Density Based Subspace Clustering over Dynamic Data

Hans-Peter Kriegel, Peer Kröger, Irene Ntoutsi, Arthur Zimek

Ludwig-Maximilians-Universität (LMU) Munich, Germany www.dbs.ifi.lmu.de

SSDBM, 20-22/7/2011, Portland OR

Outline

Motivation

- Subspace clustering for static data (PreDeCon)
- Subspace clustering for dynamic data (incPreDeCon)
- Experiments
- Conclusions & Outlook

Modern data properties

- High dimensionality
 - We tend to store more and more details regarding our applications
- Dynamic nature
 - We tend to keep track of the population evolution over time
- Due to the advances in hardware/ software, we have nowadays the ability to store all these data

Applications: Telco, Banks, Retail industry, WWW ...

The clustering problem becomes even harder under these characteristics!

Dynamic nature of data

- Data evolution
 cluster evolution
 - How can we maintain online the clusters as new data arrive over time?
- Different lines of research, corresponding to different application requirements:
 - Incremental methods
 - Appropriate for data arriving at a low rate
 - Require access to the raw data for the re-arrangement of the clustering, but produces lossless results (e.g. incDBSCAN, incOPTICS)
 - Stream methods
 - Appropriate for data arriving at a rapid rate
 - No random access to the raw data, work upon summaries, thus produce lossy results (e.g. CluStream, DenStream)

High dimensionality of data

1. The "curse of dimensionality"

- (D_{max_d} D_{min_d}) / D_{min_d} converges to zero with increasing dimensionality d
 - D_{min d}: distance to the nearest neighbor in d dimensions
 - D_{max d}: distance to the farthest neighbor in d dimensions
- 2. Different features may be relevant for different clusters
- Different solutions have been proposed:
 - Feature selection methods (e.g. PCA): fail in 2., because they are global
 - Subspace clustering methods: search for both clusters and subspaces where these clusters exist

Our approach

- We chose:
 - Incremental clustering to deal with the dynamic nature of the data
 - *Subspace* clustering to deal with the high dimensionality of the data
- We work with the (static) algorithm PreDeCon:
 - a subspace clustering algorithm
 - relies on a density based model → updates are expected to cause only limited local changes
- We propose an incremental version that maintains density based subspace clusters as new data arrive over time
 - Allows both points and dimensions associated to a cluster to evolve
 - Deals with both single and batch updates
 - Can serve as a framework for monitoring changes in dynamic environments

Motivation

Subspace clustering for static data (PreDeCon)

- Subspace clustering for dynamic data (incPreDeCon)
- Experiments
- Conclusions & Outlook

PreDeCon basics - I

- Extends DBSCAN to high dimensional spaces by incorporating the notion of dimension preferences in the distance function
- For each point p, it defines its subspace preference vector:

$$\overline{\mathbf{w}}_p = (w_1, w_2, \dots w_d) \qquad \qquad w_i = \begin{cases} 1 & \text{if } \operatorname{VAR}_i > \delta \\ \kappa & \text{if } \operatorname{VAR}_i \le \delta \end{cases}$$

• V_{AR_i} is the variance along dimension j in $N_{\epsilon}(p)$:

Λ

PreDeCon basics - II

Preference weighted distance function:

$$dist_{\underline{p}}(p,q) = \sqrt{\sum_{i=1}^{d} \frac{1}{w_i}} (\pi_{A_i}(p) - \pi_{A_i}(q))^2$$

 $dist_{pref}(p,q) = \max\{dist_{\underline{p}}(p,q), dist_{\underline{q}}(q,p)\}$

Preference weighted ε-neighborhood:

$$\mathcal{N}^{\bar{\mathbf{w}}_p}_{\varepsilon}(p) = \{ x \in \mathcal{D} \, | \, dist_{pref}(p, x) \le \varepsilon \}$$

simple ε-neighborhood

preference weighted ε-neighborhood

PreDeCon: Subspace preference clusters

Preference weighted core points:

$$\operatorname{CORE}_{\operatorname{den}}^{\operatorname{pref}}(p) \Leftrightarrow \operatorname{PDIM}(\mathcal{N}_{\varepsilon}(p)) \leq \lambda \wedge \left| \mathcal{N}_{\varepsilon}^{\overline{\mathbf{w}}_{o}}(p) \right| \geq \mu$$

- Direct density reachability, reachability and connectivity are defined based on preference weighted core points
- A subspace preference cluster is a maximal density connected set of points associated with a certain subspace preference vector.

- Motivation
- Subspace clustering for static data (PreDeCon)
 - Subspace clustering for dynamic data (incPreDeCon)
- Experiments
- Conclusions & Outlook

PreDeCon over dynamic data

- Observation: A subspace preference cluster is uniquely determined by one of its preference weighted core points.
- Idea: Check whether the insertion of a new point p affects the core member property of the points in the dataset

- 3 interesting changes might occur w.r.t. core property:
 - a non-core point might turn into core → new density connections
 - a core point might turn into non-core

 demolished density connections
 - a core point might remain core, but under different dimension preferences → both cases

Affected core points

- The insertion of p, *directly* affects the points q in its ε-neighborhood.
 - N_ε(q) is affected because p is now a member of it

$$\mathcal{N}_{\varepsilon}(q) \rightarrow \mathbb{VAR}_{A_{i}}(\mathcal{N}_{\varepsilon}(q)) \rightarrow \mathbb{W}_{q} \rightarrow \mathbb{PDIM}(\mathcal{N}_{\varepsilon}(q))$$

$$\mathcal{N}_{\varepsilon}^{\mathbf{w}_{q}}(q) \rightarrow \mathbb{PDIM}(\mathcal{N}_{\varepsilon}(p)) \leq \lambda \wedge |\mathcal{N}_{\varepsilon}^{\mathbf{w}_{o}}(p)| \geq \mu$$

$$\mathcal{N}_{\varepsilon}^{\mathbf{w}}(q) \rightarrow \mathbb{PDIM}(\mathcal{N}_{\varepsilon}(p)) \leq \lambda \wedge |\mathcal{N}_{\varepsilon}^{\mathbf{w}_{o}}(p)| \geq \mu$$

$$\mathcal{N}_{\varepsilon}^{\mathbf{w}_{o}}(q) \rightarrow \mathbb{PDIM}(\mathcal{N}_{\varepsilon}(p)) \leq \lambda \wedge |\mathcal{N}_{\varepsilon}^{\mathbf{w}_{o}}(p)| \geq \mu$$

- Effect in core property:
- non-core \rightarrow core $\lambda=1$ $\mu=6$

■ core → non-core

 core → core, under different preferences

q

Affected points

- The change in the core property of q, might cause changes to points that are preference weighted reachable from q:
 - if q: core → non-core, any density connectivity relying on q is destroyed
 - if q: non-core → core, some new density connectivity might arise
 - If q core → core but under different dimension preferences, both might occur
- Affected points:

 $AFFECTED_{\mathcal{D}}(p) = \mathcal{N}_{\varepsilon}(p) \quad \cup \quad \{q | \exists o \in \mathcal{N}_{\varepsilon}(p) : REACH_{den}^{pref}(o,q) \text{ in } \mathcal{D}^* \}$

 $\mathcal{D}^* = \mathcal{D} \cup \{p\}$

Restructuring the affected objects

- Naïve solution: cluster AFFECTED_D(p) from scratch
- But, any changes in AFFECTED_D(p) are initiated by points in N_ε(p)
 - No need to consider all points in N_ε(p), just those with affected core member property (AFFECTEDCORE)
 - If a point q' is an affected core point, we consider as seeds points for its update any core point q in its preferred neighborhood.

UPDSEED = {
$$q \mid q \text{ is core in } \mathcal{D}^*, \exists q' : q \in \mathcal{N}_{\varepsilon}(q') \text{ and}$$

 $q' \text{ changes his core member property in } \mathcal{D}^*$ }
 $\mathcal{D}^* = \mathcal{D} \cup \{p\}$

 Apply the expand procedure of PreDeCon using the points in the UPDSEED

Batch updates

- Idea: Don't treat insertions separately, rather insert the whole batch and update the clustering based on the whole batch
- Is more efficient since some computations might take place only once:
 - The preference vector computation for each point
 - The set of affected core points
 - The affected points
- Efficient for cases where the updates are related to each other
 - e.g. they might correspond to patients suffering from a specific disease

Outline

- Motivation
- Subspace clustering for static data (PreDeCon)
- Subspace clustering for dynamic data (incPreDeCon)

Experiments

Conclusions & Outlook

Experiments

- We compared incPreDeCon to PreDeCon
- We evaluated # range queries required by each algorithm
- For each dataset,
 - Perform 100 random inserts
 - Compute the range queries for PreDeCon
 - Compute the range queries for incPreDeCon

$$SpeedupFactor = \frac{COST_{PREDECON}(\mathcal{D}^*)}{COST_{INCPREDECON}(\mathcal{D} \cup \mathcal{U})}$$

Evaluation (single updates)

Evaluation (batch updates)

Bavarian newborn screening data

 Concentration of different metabolites in the blood of newborns in Bavaria

Outline

- Motivation
- Subspace clustering for static data (PreDeCon)
- Subspace clustering for dynamic data (incPreDeCon)
- Experiments

Conclusions & Outlook

Conclusions

- We proposed a density based subspace clustering algorithm for dynamic data
 - It allows both points and dimensions associated to a cluster to evolve over time
 - It deals with single and batch updates
 - It can serve as a framework for monitoring changes in dynamic environments

Open issues

(instead of listing them, a categorization of the existing approaches)

	Static clustering	Inc/ Stream clustering	Subspace clustering	Inc/ Stream Subspace clustering
Partitioning methods	• k-Means • k-Medoids	 Single-pass k-Means STREAM k-Means CluStream 	•PROCLUS	•HPStream
Density-based methods	• DBSCAN • OPTICS	 DenStream incDBSCAN incOPTICS 	 PreDeCon 	 incPreDeCon
Grid-based methods	• STING	• DStream	•CLIQUE	 DUCStream

Thank you for your attention!

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation

http://www.humboldt-foundation.de

