at least one more cluster z ∈ ξi, for which c′ is the match.

3. split, denoted as c ⊂→ {c1, . . . , cp}: c ∈ ξi is split into c1, . . . , cp ∈ ξi+1, with
p > 1, iff the overlap of c to each of these clusters exceeds a threshold τsplit and
the overlap of all these clusters to together exceeds the match threshold τ .

4. disappearance, denoted as c → �: c ∈ ξi disappears if none of the above men-
tioned cases holds for ξi+1.

In our Evolution Graph, an edge is drawn from c to c′ for each of the first three
cases; if a cluster has no outgoing edges, then the forth case has occurred. Further, we
adorn the edges with information on the transition type. In particular, let e = (c, c′) ∈ E

be an edge from cluster c ∈ ξi to c′ ∈ ξi+1. Then, the edge e is adorned with a label
e.extTrans that describes the type of external transition as one of {survival ,split ,absorption}.
If a cluster in ξi has no outgoing edge, it has disappeared. If a cluster in ξi+1 has no
ingoing edge, it has just emerged. For an emerged cluster, we form its cluster trace:

Definition 3 (Cluster Trace). Let EG be an Evolution Graph captured for the time-
points t1, . . . , tn. For each emerged cluster c that appeared for the first time at ti (i.e. a
cluster without ingoing edge), we define its “cluster trace”, trace(c) ≡ trace(c, ti), as
the sequence ≺ c1 · c2 · · cm �, where c1 ≡ c, m ≤ n− i and for each ci, i ≥ 2 there
is an edge ei = (ci−1, ci) such that e.extTrans = survival . We denote the traceset of
EG as TEG.

For the Evolution Graph of Fig. 1, the traceset TEG consists of the following se-
quences: (a) trace≺ c11c21c31c41c51 �, indicating that the emerged cluster c11 has sur-
vived across all five timepoints, (b) trace ≺ c22c32c42c52 � of the emerged cluster c22,
one of the clusters to which c12 has been split and (c) the two-node traces ≺ c13c24 �
and ≺ c33c43 �. The other clusters c12, c23, c24 only existed for one timepoint and
therefore built no traces.

3.3 Evolution Graph construction

The Evolution Graph is built incrementally as new clusterings arrive at t1, . . . , tn. The
pseudocode of the algorithm is depicted in Fig. 2. When a new clustering ξi arrives at
ti, i > 1, MONIC [13] is applied on the previous clustering ξi−1 and the current one
ξi (line 4): transitions between clusters of ξi−1, ξi are detected and an edge is added
to the Evolution Graph for each detected transition adorned with information on the
transition type (line 5). Clusters at ξi are also added as nodes to the graph and labels are
assigned to them (line 2). Note that MONIC uses the cluster contents (data members)
for transition detection. Hence, we retain this information until the next timepoint only
(line 6). So, the data members of the clusters at ti−1 are retained only until ti, so as the
transitions between clusters at ti, ti−1 to be detected.

4 Summarizing the Evolution Graph

The Evolution Graph captures the whole history of the population under observation
and allows the study of cluster transitions and the inspection of cluster interrelation-
ships. However, this graph is space consuming and redundant. Concretely, it contains
information about each change but also contains information for clusters that did not
change at all. Hence, we summarize the Evolution Graph in such a way that cluster
transitions are reflected but redundancies are omitted. For this, we summarize traces,
i.e. sequences of cluster survivals, into “fingerprints”. These trace summaries constitute
the “fingerprint” of the Evolution Graph.

4.1 Summarizing a Trace

The summarization process is applied over cluster traces (c.f. Definition 3). Each trace
T is traversed and the “removable” nodes are identified: These are the nodes that can be

BuildEG()
Output: EG = G(V ,E) -- the Evolution Graph
begin
1. while a new clustering ξ i arrives at t i begin
2. EG.addNodes(ξ i.nodes); //Add ξ i clusters in EG
3. if (i==1) then return EG; else j = i− 1; // just for notation
4. E ji =MONICtransitions(ξ j, ξ i); //Detect transitions
5. EG.addEdges(E ji); //Add transitions in EG
6. EG.updateNodes(ξ j.nodes);//Remove redundant information from ξ j
7. end;
8. return EG;
end

Fig. 2. The evolution graph (EG) construction algorithm

replaced by a smaller number of derived nodes, which are called “virtual centers” and
are defined below.

Definition 4 (Virtual Center). Let ≺ c1 . . . cm � be the trace of an emerged cluster
c, trace(c) and let X =≺ cj . . . cj+k � be a subtrace of this trace, i.e. a subsequence
of adjacent nodes in the trace (k ≤ m − 1, j ≥ 1). We define the “virtual center” of
X , vcenter(X) ≡ X̂ as a derived node composed of the averages of the labels of the
nodes in X:

X̂[i] =
1

|X|
∑
ci∈X

ĉ[i]

where ·[i] is the ith dimension and ĉ denotes the label of cluster c. We use the notation
c 7→ X̂ to indicate that cluster c ∈ X has been “mapped to” the virtual center X̂ .

If labels are centroid-based (Definition 1), X̂ is the center of the centroids of the
clusters in X . If labels are keyword-based (Definition 2), X̂ contains the average fre-
quencies of all frequent keywords in the clusters of X .

After introducing the virtual center as the summary of a subtrace, we define the sum-
mary of a trace: It consists of a sequence of nodes, each node being either an original
cluster or a virtual center that summarizes a subtrace.

Definition 5 (Trace Summary). Let T =≺ c1 . . . cm � be a trace. A sequence S =≺
a1 . . . ak � is a “summary” of T if and only if (a) k ≤ m and (b) for each ci ∈ T there
is an aj ∈ S such that either ci = aj or ci 7→ aj , i.e. ci belongs to a subtrace that was
summarized to the virtual center aj .

There are several possible summarizations of a trace, each one corresponding to a
different partitioning of the trace into subtraces and consequently producing different
virtual centers. We are interested in summarizations that achieve high space reduction
while keeping information loss minimal. We generalize these objectives into functions
measuring “space reduction” and “information loss”, as explained below.

The replacement of a subtrace X by its virtual center X̂ results in storage space
reduction, since less nodes are stored, but also in loss of information, since the original
clusters are replaced by a “virtual center”. We model the information loss of each origi-
nal cluster c ∈ X as its distance from the virtual center X̂ to which it has been assigned
after summarization:

ILoss cluster(c, X̂) = dist(ĉ, X̂) (1)

where dist(ĉ, X̂) is the distance between the label of the original cluster ĉ and that of
the virtual center X̂ .

The information loss for a cluster/node is now aggregated at the level of the trace,
to which the node belonged. The space reduction is also defined for traces.

Definition 6 (Information Loss). Let T be a trace and S be a summary of this trace.
The “information loss” of T towards S is:

ILoss trace(T, S) =
∑
c∈T

ILoss cluster(c, ac) (2)

where ac ∈ S corresponds to either the virtual center to which c is mapped after the
summarization or to the cluster c itself. In the latter case, ILoss cluster(c, ac) = 0.

Definition 7 (Space reduction). Let T be a trace and S be a summary of this trace.
The “space reduction” of T towards S is the decrease in the number of nodes and edges
that need to be stored:

SReduction trace(T, S) = (|T |−|S|)+(|T |−1−(|S|−1))
|T |+|T |−1

= 2×(|T |−|S|)
2×|T |−1) ≈

|T |−|S|
|T |

(3)

where |T | is the number of nodes in T and |T |−1 the number of edges among its nodes
(similarly for S).

This definition is similar to the definition of“compaction gain in [6].
Next, we define the “fingerprint” of a trace as a summary, the virtual centers of

which are proximal to the original cluster labels, subject to a distance upper boundary
τ , so that the information loss effected through the replacement of a cluster by a virtual
center is kept low.

Definition 8 (Fingerprint for a Trace). Let T be a trace and S be a summary of T .
S is a “fingerprint” of T if and only if: C1 For each node c ∈ X that is replaced
by a virtual center a ∈ S it holds that dist(ĉ, a) ≤ τ and C2 for each (sub)trace
≺ c1 · . . . · ck � of T that has been summarized into a single virtual center a it holds
that ∀i = 1 . . . , k − 1 : dist(ĉi, ĉi+1) ≤ τ .

By this definition, S is a fingerprint of T if it has partitioned T into subtraces of
clusters that are similar to each other (condition C2) and each such subtrace has a virtual
center that is close to all its original nodes (condition C1).

Once traces are summarized to fingerprints, the Evolution Graph can also be sum-
marized, resulting in space reduction and information loss at the graph level.

Definition 9. Let EG be an Evolution Graph and TEG be its traceset. For each trace
T ∈ TEG, let ST be its fingerprint (Definition 8), subject to a threshold τ on the dis-
tance among centroids. The set SEG := {ST |T ∈ TEG} is the “fingerprint of the
Evolution Graph”. It effects a space reduction SR(EG,SEG) and an information loss
IL(EG,SEG):

SR(EG,SEG) =
∑
T

SReduction trace(T, ST) (4)

IL(EG,SEG) =
∑
T

ILoss trace(T, ST) (5)

We next present the algorithm batchFINGERPRINT that creates the fingerprint
of an Evolution Graph by partitioning traces in such a way that their fingerprints can be
built. This algorithm requires that the Evolution Graph is first constructed and stored
as a whole. Then, we present an online algorithm, incFINGERPRINT, that builds the
fingerprints of the traces incrementally as new cluster transitions are detected. In this
case, the fingerprint is built directly, without requiring the construction of the Evolution
Graph first.

4.2 Batch Summarization of the Graph

batchFINGERPRINT summarizes an Evolution Graph EG by identifying its traces,
building a fingerprint for each trace and substituting the traces in EG with their finger-
prints. batchFINGERPRINT satisfies the two conditions of Definition 8 by applying
two heuristics on each (sub)trace T :

– Heuristic A: If T contains adjacent nodes that are in larger distance from each other
than τ , then the pair of adjacent nodes c, c′ with the maximum distance is detected
and T is then partitioned into T1, T2 so that c is the last node of T1 and c′ is the first
node of T2.

– Heuristic B: If T satisfies condition C2 but contains nodes that are in larger distance
from the virtual center than τ , then T is split as follows: The node c that has the
maximum distance from vcenter(T) is detected and T is partitioned into T1, T2 so
that c is the last node of T1 and its successor c′ is the first node of T2.

Heuristic A deals with violations of condition C2 and Heuristic B deals with violations
of condition C1 for (sub)traces that already satisfy C2. We show the algorithm in Fig. 3.

batchFINGERPRINT creates a fingerprint of the Evolution Graph by traversing
the graph, extracting its traces (line 1, condition C2) and summarizing each of them
(line 4). The “produced” fingerprints of the traces are added to the fingerprint graph
FEG (line 5). This operation encapsulates the attachment of a summarized trace to the
graph by redirecting the ingoing/ outgoing edges of the original trace towards the ends
of the summarized trace.

batchFINGERPRINT invokes summarize HeuristicA which recursively splits
the trace into subtraces according to Heuristic A until C2 is satisfied. If the trace consists
of only one node, then this node is returned (line 1). Otherwise, we test whether the trace
contains nodes whose labels are further off each other than the threshold τ (line 2). If

batchFINGERPRINT(EG)
Input: the Evolution Graph EG
Output: FEG, a fingerprint of EG
1. traverse the EG and extract its traces into T ;
2. FEG = ∅;
3. for each trace T ∈ T do
4. FT = summarize HeuristicA(T);
5. FEG.addTrace(FT);
6. end-for

summarize HeuristicA(T)
Input: a trace T
Output: a fingerprint of the trace
1. if |T | == 1 then return T ;
2. if C b is not satisfied then
3. find c ∈ T such that

∀(y, z) ∈ T 1 : dist(y, z) < dist(c, c next) and
∀(y, z) ∈ T 2 : dist(y, z) < dist(c, c next) ;

4. split T into T 1 =≺ c 1, . . . , c � and T 2 =≺ c next, . . . , c k �;
5. FT 1 = summarize HeuristicA(T 1);
6. FT 2 = summarize HeuristicA(T 2);
7. return ≺ FT 1 · FT 2 �;
8. else return summarize HeuristicB(T);
9. endif

summarize HeuristicB(T)
Input: a trace T
Output: a fingerprint of the trace
1. v = vcenter(T);
2. if ∀y ∈ T : dist(y, v) < τ then return v; // Condition C1
3. else
4. find c ∈ T such that dist(c, v) = max{dist(y, v)|y ∈ T};
5. split T into T 1 =≺ c 1, . . . , c � and T 2 =≺ c next, . . . , c k �;
6. FT 1 = summarize HeuristicB(T 1);
7. FT 2 = summarize HeuristicB(T 2);
8. return ≺ FT 1 · FT 2 �;

Fig. 3. batchFINGERPRINT for offline summarization of the Evolution Graph

C2 is satisfied, then summarize HeuristicB is invoked (line 8): It checks for condition
C1 and returns the fingerprint of the (sub)trace input to it. If C2 is violated, the trace is
partitioned according to Heuristic A (lines 3,4) and summarize HeuristicA is invoked
for each partition (lines 5, 6). Finally, the summarized (sub)traces are concatenated
(line 7) and returned. This concatenation operation restores or redirects the edges across
which the split (line 4) was performed.

The recursive function summarize HeuristicB operates similarly. It takes as input
a (sub)trace T that has more than one nodes and satisfies condition C2. It builds the

virtual center for T according to Definition 4. It then checks condition C1 by com-
paring the distance of the virtual center from each node to τ (line 2). If τ is not ex-
ceeded, the virtual center is returned (line 3). Otherwise, T is split at the node that has
the highest distance from the virtual center, according to Heuristic B (lines 5, 6). The
summarize HeuristicB is invoked for each partition (lines 7, 8). The returned finger-
prints are concatenated into the fingerprint of T .

4.3 Incremental Summarization

The batch summarization algorithm of Fig. 3 requires as input the complete Evolu-
tion Graph, before building its fingerprint. This is resource-intensive, since the graph is
growing continuously. We have therefore designed incFINGERPRINT, an algorithm
that summarizes the traces incrementally and does not require the a priori construction
of the Evolution Graph. We show incFINGERPRINT in Figure 4.

incFINGERPRINT(FEG)
Input: FEG // the fingerprint built so far

ζ // the most recent clustering, build at timepoint t i− 1
ξ // the current clustering, build at the current timepoint t i

Output: FEG // the updated fingerprint
1. E i=MONICtransitions(ζ, ξ);
2. for each edge e = (x, y) ∈ E i do
3. if e.extTrans 6= ‘‘survival’’ then
4. FEG.addNode(y);
5. FEG.addEdge(e);
6. else if dist(x.label, ŷ) ≥ τ then // C2 is violated
7. FEG.addNode(y);
8. FEG.addEdge(e);
9. else
10. v = vcenter(x, y);
11. FEG.replaceNode(x, v);
12. endif
13. end-for
14. return FEG;

Fig. 4. incFINGERPRINT for online construction and summarization of the Evolution Graph

incFINGERPRINT invokes MONIC (line 1), which compares the current cluster-
ing ξ (timepoint ti) to the most recent one ζ (timepoint ti−1), identifies the cluster tran-
sitions and returns them as a set Ei of labeled edges, according to Subsection 3.2. The
source of each edge corresponds to a node that is already in the fingerprint graph FEG.
It is stressed that MONIC operates on the clusterings rather than the cluster labels re-
tained in the nodes of the fingerprint graph. So, from line 2 on, incFINGERPRINT
transfers information about the detected transitions in the FEG, summarizing survivals
wherever possible. The result is an already summarized version of the Evolution Graph.

For each edge e = (x, y), incFINGERPRINT examines whether e is a survival
transition (line 3), i.e. whether e is part of a trace. If not, FEG is expanded by adding
the cluster y and the edge e (lines 4, 5). We do not add the whole cluster; we only retain
its label (cf. Subsection 3.1).

If e = (x, y) does belong to a trace, incFINGERPRINT checks whether the labels
of x and y are similar to each other, according to condition C2 of Definition 8 (line 6).
Since cluster x has already been added to FEG, we access its label x.label directly,
while the label of cluster y must be computed as ŷ. If condition C2 is not satisfied, the
FEG is expanded by y and e as before. If finally, C2 is satisfied, then y and e do not
need to be added to FEG. Instead, x and y are summarized into their virtual center v
(line 10) and the node x is replaced by v (line 11). This means that all edges pointing
to x are redirected to v.

incFINGERPRINT not need to check for condition C1, since the distance of the
virtual center of two nodes is less than the distance between the two nodes as a whole;
the latter is less than τ by virtue of condition C2. This algorithm operates locally, treat-
ing pairs of adjacent nodes only, instead of whole traces. However, it has the advantage
of not requiring the a priori construction of the Evolution Graph.

5 Experimental Results

The goal of our experiments is to measure the space reduction and information loss for
different values of the centroid similarity threshold τ (c.f. Definition 8) that governs the
summarization process.

5.1 Datasets

We experimented with two numerical datasets, the Network Intrusion dataset and the
Charitable Donation dataset, used also in the stream experiments of [2], and with the
document set ACM H2.8 used in the experiments of MONIC [13]. The first dataset is
rapidly evolving, the second one is relatively stable, while the third one evolves in an
unbalanced way - one of the classes grows faster than the others.

The Network Intrusion dataset (KDD Cup’99) contains TCP connection logs from
two weeks of LAN network traffic (424,021 records). Each record corresponds to a
normal connection or an attack. The attacks fall into four main categories: DOS, R2L,
U2R, and PROBING. So, we set the number of clusters to 5, including the class of
normal connections. We used all 34 continuous attributes for clustering and removed
one outlier point, as in [2]. We turned the dataset into a stream by sorting on the data
input order. We assumed a uniform flow in speed of 2,000 instances per time period.
For data ageing, we assumed a sliding window of 2 time periods/timepoints.

The Charitable Donation dataset (KDD Cup’98) contains information (95,412 records)
on people who have made charitable donations in response to direct mailings. Cluster-
ing identifies groups of donors with similar donation behavior. Similar to [8], we used
56 out of the 481 fields and set the number of clusters to 10. As with the previous
dataset, we used the data input order for streaming and assumed a uniform flow with
200 instances per time period. For data ageing, we used a sliding window of size 2.

The ACM H2.8 subarchive is the set of documents inserted between 1997 and 2004
in the ACM Digital Library, category H2.8 on “Database Applications”. This dataset
contains publications on (1) data mining, (2) spatial databases, (3) image databases, (4)
statistical databases and (5) scientific databases. It further contains (6) uncategorized
documents, i.e. those assigned in the parent class “database applications [only]”. The
subarchive consists of the documents whose primary (or secondary) class is one of these
6 classes (4,920 records). It evolves in an unbalanced way [13]: The category (1) is
larger than all the others together and grows faster than the others. For the experiments
in [13], only the title and a list of keywords were considered for each document. We
have used the same vectors and the same clustering algorithm, bisecting K-means, for
K = 10. We turned the data into a stream by using the publication date for the ordering
of the records. We considered n = 7 timepoints corresponding to the 7 publication
years from 19981 to 2004; the corresponding data batches have different sizes varying
from 837 in 1998 to 617 in 2004. The size of the sliding window was set to 2. A cluster
label consists of the terms appearing in more than 60% of the cluster’s vectors.

5.2 Example traces and fingerprints

To highlight the behavior of the summarization algorithms, we depict here some traces
from the ACM H2.8 dataset and their fingerprints, as produced by our summarization
algorithms.

In 1998, we observe a new cluster with the label “information systems”. Its trace is
trace(c19982) =≺ c19982c19996c20003 �, where the notation cyi

refers to the ith cluster
of year y, with i = 1 . . . 9 (cluster 0 is the garbage cluster) 2. The cluster centroids
contain the terms “information” and “system” with the following frequencies:
ĉ19982 =< information(0.96), system(0.61) >,
ĉ19996 =< information(0.88), system(0.74) > and
ĉ20003 =< information(0.76), system(0.78) >.
Both summarization algorithms condense this trace into a single virtual center. The
batch algorithm creates this new node v in one step:
v̂ =< information(0.87), system(0.71) >,
while the incremental first summarizes c19982 and c19996 into a virtual center:
v̂0 =< information(0.92), system(0.68) >,
and then summarizes v0 and c20003 into a new virtual center:
v̂′ =< information(0.84), system(0.73) >.

A further cluster that emerged in 1998 had the one-term label < analysis(1.0) >.
In 1999, it was split into two clusters, one labeled < mining(1.0), datum(0.74) >
and one cluster with no label (garbage cluster). The former survived for two periods,
thus resulting in the trace ≺ c19998c20004c20016 �. The information delivered without
summarization is the sequence ≺ c19989c19998c20004c20016 �; c19989

⊂→ {c19998 ,≺
c20004c20016 �}; the summarization delivers the fingerprint c19989

⊂→ {c19998 , v̂} in-
stead, where v̂ is the summary of the trace ≺ c20004c20016 �.

1 The timepoint 1998 includes publications of both 1997 and 1998, since the former contains
only a small number of publications.

2 Cluster identifiers are generated by the clustering algorithm at each timepoint.

5.3 Space Reduction and Information Loss

In Fig. 5 we show the space reduction achieved by the batch and the incremental sum-
marization methods for each dataset and for different values of the centroid similarity
threshold τ . As we can see from this figure, the two algorithms achieve similar space

0 3

0,4

0,5

0,6

0,7

0,8

0,9

1

ac
e

re
du

ct
io

n

Impact of distance threshold (τ) on space reduction

0

0,1

0,2

0,3

0,01 0,02 0,03 0,04 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Sp
a

Distance threshold (τ)

BatchFINGERPRINT IncrementalFINGERPRINT

0 3

0,4

0,5

0,6

0,7

0,8

0,9

1

ce
 re

du
ct

io
n

Impact of distance threshold (τ) on space reduction

0

0,1

0,2

0,3

0,01 0,02 0,03 0,04 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Sp
a

Distance threshold (τ)
BatchFINGERPRINT IncrementalFINGERPRINT

Fig. 5. Impact of threshold τ on space reduction for the Network Intrusion dataset (left) and the
Charitable Donation dataset (right)

savings, although incFINGERPRINT shows slightly lower values for most values of
τ in the Network Intrusion dataset. As expected, the space reduction increases for larger
values of τ , because less proximal centroids can be merged. The total space reduction
for each dataset depend of course on the number of survivals per se: Among the total of
1,195 clusters/nodes generated for the Network Intrusion dataset, 400 nodes participate
in traces; the space reduction values achieved by both algorithms are in the range [21%,
33%] of the total size of the Evolution Graph. The Evolution Graph of the Charitable
Donation dataset contained 4,770 clusters, of which 614 were involved in traces; the
space reduction over the whole graph were thus no more than 7%. For the ACM H2.8
subarchive, 24 out of 70 nodes were involved in traces, so that the space reduction over
the whole graph ranged between 9% and 33%.

In Fig. 6 we depict the information loss effected upon the datasets when summariz-
ing incrementally versus in batch. For the Charitable Donation dataset, the information
loss incurred by the incremental algorithm is slightly higher than for the batch algo-
rithm but follows the same curve for different values of τ . For the Network Intrusion
dataset, the performance difference is dramatic: While the batch algorithm achieves a
very low information loss, the incremental algorithm performs very poorly. A possible
explanation for the poor performance of incFINGERPRINT in the Network Intrusion
dataset is the volatility of the dataset: It is likely that the survived clusters were unstable
and not very similar to each other. Hence, incFINGERPRINT produced virtual centers
that were not very close to the original pairs of centroids, while batchFINGERPRINT
managed to build better virtual centers among multiple adjacent centroids.

In Fig. 7 we show the joint curves of space reduction and information loss for the
two datasets and for different values of the centroid similarity threshold τ .

15

20

25

30

35

40

45

50

rm
at

io
n

lo
ss

Impact of distance threshold (τ) on information loss

0

5

10

15

0,01 0,02 0,03 0,04 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7

In
fo

Distance threshold (τ)

BatchFINGERPRINT IncrementalFINGERPRINT

30

40

50

60

70

80

90

fo
rm

at
io

n
lo

ss

Impact of distance threshold (τ) on information loss

0

10

20

0,01 0,02 0,03 0,04 0,05 0,1 0,2 0,3 0,4 0,5 0,6 0,7

In
f

Distance threshold (τ)

BatchFINGERPRINT IncrementalFINGERPRINT

Fig. 6. Impact of threshold τ on information loss for the Network Intrusion dataset(left) and the
Charitable Donation dataset (right)

15

20

25

30

35

40

45

50

rm
at

io
n

lo
ss

Information loss vs space reduction

0

5

10

15

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

In
fo

r

Space reduction

BatchFINGERPRINT IncrementalFINGERPRINT

30

40

50

60

70

80

90

rm
at

io
n

lo
ss

Information loss vs space reduction

0

10

20

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

In
fo

r

Space reduction

BatchFINGERPRINT IncrementalFINGERPRINT

Fig. 7. Correlation between information loss and space reduction for Network Intrusion dataset
(left) and the Charitable Donation dataset (right) for different values of τ

6 Conclusions and Outlook

We have studied the effective summarization of cluster changes over an evolving stream
of data. We modeled cluster transitions in a graph structure, the Evolution Graph, and
proposed two algorithms that summarize it into a “fingerprint”. A fingerprint is a con-
densed representation, in which less informative cluster transitions are suppressed. We
derived functions that measure the effected information loss and space reduction and
we presented heuristics that drive the summarization process. One of our algorithms
summarizes the Evolution Graph as a whole, while the other creates the graph’s fin-
gerprint incrementally, during the process of cluster transition discovery. We have run
experiments on three real datasets and have seen that incFINGERPRINT achieves
similar space reduction to batchFINGERPRINT, but the information loss may be
much higher depending on the volatility of the dataset.

The batch algorithm batchFINGERPRINT shows better performance comparing
to the incFINGERPRINT algorithm, but it requires the whole dataset of transitions as
an input. A hybrid summarization algorithm using both an online and an offline com-
ponent is worth pursuing. Another interesting direction is modeling and investigation
of the impact of the quality and stability of the original clustering on the summarization
process. In this work, we have concentrated on the summarization of cluster survivals.
A survival is the transition of a cluster to a similar successor cluster. Instead of placing

constraints on the similarity among clusters, we want to study models of information
loss for the summarization of arbitrary cluster transitions, so that only the most infor-
mative changes are delivered to the end-user.

7 Acknowledgments

Irene Ntoutsi is supported by an Alexander von Humboldt Foundation fellowship for
postdocs (http://www.humboldt-foundation.de/). Part of this work has been conducted
while I. Ntoutsi was at the Department of Informatics, University of Piraeus, Greece
supported by the Heracletos program.

References

1. Aggarwal, C.C.: On change diagnosis in evolving data streams. IEEE Trans. Knowl. Data
Eng. 17(5), 587–600 (2005)

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.: A framework for clustering evolving data streams.
In: VLDB (2003)

3. Aggarwal, C.C., Yu, P.S.: A framework for clustering massive text and categorical data
streams. In: SIAM Data Mining Conf. (2006)

4. Bartolini, I., Ciaccia, P., Ntoutsi, I., Patella, M., Theodoridis, Y.: A unified and flexible frame-
work for comparing simple and complex patterns. In: ECML/PKDD 2004 (2004)

5. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream
with noise. In: SDM06 (2006)

6. Chandola, V., Kumar, V.: Summarization – compressing data into an informative representa-
tion. In: ICDM (2005)

7. Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: KDD. pp. 133–142
(2007)

8. Farnstrom, F., Lewis, J., Elkan, C.: Scalability for clustering algorithms revisited. SIGKDD
Explorations 2(1), 51–57 (2000)

9. Gama, J.: Knowledge Discovery from Data Streams. CRC Press (2010)
10. Ipeirotis, P.G., Ntoulas, A., Cho, J., Gravano, L.: Modeling and managing content changes

in text databases. In: ICDE. pp. 606–617 (2005)
11. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal

data. In: SSTD. pp. 364–381 (2005)
12. Mei, Q., Zhai, C.: Discovering evolutionary theme patterns from text: an exploration of tem-

poral text mining. In: KDD. pp. 198–207 (2005)
13. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: Monic: Mdeling and Monitoring

Cluster Transitions. In: KDD. pp. 706–711 (2006)
14. Yang, H., Parthasarathy, S., Mehta, S.: A generalized framework for mining spatio-temporal

patterns in scientific data. In: KDD05 (2005)
15. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for

very large databases. In: SIGMOD96. pp. 103–114 (1996)

