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 High dimensionality
 We tend to store more and more details regarding our applications

 Dynamic nature
 We tend to keep track of the population evolution over time

 Due to the advances in hardware/ software, we have nowadays 
the ability to store all these data 

 Applications: Telco, Banks, Retail industry, WWW ...

Density Based Subspace Clustering over Dynamic Data 3

The clustering problem becomes even 
harder under these characteristics!



 Data evolution  cluster evolution
 How can we maintain online the clusters as new data arrive over time?

 Different lines of research, corresponding to different 
application requirements:

 Incremental methods
▪ Appropriate for data arriving at a low rate

▪ Require access to the raw data for the re-arrangement of the clustering, but produces 
lossless results (e.g. incDBSCAN, incOPTICS)

 Stream methods
▪ Appropriate for data arriving at a rapid rate

▪ No random access to the raw data, work upon summaries, thus produce lossy results 
(e.g. CluStream, DenStream)
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1. The “curse of dimensionality”
 (Dmax_d – Dmin_d) / Dmin_d converges to zero with 

increasing dimensionality d
▪ Dmin_d: distance to the nearest neighbor in d dimensions

▪ Dmax_d: distance to the farthest neighbor in d dimensions

2. Different features may be relevant for different 
clusters
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 Different solutions have been proposed:

 Feature selection methods (e.g. PCA): fail in 2., because they are global

 Subspace clustering methods: search for both clusters and subspaces 
where these clusters exist
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 We chose: 
 Incremental clustering to deal with the dynamic nature of the data
 Subspace clustering to deal with the high dimensionality of the data

 We work with the (static) algorithm PreDeCon:
 a subspace clustering algorithm
 relies on a density based model  updates are expected to cause only 

limited local changes

 We propose an incremental version that maintains density 
based subspace clusters as new data arrive over time

▪ Allows both points and dimensions associated to a cluster to evolve
▪ Deals with both single and batch updates
▪ Can serve as a framework for monitoring changes in dynamic 

environments
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 Extends DBSCAN to high dimensional spaces by incorporating 
the notion of dimension preferences in the distance function

 For each point p, it defines its subspace preference vector:

 VARi is the variance along dimension j in  Nε(p):
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p

Ai

Aj

δ, κ (κ>>1) are input parameters



 Preference weighted distance function:

 Preference weighted ε-neighborhood:
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 Preference weighted core points:

 Direct density reachability, reachability and 
connectivity are defined based on preference  
weighted core points

 A subspace preference cluster is a maximal 
density connected set of points  associated 
with a certain subspace preference vector.
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 Observation: A subspace preference 
cluster is uniquely determined by one 
of its preference weighted core points.

 Idea: Check whether the insertion of a 
new point p affects the core member 
property of the points in the dataset
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 3 interesting changes might occur w.r.t. core property:
 a non-core point might turn into core  new density connections
 a core point might turn into non-core  demolished density 

connections
 a core point might remain core, but under different dimension 

preferences  both cases

p

λ=1
μ=6



 The insertion of p, directly affects the points q        
in its ε-neighborhood.
 Nε(q) is affected because p is now a member of it
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The core property 
of q might be 

affected
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p q


v 

λ=1
μ=6

 non-core  core  core  non-core  core  core, under 
different preferences

 Effect in core property:



 The change in the core property of q, might cause changes to 
points that are preference weighted reachable from q:
 if q: corenon-core, any density  

connectivity relying on q is 

destroyed

 if q: non-corecore, some new
density connectivity might arise

 If q core  core but under different 
dimension preferences, both might occur 

 Affected points:
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 Naïve solution: cluster AFFECTEDD(p) from scratch
 But, any changes in AFFECTEDD(p) are initiated by points in 

Nε(p)
 No need to consider all points in Nε(p),  just those with affected 

core member property (AFFECTEDCORE)

 If a point q’ is an affected core point, we consider as seeds points 
for its update any core point q in its preferred neighborhood.

 Apply the expand procedure of PreDeCon using the points in the 
UPDSEED
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 Idea: Don’t treat insertions separately, rather 
insert the whole batch and update the 
clustering based on the whole batch

 Is more efficient since some computations might 
take place only once:
 The preference vector computation for each point

 The set of affected core points

 The affected points
 Efficient for cases where the updates are related 

to each other
 e.g. they might correspond to patients suffering from a 

specific disease
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 We compared incPreDeCon to PreDeCon
 We evaluated # range queries required by each algorithm

 For each dataset, 
 Perform 100 random inserts

 Compute the  range queries for PreDeCon

 Compute the  range queries for incPreDeCon
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 Varying the population  Varying the dimensions
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 Random updates  “Local” updates
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 Concentration of different metabolites in the blood of 
newborns in Bavaria
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 We proposed a density based subspace clustering algorithm for 
dynamic data
 It allows both points and dimensions associated to a cluster to evolve 

over time

 It deals with single and batch updates

 It can serve as a framework for monitoring changes in dynamic 
environments
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Partitioning 
methods

Inc/ Stream 
clustering

• Single-pass k-Means
• STREAM k-Means
• CluStream

• k-Means
• k-Medoids

• DenStream
• incDBSCAN
• incOPTICS

• DBSCAN
• OPTICS

• STING • DStream

Density-based 
methods

Grid-based 
methods
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Static 
clustering

Subspace 
clustering

•PROCLUS

•PreDeCon

•CLIQUE

Inc/ Stream 
Subspace 
clustering

•HPStream

•incPreDeCon

•DUCStream
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Thank you
for your attention!



The speaker‘s attendance at this conference was sponsored by
the Alexander von Humboldt Foundation

http://www.humboldt-foundation.de
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