
International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 27

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Change Detection, Change Monitoring, Change Summarization, Cluster Evolution, Cluster
Summarization, Data Streams, Dynamic Environments

INTRODUCTION

Data streams are used in many modern ap-
plications and impose new challenges for the
data management systems because of their size
and high degree of variability. One of the chal-
lenges is the efficient detection and monitoring
of changes in the underlying population. For
example, changes in the patterns known to a
network intrusion detection system may indicate
that intruders test new attacks and abandon old,
already known (and blocked) intrusion patterns.

In general, monitoring of change is essential for
applications demanding long-term prediction
and pro-action.

Cluster models are commonly used as a tool
for studying the dynamics of a population. In
recent years actually, due to the dynamic nature
of data, it has been recognized that clusters upon
the data of many real applications are affected
by changes in the underlying population of
customer transactions, user activities, network
accesses or documents. A lot of research has been
devoted in adapting the clusters to the changed
population. Recently, research has expanded
to encompass tracing and understanding of

FINGERPRINT:
Summarizing Cluster Evolution

in Dynamic Environments
Eirini Ntoutsi, Institute for Informatics, Ludwig-Maximilians University of Munich, Germany

Myra Spiliopoulou, University of Magdeburg, Germany

Yannis Theodoridis, University of Piraeus, Greece

ABSTRACT
Monitoring and interpretation of changing patterns is a task of paramount importance for data mining ap-
plications in dynamic environments. While there is much research in adapting patterns in the presence of drift
or shift, there is less research on how to maintain an overview of pattern changes over time. A major challenge
is summarizing changes in an effective way, so that the nature of change can be understood by the user, while
the demand on resources remains low. To this end, the authors propose FINGERPRINT, an environment for
the summarization of cluster evolution. Cluster changes are captured into an “evolution graph,” which is
then summarized based on cluster similarity into a fingerprint of evolution by merging similar clusters. The
authors propose a batch summarization method that traverses and summarizes the Evolution Graph as a
whole and an incremental method that is applied during the process of cluster transition discovery. They
present experiments on different data streams and discuss the space reduction and information preservation
achieved by the two methods.

DOI: 10.4018/jdwm.2012070102

28 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the changes themselves, as means of gaining
insights on the population; see for example the
survey of Spiliopoulou (2011) on the evolution
of social networks. Understanding change is
also important when taking strategic decisions:
Consider, for example, a business analyst who
studies customer profiles; understanding how
such profiles change over time would allow for
a long-term proactive portfolio design instead
of reactive portfolio adaptation. While much
research has been recently devoted to pattern
change detection, little work has been done on
the efficient maintenance of the pattern changes.

The maintenance and summarization of
pattern changes upon a stream is a new problem.
Summarization of data (rather than patterns);
however, has been studied extensively: Popular
summarization methods include histograms
and wavelets, and there is much work on the
efficient maintenance of these structures and
on the adaptation of their contents when data
change; however, these methods do not show
how the data change nor do they maintain the
changes themselves. There is also research on
storing, modifying and querying patterns in
inductive or conventional databases (e.g., Bar-
tolini, Ciaccia, Ntoutsi, Patella, & Theodoridis,
2004); however, those approaches have not been
designed for patterns over streams and, although
there is provision for modifying patterns when
new data arrive, there are no solutions on the
efficient maintenance of changes over time.
Finally, there are methods for pattern change
detection (e.g., Aggarwal, 2005; Mei & Zhai,
2005; Spiliopoulou, Ntoutsi, Theodoridis, &
Schult, 2006), in which different types of change
can be identified and highlighted; however, the
efficient long-term maintenance of the changes
over an “infinite” stream is not considered.

Evolution is a permanent characteristic of
streamed data, thus long-term perusal requires
a space-efficient accommodation of the evolv-
ing patterns and a representation that highlights
remarkable changes while suppressing trivial
pattern perturbations. In this study, we propose
a graph representation of pattern changes/tran-
sitions and two algorithms that condense this
graph into a “fingerprint” - a structure in which

similar patterns are efficiently summarized,
subject to an information loss function.

The rest of the paper is organized as fol-
lows: Related work is discussed in the upcom-
ing section. We then present our graph model
for the representation of cluster transitions.
The criteria for the summarization of cluster
changes and the actual summarization meth-
ods are presented afterwards. Experiments are
presented in the next section. Finally, the last
section concludes our work.

RELATED WORK

Relevant to our work is the work on data
summarization, stream clustering and change
detection. We review these areas hereafter and
point out how we differentiate.

Summarization Methods

Summarization for a set of transactions with
categorical attributes is studied by Chandola
and Kumar (2005). In one of their methods, they
derive summaries by clustering the transactions,
extracting the feature/value pairs supported by
all transactions in a cluster and using them as
cluster summaries. They do not address the issue
of cluster change upon a stream, but propose
two metrics that characterize the output of the
summarization algorithm, “compaction gain”
and “information loss”. Quite naturally, our
metrics are similarly motivated and have similar
names. However, they summarize static data
using clusters, while we summarize evolving
clusters upon an “infinite” data stream.

Summarization and change are considered
by Ipeirotis, Ntoulas, and Gravano (2005), who
study changes of database content summaries.
They define as “content summary” for a database
a set of keywords, weighted on their importance
within the database. Meta-search services use
such summaries to select appropriate databases,
towards which they issue keyword-based que-
ries. The reliability of such a summary dete-
riorates as the contents of the database change
over time. So, the authors propose methods to
quantify and detect summary changes. This

International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 29

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

study addresses both the issue of summarization
over the evolving database and the discovery
of changes. However, the maintenance of the
summaries themselves in a condensed form is
beyond the scope of their work. On the other
hand, the proposed FINGERPRINT method
emphasizes on the summarization of the dis-
covered population transitions.

The discovery and representation of cluster
changes for text streams are studied in Mei and
Zhai (2005). They apply soft clustering with
mixture models at each time period, extract the
representative keyword-list (“theme”) for each
cluster and then monitor the evolution of these
lists by tracing divergences between a current
keyword list and past ones. Theme transitions
are maintained on a “theme evolution graph,”
which is then used to extract the life cycle of
themes (through Hidden Markov Models). The
graph structure is used to reflect pattern changes,
but the maintenance of this ever-growing graph
is not studied and the need for summarizing it
without losing information is not anticipated.

Stream Clustering Methods

Relevant to our work is the work on stream clus-
tering. Usually, storing an entire data stream or
scanning a stream multiple times is impossible
due to its tremendous volume (Gama, 2010;
(Farnstrom, Lewis, & Elkan, 2000). To this
end, several clustering algorithms have been
proposed which aggregate the stream online
through some appropriate summary structure
and cluster these summaries offline.

This rationale was first introduced in CluS-
tream (Aggarwal, Han, Wang, & Yu, 2003);
the summary structure, called micro-cluster,
is a temporal extension of the cluster feature
vector of BIRCH (Zhang, Ramakrishnan, &
Livny, 1996). CluStream starts with k initial
micro–cluster summaries and as new points
arrive, the summaries are updated such that a
total of k micro-clusters is maintained at each
time point. The clusters are detected offline
using a modified version of k-Means over sum-
maries instead of raw data; the user chooses the
summaries to be considered by specifying the
time interval. Micro-clusters can be observed

as cluster summaries and are indeed designed to
reduce space demand. Nonetheless, CluStream
focuses on combining them into clusters rather
than in summarizing them over time. Also,
the information loss affected through summa-
rization is not discussed. The same holds for
DENstream (Cao, Ester, Qian, & Zhou, 2006)
and DStream (Chen & Tu, 2007), which also
follow the online–offline rationale.

Recently, a method has been proposed
(Al-Mula & Al Aghbari, 2011) that clusters
subsequences of a data stream in order to find
frequent subsequences; this method, though,
refers to multiple data streams.

Change Detection Methods

Change detection methods are also relevant
to our work. Aggarwal (2005) models clusters
through kernel functions and changes as ker-
nel density changes at each spatial location of
the trajectory. The emphasis is on computing
change velocity and finding the locations with
the highest velocity - the epicenters. This model
of change is very powerful, but is restricted to
data over a fixed feature space. Kalnis, Mamou-
lis, and Bakiras (2005) propose a special type
of cluster change, the moving cluster, whose
contents may change while its density function
remains the same during its lifetime. They find
moving clusters by tracing common data records
(based on their IDs) between clusters of con-
secutive timepoints. Yang, Parthasarathy, and
Mehta (2005) detect formation and dissipation
events upon clusters of spatial scientific data.
Their framework supports four types of spatial
object association patterns (SOAP), namely
Star, Clique, Sequence, and minLink, which
are used to model different interactions among
spatial objects. Such methods however, assume
that the feature space does not change. Thus,
they cannot be used for dynamic feature spaces,
e.g., text stream mining, where features are usu-
ally frequent words. Furthermore, hierarchical
clustering algorithms cannot be coupled with
such a method.

Cluster transition modeling and detection
methods are presented in the MONIC frame-
work of Spiliopoulou, Ntoutsi, Theodoridis,

30 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

and Schult (2006), where both changes in the
data and in the feature space are anticipated.
Differently from the model of Aggarwal (2005),
MONIC covers changes that involve more than
one cluster (external transitions), such as split
and absorption, allowing insights in the whole
clustering. Internal transitions, i.e., changes
within a single cluster (shrink, shift, etc.), are
also supported. The transition tracking mecha-
nism of MONIC is based on the contents of the
underlying data stream, thus it is independent
of the clustering algorithm and of the cluster
summarization/labeling method; differently
from Mei and Zhai (2005). For these reasons,
we use the cluster transition model of MONIC
as input to our methods for the summarization
of cluster changes.

BUILDING THE
EVOLUTION GRAPH

We model cluster evolution across a sequence
of timepoints t1, …, tn and denote as ξ1, ..., ξn
the clusterings discovered at those timepoints.
A clustering ξi, i > 1 may be the result of a
complete re-clustering at ti or of the adaptation
of clustering ξi-1. We further denote as di the
substream of data records seen in the interval
(ti-1, ti] and as Di the substream of records, on
which ξi is based. Depending on whether
data ageing is considered or not, Di may be
equal to the set of all records seen thus far
(D d

i j
i

j
= ∪ =1) or to the substream seen within

a time window.
The Evolution Graph EG = G(V, E) spans

the whole period of observation (n timepoints).
The set of nodes V corresponds to the set of
clusters seen during this time period, i.e., V =
{ξ1, ..., ξn}. The set of edges E contains the
cluster transitions; for each e = (v, v’) ∈ E,
there is a timepoint ti; 1 ≤ i < n such that v ∈
ξ, v’ ∈ ξi+1. By this specification of the Evolu-
tion Graph, the edges connect nodes/clusters
found at adjacent timepoints. An example is
depicted in Figure 1: A dotted/green edge de-
notes a “split” of the source cluster to multiple

target clusters. A dashed/orange edge describes
an “absorption”; the source cluster is contained
in the target cluster. A solid/blue edge indicates
a “survival”; the source cluster has survived
into the target cluster with minor changes, such
as changes in size or homogeneity (Spiliopou-
lou, Ntoutsi, Theodoridis, & Schult, 2006). This
example graph depicts three types of cluster
transitions: split, absorption and survival
(Spiliopoulou, Ntoutsi, Theodoridis, & Schult,
2006). In the next subsection, we describe how
we assign the semantics of those transitions to
the edges of the graph.

Semantics of the Graph Nodes

A node c ∈V represents a cluster found at
timepoint ti, i.e., belonging to clustering ξi. A
node in the evolution graph is adorned with a
“label” c.label or ĉ , i.e., an intentional/ sum-
marized representation of its members. There
are many elaborate summarized representations
proposed in the literature, including micro-
clusters (Aggarwal, Han, Wang, &Yu, 2003)
and “droplets” over text data (Aggarwal & Yu,
2006). We opt for two simple representations,
the cluster’s centroid for clusters over arbitrary
numerical data and the cluster’s topic for clus-
ters over text data.

Definition 1 (Centroid as Label). Let c be a
cluster in an m-dimensional space of nu-
merical properties. Its centroid is the vec-
tor of the mean values, ˆ ,...,c

m
= 〈 〉µ µ

1
,

where µ
l

l m: 1≤ ≤ is the average of the
data records’ values across the lth-dimen-
sion.

Definition 2 (Keyword-based label). Let c be
a cluster of text documents, where each
document di ∈c is a vector in the feature
space of the keywords {k1, …, km}.
The cluster label is defined as
ˆ ,...,c w w

k km
= 〈 〉

1
, where w

kl
 is the fre-

quency of the lth-keyword within c, if this
frequency exceeds a boundary b and zero
otherwise.

International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 31

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Semantics of the Graph Edges

An edge e = (c, c’) ∈E denotes that a cluster
c∈ξi found at ti has been “succeeded” by a
cluster c’ ∈ ξi+1 of the next timepoint. Succes-
sion means that among the clusters of ξi+1, the
cluster c’ is the one most similar to the cluster
c. The semantics of cluster succession can be
designed according to any of the approaches
proposed for cluster evolution monitoring (e.g.,
Aggarwal, 2005; Mei & Zhai, 2005; Spiliopou-
lou, Ntoutsi, Theodoridis, & Schult, 2006). We
have opted for the MONIC approach (Spilio-
poulou, Ntoutsi, Theodoridis, & Schult, 2006)
because it is independent of the clustering al-
gorithm and can thus be used for any type of
clusters, in contrary to, e.g., Aggarwal (2005).
Also, it considers ageing of data which is im-
portant for streams.

In MONIC, cluster succession is based
on the notions of cluster overlap and cluster
matching: Let c be a cluster in clustering ξi at ti
and c’ be a cluster in clustering ξi+1 at ti+1. The
overlap of c and c’ is defined as:

overlap(c,c')
|c c'|

=
∩
| |c

	

This means that the overlap depends on
the members of c that are still remembered at
ti+1. Then, the “best match” or simply “match”

of c in ξi+1 is the cluster c’ ∈ξi+1 that has the
maximum overlap to c, subject to a threshold
τmatch. If the threshold is not reached, then there
is no match for c in ξi+1, i.e., c has disappeared/
died. Depending on the match(es) of an old
cluster among the new clusters, the old cluster
may experience the following transitions:

1. 	 Survival, denoted as c c→ ' : c ∈ξi survives
into c’ ∈ξi+1 iff c’ is the match for c and
there is no other cluster z ∈ξi, for which
c’ is the match.

2. 	 Absorption, denoted as c c→
⊂

' : c ∈ξi is
absorbed by c’∈ ξi+1 iff c’ is the match for
c and there is at least one more cluster z ∈
ξi, for which c’ is the match.

3. 	 Split, denoted as c c c c
p

→
⊂

{ , ,..., }
1 2

: c ∈ξi
is split into c1, …, cp ∈ξi+1, with p > 1, iff
the overlap of c to each of these clusters
exceeds a threshold τsplit and the overlap of
all these clusters to together exceeds the
match threshold τ.

4. 	 Disappearance, denoted as c → ⊗ : c ∈
ξi disappears if none of the above mentioned
cases holds for ξi+1.

In our Evolution Graph, an edge is drawn
from c to c’ for each of the first three cases; if
a cluster has no outgoing edges, then the forth
case has occurred. Further, we adorn the edges

Figure 1. Example of an evolution graph (EG)

32 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

with information on the transition type. In
particular, let e = (c, c’) ∈E be an edge from
cluster c ∈ ξi to c’ ∈ξi+1. Then, the edge e is
adorned with a label e.extTrans that describes
the type of external transition as one of {sur-
vival, split, absorption}. If a cluster in ξi has no
outgoing edge, it has disappeared. If a cluster
in ξi+1 has no ingoing edge, it has just emerged.
For an emerged cluster, we form its cluster trace
as follows:

Definition 3 (Cluster Trace). Let EG be an
Evolution Graph captured for the time-
points t1, …, tn. For each emerged cluster
c that appeared for the first time at ti (i.e.,
a cluster without ingoing edge), we define
its “cluster trace”, trace(c) ≡ trace(c, ti), as
the sequence πc1 c2 … cmϕ, where c1 ≡ c, m
≤ n - i and for each ci; i ≥ 2 there is an edge
ei = (ci-1, ci) such that e.extTrans = survival.
We denote the traceset of EG as TEG.

For example, the traceset TEG for the Evolu-
tion Graph of Figure 1 consists of the following
sequences: (a) trace πc11c21c31c41c51ϕ, indicating
that the emerged cluster c11 has survived across
all five timepoints, (b) trace πc22c32c42c52ϕ of
the emerged cluster c22, one of the clusters to
which c12 has been split and (c) the two-node
traces πc13c24ϕ and πc33c43ϕ. The other clusters
c12, c23, c24 only existed for one timepoint and
therefore built no traces.

Construction of the
Evolution Graph

The Evolution Graph is built incrementally as
new clusterings arrive at timepoints t1, … tn. The
pseudocode of the algorithm is depicted in Fig-
ure 2. When a new clustering ξi arrives at ti; i >
1, our earlier algorithm MONIC (Spiliopoulou,
Ntoutsi, Theodoridis, & Schult, 2006) is applied
on the previous clustering ξi-1 and the current
one ξi (line 4): transitions between clusters of
ξi-1, ξi are detected and an edge is added to the
Evolution Graph for each detected transition
adorned with information on the transition type
(line 5). Clusters at ξi are also added as nodes

to the graph and labels are assigned to them
(line 2). Note that MONIC uses the cluster
contents (data members) for transition detection.
Hence, we retain this information until the next
timepoint only (line 6). So, the data members
of the clusters at ti-1 are retained only until ti,
so as the transitions between clusters at ti, ti-1
to be detected.

Algorithm Complexity

We turn now our attention to the complexity
of the evolution graph construction algorithm.
Adding a new clustering ζi into the Evolution
Graph imposes the following costs: i) the
computation of centroid labels for its cluster-
members and ii) the computation of transitions
between this clustering (ζi) and the clustering
of the previous timepoint (ζj). Let cost(c) be
the cost of computing the centroid label of a
cluster c. Then, the centroid labels computa-
tion for clustering ζi costs: |ζi| · cost(c). The
cost of detecting transitions between the two
consecutive clusterings ζi, ζj is the MONIC cost:
O(|ζi|·|ζj|+|Di|·|Dj|) (Spiliopoulou, Ntoutsi,
Theodoridis & Schult, 2006). Thus, the com-
putational cost for adding clustering ζi into the
evolution graph becomes:

addCost = O(|ζi| · cost(c) + |ζi|·|ζj|+|Di|·|Dj|)	

If we consider an observation period of n
timepoints, the building cost becomes:

EGbuildCost = (n-1) addCost⋅ 	

There is also the evolution graph storage
cost, which refers to the space requirements for
storing cluster labels, i.e., centroids, and their
transitions. For a timepoint i, we should store
the centroids of the clusters of the correspond-
ing clustering ζi as well as the cluster transitions
between this clustering and the previous time-
point clustering, tj. If |centroid| is the storage
cost of a cluster centroid summary, then the
storage cost for the ζi cluster centroid summa-
ries is: | | | |ζ

i
centroid∗ . If |edge| is the stor-

age cost for an edge, then the storage cost for

International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 33

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the transitions between ζi and ζj is:
| | | | | |ζ ζ
i j

edge∗ ∗ .
Considering the n-timepoints observation

period, the storage cost becomes:

EGstorageCost centroid
i

i n

i
i n j i

= ⋅

+
=

= = +

∑

| | | |

| |
...

... - ,

ζ

ζ
1

1 1 11
∑ ⋅ ⋅| | | |ζ

j
edge

	

In the above formula, the first term corre-
sponds to the cost of storing the cluster centroid
labels, whereas the second term corresponds to
the cost of storing the cluster transitions.

Note that during Evolution Graph construc-
tion, we should also store the contests of the
most recent clustering, ζj. This is because, in
order to find transitions of the next incoming
clustering ζi with respect to clustering ζj, the
contents of ζj should be available. This cost is
O(|Dj|), where Dj are the data members of ζj .

QUERYING THE
EVOLUTION GRAPH

The Evolution Graph contains a wealth of
information regarding the evolution of the
underlying population. Different queries might
be imposed over the Evolution Graph so as to
facilitate the end user to gain insights in the
population and its evolution. We present some
representative examples:

•	 Forward History Queries: How does X
evolve?
Answer sketch: Start from X and fol-

low its outgoing edge(s) until its
descendant(s) disappear(s).

•	 Backward History Queries: How did X
emerge?
Answer sketch: Start from X and follow its

incoming edge(s) until its ancestor(s)
appear(s) for the first time.

•	 Comparison Queries: What other clusters
have a similar forward history of transi-
tions, or backward history, or both as X?
Answer sketch: Use the history of X as

the query object and check whether
the sequence of transitions that X has
encompassed agrees with the sequence
of transitions encompassed by some
other cluster.

•	 Impact Queries: Which clusters and at
which timepoints have most influenced X
into its current shape and content?
Answer sketch: Assign an importance

factor to each cluster Y participating
in the history of X. Such a factor may
be computed on the basis of, e.g., the
overlap of Y with respect to its outgo-
ing cluster/node on the history of X or
the distance between Y and X as the
number of in-between edges. Then,
clusters can be ranked with respect to
this importance factor.

Figure 2. The evolution graph (EG) construction algorithm

34 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

SUMMARIZING THE
EVOLUTION GRAPH TO
ITS FINGERPRINT

The Evolution Graph captures the whole history
of the population under observation and allows
the study of cluster transitions and the inspec-
tion of cluster interrelationships. However, this
graph is space consuming and highly redundant.
Concretely, it contains information about each
change but also contains information for clus-
ters that did not change at all or have slightly
changed. Hence, we summarize the Evolution
Graph in such a way that cluster transitions
are reflected but redundancies are omitted.
For this, we summarize traces, i.e., sequences
of cluster survivals, into “fingerprints”. These
trace summaries constitute the “fingerprint” of
the Evolution Graph. We first define the no-
tion of “trace summary” and then present our
algorithm FINGERPRINT in two variants, a
batch and an incremental one.

Summarizing a Trace

The summarization process is applied over
cluster traces (cf. Definition 3). Each trace T is
traversed and the “removable” nodes are identi-
fied: These are the nodes that can be replaced by
a smaller number of derived nodes, which are
called “virtual centers” and are defined below.

Definition 4 (Virtual Center). Let ≺c1 c2 … cm≻
be the trace of an emerged cluster c, trace(c)
and let X = ≺cj … cj+k≻ be a subtrace of this
trace, i.e., a subsequence of adjacent nodes
in the trace (k ≤ m - 1, j ≥ 1). We define
the “virtual center” of X, vcenter(X) = X̂
as a derived node composed of the aver-
ages of the labels of the nodes in X:

ˆ[]
| |

[̂]X i
X

c i
c Xi

=
∈
∑1 	

where [i] is the ith dimension and ĉ denotes
the label of cluster c. We use the notation

c X

ˆ to indicate that cluster c X∈ has been
“mapped to” the virtual center X̂ .

If labels are centroid-based (Definition 1),
X̂ is the center of the centroids of the clusters
in X. If labels are keyword-based (Definition
2), X̂ contains the average frequencies of all
frequent keywords in the clusters of X.

After introducing the virtual center as the
summary of a subtrace, we define the summary
of a trace: It consists of a sequence of nodes,
each node being either an original cluster or a
virtual center that summarizes a subtrace.

Definition 5 (Trace Summary). Let T = ≺c1
c2 … cm≻ be a trace. A sequence S = ≺a1
a2 … ak≻ is a summary of T if and only if
(a) k ≤m and (b) for each ci ∈T there is an
aj∈S such that either ci = aj or ci  aj, i.e.,
ci belongs to a subtrace that was summa-
rized to the virtual center aj .

There are several possible summarizations
of a trace, each one corresponding to a different
partitioning of the trace into subtraces and con-
sequently producing different virtual centers.
We are interested in summarizations that achieve
high space reduction while keeping information
loss minimal. We generalize these objectives
into functions measuring “space reduction” and
“information loss,” as explained.

The replacement of a subtrace X by its
virtual center X̂ results in storage space reduc-
tion, since less nodes are stored, but also in loss
of information, since the original clusters are
replaced by a “virtual center.” We model the
information loss of each original cluster c∈X
as its distance from the virtual center X̂ to
which it has been assigned after summarization:

ILoss cluster c X dist c X_ (, ˆ) (,̂ ˆ)= 	 (1)

where dist c X(,̂ ˆ) is the distance between the
label of the original cluster ĉ and that of the
virtual center X̂ .

The information loss for a cluster/node
is now aggregated at the level of the trace, to

International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 35

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

which the node belonged. The space reduction
is also defined for traces.

Definition 6 (Information Loss). Let T be a
trace and S be a summary of this trace.
The “information loss” of T towards S is:

ILoss trace T S ILoss cluster c a
cc T

_ (,) _ (,)=
∈∑ 	

(2)

where ac∈S corresponds to either the virtual
center to which c is mapped after the summa-
rization or to the cluster c itself. In the latter
case, ILoss cluster(c,ac) = 0.

Definition 7 (Space Reduction). Let T be a
trace and S be a summary of this trace.
The “space reduction” of T towards S is
the decrease in the number of nodes and
edges that need to be stored:

SReduction_trace(T,S)

=
− + − − −

+ −

=
× −
× −

≈

(| | | |) (| | | (|))

| | | |
(| | | |)

(| |)

|

T S T S

T T
T S

T

1 1

1
2

2 1

TT S

T

| | |

| |

−

	

(3)

where |T| is the number of nodes in T and
|T|-1 the number of edges among its nodes
(similarly for S).

This definition is similar to the definition
of compaction gain in Chandola and Kumar
(2005).

Next, we define the “fingerprint” of a trace
as a summary, the virtual centers of which are
proximal to the original cluster labels, subject
to a distance upper boundary τ, so that the
information loss effected through the replace-
ment of a cluster by a virtual center is kept low.

Definition 8 (Fingerprint for a Trace). Let T
be a trace and S be a summary of T. S is a
“fingerprint” of T with respect to a distance
threshold τ if and only if:

(C1) For each node c ∈X replaced by a
virtual center a ∈S it holds that dist(
ĉ ,a) ≤ τ and,

(C2) for each (sub)trace ≺c1 c2 … ck≻ of T
that has been summarized into a single
virtual center a it holds that
∀ = − ≤+i k dist c c

i i
1 1

1
,..., : (ˆ , ˆ) τ .

By this definition, S is a fingerprint of T
if it has partitioned T into subtraces of clusters
that are similar to each other (condition C2) and
each such subtrace has a virtual center that is
close to all its original nodes (condition C1).

Once traces are summarized into fin-
gerprints, the Evolution Graph can also be
summarized, resulting in space reduction and
information loss at the graph level.

Definition 9 (Fingerprint for an Evolution
Graph). Let EG be an Evolution Graph
and TEG be its traceset. For each trace T ∈
TEG, let ST be its fingerprint (Definition 8),
subject to a distance threshold τ οn the
distance among centroids. The set SEG:=
{ST: T ∈ TEG} is the “fingerprint of the
Evolution Graph.” It effects a space reduc-
tion SR(EG, SEG) and an information loss
IL(EG, SEG):

SR EG S S duction trace T S
EG T T

(,) _ (,)=∑ Re 	
(4)

IL EG S ILoss trace T S
EG TT

(,) _ (,)=∑ 	
(5)

We next present the two variants of
our algorithm FINGERPRINT. The variant
batchFINGERPRINT creates the fingerprint
of an Evolution Graph by partitioning traces in
such a way that their fingerprints can be built.
This variant requires that the Evolution Graph is
first constructed and stored as a whole. Then, we
present the online variant incFINGERPRINT,
which builds the fingerprints of the traces incre-
mentally as new cluster transitions are detected,
i.e., without requiring the construction of the
Evolution Graph first.

36 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Batch Summarization of the Graph

The batchFINGERPRINT summarizes an
Evolution Graph EG by identifying its traces,
building a fingerprint for each trace and substi-
tuting the traces in EG with their fingerprints.
The batchFINGERPRINT satisfies the two
conditions of Definition 8 by applying two
heuristics on each (sub)trace T:

•	 Heuristic A: If T contains adjacent nodes
that are in larger distance from each other
than τ, then the pair of adjacent nodes c,
c’ with the maximum distance is detected
and T is then partitioned into T1, T2 so that
c is the last node of T1 and c’ is the first
node of T2.

•	 Heuristic B: If T satisfies condition C2 but
contains nodes that are in larger distance
from the virtual center than τ, then T is split
as follows: The node c that has the maxi-
mum distance from vcenter(T) is detected
and T is partitioned into T1, T2 so that c is
the last node of T1 and its successor c’ is
the first node of T2.

Heuristic A deals with violations of condi-
tion C2 and Heuristic B deals with violations
of condition C1 for (sub)traces that already
satisfy C2. We show the algorithm in Figure 3.

The batchFINGERPRINT creates a finger-
print of the Evolution Graph by traversing the
graph, extracting its traces (line 1, condition
C2) and summarizing each of them (line 4).
The “produced” fingerprints of the traces are
added to the fingerprint graph FEG (line 5).
This operation encapsulates the attachment of
a summarized trace to the graph by redirecting
the ingoing/ outgoing edges of the original trace
towards the ends of the summarized trace.

The batchFINGERPRINT invokes sum-
marize_HeuristicA() which recursively splits
the trace into subtraces according to Heuristic
A until C2 is satisfied. If the trace consists of
only one node, then this node is returned (line
1). Otherwise, we test whether the trace contains

nodes whose labels are further off each other
than the threshold τ (line 2). If C2 is satisfied,
then summarize_HeuristicB() is invoked (line
8): It checks for condition C1 and returns the
fingerprint of the (sub)trace input to it. If C2
is violated, the trace is partitioned according to
Heuristic A (lines 3,4) and summarize_Heuris-
ticA() is invoked for each partition (lines 5, 6).
Finally, the summarized (sub)traces are concat-
enated (line 7) and returned. This concatenation
operation restores or redirects the edges across
which the split (line 4) was performed

The recursive function summarize_Heu-
risticB() operates similarly. It takes as input a
(sub)trace T that has more than one nodes and
satisfies condition C2. It builds the virtual center
for T according to Definition 4. It then checks
condition C1 by comparing the distance of the
virtual center from each node to τ (line 2). If τ
is not exceeded, the virtual center is returned
(line 3). Otherwise, T is split at the node that
has the highest distance from the virtual cen-
ter, according to Heuristic B (lines 5, 6). The
summarize_HeuristicB() is invoked for each
partition (lines 7, 8). The returned fingerprints
are concatenated into the fingerprint of T.

Incremental Summarization
of the Graph

The batch summarization algorithm of Figure
3 requires as input the complete Evolution
Graph, before building its fingerprint. This is
resource-intensive, since the graph is grow-
ing continuously. We have therefore designed
incFINGERPRINT, a fingerprint construction
algorithm that summarizes the traces incre-
mentally and does not require the a priori
construction of the Evolution Graph. We show
incFINGERPRINT in Figure 4.

Our incFINGERPRINT invokes (in line
1) our earlier algorithm MONIC (Spiliopoulou,
Ntoutsi, Theodoridis, & Schult, 2006): MON-
IC compares the current clustering ξ (timepoint
ti) to the most recent one ζ (timepoint ti-1),
identifies the cluster transitions and returns
them as a set Ei of labeled edges, according to

International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 37

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

previous subsection. The source of each edge
corresponds to a node that is already in the
fingerprint graph FEG. It is stressed that
MONIC operates on the clusterings rather than
the cluster labels retained in the nodes of the
fingerprint graph. So, from line 2 on, incFIN-
GERPRINT transfers information about the
detected transitions in the FEG, summarizing
survivals wherever possible. The result is an
already summarized version of the Evolution
Graph.

For each edge e = (x, y), incFINGERPRINT
examines whether e is a survival transition (line
3), i.e., whether e is part of a trace. If not, FEG
is expanded by adding the cluster y and the edge
e (lines 4, 5).We do not add the whole cluster;

we only retain its label (cf. “Change detection
methods”).

If e = (x, y) does belong to a trace, incFIN-
GERPRINT checks whether the labels of x and
y are similar to each other, according to condi-
tion C2 of Definition 8 (line 6). Since cluster
x has already been added to FEG, we access its
label x.label directly, while the label of cluster
y must be computed as ŷ . If condition C2 is
not satisfied, the FEG is expanded by y and e
as before. If finally, C2 is satisfied, then y and
e do not need to be added to FEG. Instead, x
and y are summarized into their virtual center
v (line 10) and the node x is replaced by v (line
11). This means that all edges pointing to x are
redirected to v.

Figure 3. Offline summarization of the evolution graph with batchFINGERPRINT

38 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The incFINGERPRINT not need to check
for condition C1, since the distance of the virtual
center of two nodes is less than the distance
between the two nodes as a whole; the latter
is less than τ by virtue of condition C2. This
algorithm operates locally, treating pairs of
adjacent nodes only, instead of whole traces.
Thus, it has the advantage of not requiring the
a priori construction of the Evolution Graph.

EXPERIMENTAL RESULTS

The goal of our experiments is to measure the
space reduction and information loss for the
two different summarization techniques and
for different values of the centroid similarity
threshold τ (cf. Definition 8) that governs the
summarization process.

Datasets

We experimented with two numerical data-
sets, the Network Intrusion dataset and the
Charitable Donation dataset, and with one
text dataset, the ACM H2.8 dataset. The two
numerical datasets have been used often in
stream experiments (e.g., Aggarwal, Han, Wang,

& Yu, 2003; Cao, Ester, Qian, & Zhou, 2006).
The text dataset has been used in the experiments
of MONIC (Spiliopoulou, Ntoutsi, Theodoridis,
& Schult, 2006). With respect to their evolving
nature, the first dataset is rapidly evolving, the
second one is relatively stable, while the third
one evolves in an unbalanced way - one of the
classes grows faster than the others.

The Network Intrusion dataset (KDD
Cup’99) contains TCP connection logs from
two weeks of LAN network traffic (424,021
records). Each record corresponds to a normal
connection or an attack. The attacks fall into
four main categories: DOS, R2L, U2R, and
PROBING. So, we set the number of clusters to
5, including the class of normal connections. We
used all 34 continuous attributes for clustering
and removed one outlier point, as in Aggarwal,
Han, Wang, and Yu (2003). We turned the dataset
into a stream by sorting on the data input order.
We assumed a uniform flow in speed of 2,000
instances per time period. For data ageing, we
assumed a sliding window of 2 time periods/
timepoints.

The Charitable Donation dataset (KDD
Cup’98) contains information (95,412 records)
on people who have made charitable donations

Figure 4. Online summarization of the evolution graph with incFINGERPRINT

International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 39

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

in response to direct mailings. Clustering iden-
tifies groups of donors with similar donation
behavior. Similar to Farnstrom, Lewis, and
Elkan (2000), we used 56 out of the 481 fields
and set the number of clusters to 10. As with the
previous dataset, we used the data input order
for streaming and assumed a uniform flow with
200 instances per time period. For data ageing,
we used a sliding window of size 2.

The ACM H2.8 document set is the set of
documents inserted between 1997 and 2004
in the ACM Digital Library, category H2.8 on
“Database Applications.” This dataset contains
publications on (1) data mining, (2) spatial
databases, (3) image databases, (4) statistical
databases and (5) scientific databases. It further
contains (6) uncategorized documents, i.e.,
those assigned in the parent class “database
applications [only].” The subarchive consists
of the documents whose primary (or secondary)
class is one of these 6 classes (4,920 records).
It evolves in an unbalanced way (Spiliopoulou,
Ntoutsi, Theodoridis, & Schult, 2006): The
category (1) is larger than all the others together
and grows faster than the others. For the experi-
ments in Spiliopoulou, Ntoutsi, Theodoridis,
and Schult (2006), only the title and a list of
keywords were considered for each document.
We have used the same vectors and the same
clustering algorithm, bisecting K-means, for K =
10.We turned the data into a stream by using the
publication date for the ordering of the records.
We considered n = 7 timepoints corresponding
to the 7 publication years from 19981 to 2004;
the corresponding data batches have different
sizes varying from 837 in 1998 to 617 in 2004.
The size of the sliding window was set to 2. A
cluster label consists of the terms appearing in
more than 60% of the cluster’s vectors.

Example Traces and Fingerprints

To highlight the behavior of the summarization
algorithms, we depict here some traces from
the ACM H2.8 dataset and their correspond-
ing fingerprints in Table 1, as produced by our
summarization algorithms.

In 1998, we observe a new cluster with the
label “information system” which is further
developed in the next two years, 1999 and 2000.
Its trace is:

trace c c c c() , ,
1998 1998 1999 20002 2 6 3

=≺ � 	

The notation c
yi

refers to the ith cluster of
year y, i = 1 … 9 (cluster 0 is the garbage clus-
ter)2. At all time points, the cluster centroids
contain the terms “information” and “system”
but with different frequencies, as follows:

ĉ
19982
=< information(0.96); system(0.61) >	

ĉ
19996
=< information(0.88); system(0.74) >	

ĉ
20003
= < information(0.76); system(0.78) >	

Both summarization algorithms condense
this trace into a single virtual center. The batch
algorithm creates this new node v in one step:
v̂ = < information(0.87); system(0.71) >,
whereas the incremental algorithm first sum-
marizes ĉ

19982
 and ĉ

19996
into a virtual center:

v̂
0
= < information(0.92); system(0.68) >, and

then summarizes v̂
0
 and ĉ

20003
into a new vir-

tual center: ˆ’v = < information(0.84); sys-
tem(0.73) >.

A further cluster that emerged in 1998 had
the one-term label < analysis(1.0) >. In 1999,
it was split into two clusters, one labeled <
mining(1.0); datum(0.74) > and one cluster with
no label (garbage cluster). The former survived
for two periods, thus resulting in the trace:
≺ �c c c

1999 2000 20018 4 6
, , .

The information delivered without sum-
marization is:

c c c c c
1998 1999 1999 2000 20019 4 8 4 6
→
⊂

{ , , , }≺ � .	

40 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Instead, the summarization delivers the

fingerprint c c v
1998 19999 4
→
⊂

{ , }̂ , where v̂ is the

summary of the trace≺ �c c c
1999 2000 20018 4 6

, , .
Although the dataset is small (it spans only 7

time points), the above examples clearly display
the advantages of cluster monitoring and sum-
marization. Due to the re-occurrence of clusters
(corresponding to real world concepts like
information systems, image retrieval, etc.), the
fingerprint produces an efficient and effective
dataset overview over time. Such an overview
is much more “readable” by the end user.

Space Reduction and
Information Loss

We evaluated the space reduction achieved by
the batch and the incremental summarization
methods for different values of the centroid

distance threshold τ. The results for the two
numerical datasets are depicted in Figure 5.

As expected, for both incFINGERPRINT
and batchFINGERPRINT, the space reduction
increases for larger values of τ, because less
proximal centroids can be merged. The two
algorithms achieve similar space savings al-
though batchFINGERPRINT shows slightly
higher values for most values of τ, especially
in the Network Intrusion dataset.

The total space reduction for each dataset
depends of course on the number of survivals
per se: Among the total of 1,195 clusters/nodes
generated for the Network Intrusion dataset,
only 400 nodes participate in traces (~33%);
the space reduction values achieved by both
algorithms are in the range [21%, 33%] of the
total size of the Evolution Graph. The Evolu-
tion Graph of the Charitable Donation dataset
contained 4,770 clusters, of which 614 were
involved in traces (~13%); the space reduction

Table 1. Example clusters and traces in the ACM H2.8 dataset

Figure 5. Impact of threshold τ on space reduction for the Network Intrusion dataset (left) and
the Charitable Donation dataset (right)

International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 41

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

over the whole graph was thus no more than
7%. For the ACM H2.8 sub-archive, 24 out of
70 nodes were involved in traces (~34%), so
that the space reduction over the whole graph
ranged between 9% and 33%.

In Figure 6, we depict the information loss
affected upon the datasets when summarizing
incrementally versus in batch. The information
loss increases with τ, since a larger τ implies that
less similar centroids can be merged.

For the Charitable Donation dataset, the
information loss incurred by the incremental
algorithm is slightly higher than for the batch
algorithm but follows the same curve for dif-
ferent values of τ. For the Network Intrusion
dataset, the performance difference is dra-
matic: While the batch algorithm achieves a

very low information loss, the incremental
algorithm performs very poorly. A possible
explanation for the poor performance of in-
cFINGERPRINT in the Network Intrusion
dataset is the volatility of the dataset: It is
likely that the survived clusters were unstable
and not very similar to each other. Hence, in-
cFINGERPRINT produced virtual centers that
were not very close to the original pairs of
centroids, while batchFINGERPRINT managed
to build better virtual centers among multiple
adjacent centroids.

In Figure 7, we show the joint curves of
space reduction and information loss for the two
datasets and for different values of the centroid
distance threshold τ.

Figure 6. Impact of threshold τ on information loss for the Network Intrusion dataset (left) and
the Charitable Donation dataset (right)

Figure 7. Correlation between information loss and space reduction for different values of τ for
the Network Intrusion dataset (left) and the Charitable Donation dataset (right)

42 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

CONCLUSION AND OUTLOOK

We have studied the effective summarization
of cluster changes over an evolving stream
of data. We modeled cluster transitions in a
graph structure, the Evolution Graph, and
proposed two algorithms that summarize it into
a “fingerprint.” A fingerprint is a condensed
representation, in which less informative cluster
transitions are suppressed. We derived functions
that measure the effected information loss and
space reduction and we presented heuristics
that drive the summarization process. One of
our algorithms summarizes the Evolution Graph
as a whole, while the other creates the graph’s
fingerprint incrementally, during the process
of cluster transition discovery. We have run
experiments on three real datasets and have
seen that incFINGERPRINT achieves similar
space reduction to batchFINGERPRINT, but the
information loss may be much higher depending
on the volatility of the dataset.

The batch algorithm batchFINGERPRINT
shows better performance comparing to the
incFINGERPRINT algorithm, but it requires
the whole dataset of transitions as an input. A
hybrid summarization algorithm using both an
online and an offline component is worth pursu-
ing. Another interesting direction is modeling
and investigation of the impact of the quality
and stability of the original clustering on the
summarization process. In this work, we have
concentrated on the summarization of cluster
survivals. A survival is the transition of a cluster
to a similar successor cluster. Instead of placing
constraints on the similarity among clusters, we
want to study models of information loss for the
summarization of arbitrary cluster transitions,
so that only the most informative changes are
delivered to the end-user.

ACKNOWLEDGMENTS

Eirini Ntoutsi is supported by an Alexander von
Humboldt Foundation fellowship for postdocs
(http://www.humboldt-foundation.de/). Part of
the work of this author was done while with the
University of Piraeus, Greece supported by the

Heracletos program co-funded by the European
Social Fund and national resources (Opera-
tional Program for Educational and Vocational
Training II – EPEAEK II). The source of our
implementations can be downloaded from http://
infolab.cs.unipi.gr/people/ntoutsi/fingerprint/.

REFERENCES

Aggarwal, C. C. (2005). On change diagnosis
in evolving data streams. IEEE Transactions on
Knowledge and Data Engineering, 17(5), 587–600.
doi:10.1109/TKDE.2005.78

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. (2003).
A framework for clustering evolving data streams.
In Proceedings of the 29th International Conference
on Very Large Data Bases (Vol. 29, pp. 81-92). New
York, NY: ACM.

Aggarwal, C. C., & Yu, P. (2006). A framework for
clustering massive text and categorical data streams.
In Proceedings of the Sixth SIAM International
Conference on Data Mining (Vol. 124, pp. 479-483).
Philadelphia, PA: Society for Industrial Mathematics.

Al-Mulla, R., & Al Aghbari, Z. (2011). Incremental
algorithm for discovering frequent subsequences in
multiple data streams. International Journal of Data
Warehousing and Mining, 7(4), 1–20. doi:10.4018/
jdwm.2011100101

Bartolini, I., Ciaccia, P., Ntoutsi, I., Patella, M., &
Theodoridis, Y. (2004). A unified and flexible frame-
work for comparing simple and complex patterns.
In Proceedings of the 8th European Conference on
Principles and Practice of Knowledge Discovery in
Databases (pp. 496-499). New York, NY: Springer.

Cao, F., Ester, M., Qian, W., & Zhou, A. (2006).
Density-based clustering over an evolving data
stream with noise. In Proceedings of the Sixth SIAM
International Conference on Data Mining (Vol. 124,
pp. 479-483). Philadelphia, PA: Society for Industrial
Mathematics.

Chandola, V., & Kumar, V. (2005). Summarization –
compressing data into an informative representation.
In Proceedings of the Fifth IEEE International Con-
ference on Data Mining (pp. 98-105). Washington,
DC: IEEE Computer Society.

Chen, Y., & Tu, L. (2007). Density-based cluster-
ing for real-time stream data. In Proceedings of the
13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 133-
142). New York, NY: ACM.

International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012 43

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Farnstrom, F., Lewis, J., & Elkan, C. (2000). Scalabil-
ity for clustering algorithms revisited. SIGKDD Ex-
plorations, 2(1), 51–57. doi:10.1145/360402.360419

Gama, J. (2010). Knowledge discovery from data
streams. Boca Raton, FL: CRC Press.

Ipeirotis, P., Ntoulas, A., & Gravano, L. (2005).
Modeling and managing content changes in text
databases. In Proceedings of the 21st International
Conference on Data Engineering (pp. 606-617).
Washington, DC: IEEE Computer Society.

Kalnis, P., Mamoulis, N., & Bakiras, S. (2005). On
discovering moving clusters in spatio-temporal data.
In Proceedings of the 9th International Conference
on Advances in Spatial and Temporal Databases
(pp. 364-381). Berlin, Germany: Springer-Verlag.

Mei, Q., & Zhai, C. (2005). Discovering evolutionary
theme patterns from text: An exploration of temporal
text mining. In Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery
in Data Mining (pp. 198-207). New York, NY: ACM.

Spiliopoulou, M. (2011). Evolution in social net-
works: A survey. In Aggarwal, C. (Ed.), Social
network data analytics (pp. 147–173). Boston,
MA: Kluwer Academic. doi:10.1007/978-1-4419-
8462-3_6

Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., &
Schult, R. (2006). MONIC: Modeling and monitoring
cluster transitions. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge
Discovery in Data Mining (pp. 706-711). New York,
NY: ACM.

Yang, H., Parthasarathy, S., & Mehta, S. (2005). A
generalized framework for mining spatio-temporal
patterns in scientific data. In Proceedings of the
11th ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining (pp. 716-721).
New York, NY: ACM.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996).
BIRCH: An efficient data clustering method for very
large databases. In Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge
Discovery in Data Mining (pp. 103-114). New York,
NY: ACM.

ENDNOTES
1 	 The timepoint 1998 includes publications of

both 1997 and 1998, since the former contains
only a small number of publications.

2 	 Cluster identifiers are generated by the cluster-
ing algorithm at each timepoint.

Eirini Ntoutsi is a Post-doctoral researcher at the Ludwig Maximilian University of Munich,
Germany, in the Database Systems Group of Prof. Hans-Peter Kriegel. She received her PhD
(2008) in Informatics from the University of Piraeus, Greece. She also holds an MSc in Computer
Science (2003) and a diploma in Computer Engineering & Informatics (2001) both from the
Computer Engineering & Informatics Department (CEID), University of Patras, Greece. Her
research focuses on different aspects of knowledge management and can be summarized as pat-
tern extraction, change detection and monitoring over complex dynamic data. She has worked
with different types of data arising from different application fields, including text, web, retail
industry, robotics, spatio-temporal, user preferences, high-dimensional data. She has published
40 refereed articles in scientific journals and conferences in the above areas. She has presented
tutorials on “Mining the Volatile Web” at the ECML PKDD 2005 and on “Mining Complex
Dynamic Data” at the ECML PKDD 2011. She has served as a program committee member for
ECML-PKDD 2011, SAC 2011-12, KDML 2011 and BASNA 2010-11. She was awarded a post-
doctoral fellowship by the Alexander von Humboldt Foundation (2010-2011) and a doctoral
scholarship by the Heracletos program (2003-2007). She worked as a researcher in several
European projects, namely PANDA (FP6/IST, 2001-04) and GeoPKDD (FP6/IST, 2005-09). She
has worked as an R&D engineer at the Computer Technology Institute (RA-CTI) and as a Data
Mining expert at the Hellenic Telecommunications Organization (OTE).

44 International Journal of Data Warehousing and Mining, 8(3), 27-44, July-September 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Myra Spiliopoulou is Professor of Business Information Systems in the Faculty of Computer
Science of the Otto-von-Guericke University Magdeburg, Germany. Her group “Knowledge
Management & Discovery” (KMD) works on data mining, stream mining and web mining for
dynamic environments, and develops methods for model adaptation and model monitoring un-
der drift. Her research on topic monitoring, social network monitoring and analysis of complex
dynamic data has been published in renowned international conferences and journals. In 2011
she has presented a tutorial on “Mining Complex Dynamic Data” at the ECML PKDD 2011,
and has been serving as Workshops Chair for the IEEE Data Mining Conference (ICDM'11,
Vancouver, Canada), and as PC Area Chair for the ECML/PKDD 2011 (Athens, Greece). In the
coming year she is serving as Senior Reviewer for the SIAM Data Mining Conference (SDM'12),
the ECML PKDD 2012 and the ASONAM 2012, and she is PC Co-Chair of the German Clas-
sification Society Conference (GfKl'12, Hildesheim, Germany). Her work on “Evolution in Social
Networks: A Survey” in the book “Social Network Data Analytics” (ed. Charu Aggarwal) has
appeared recently at Springer Verlag.

Yannis Theodoridis is Assoc. Professor at the Department of Informatics, University of Piraeus,
where he currently leads the Information Management Lab. Born in 1967, he received his Di-
ploma (1990) and PhD (1996) in Electrical and Computer Engineering, both from the National
Technical University of Athens, Greece. Before joining the University of Piraeus, he was member
of the research staff at the Hellenic Research Foundation (1997-98) and the Computer Tech-
nology Inst. (1999-2002). His research interests include Data Science (management, analysis,
mining) for mobility data, whereas he teaches databases, data mining and GIS at under- and
post- graduate level. Apart from several national-level projects, he is or was scientist in charge
and coordinator of two European projects, namely PANDA (FP6/IST, 2001-04) and CODMINE
(FP6/IST, 2002-03), and principal investigator in GeoPKDD (FP6/IST, 2005-09), MODAP
(FP7/ICT, 2009-12; member of the mgmt board), MOVE (COST, 2009-13; vice-chair of the
mgmt committee), DATASIM (FP7/ICT, 2011-14) and SEEK (FP7/PEOPLE, 2012-15). He has
served as general co-chair for SSTD'03, ECML/PKDD'11 and PCI'12, vice PC chair for IEEE
ICDM'08, organizing chair for the 2010 summer school on “Mobility, Data Mining, and Privacy”,
member of the editorial board of the International Journal on Data Warehousing and Mining –
IJDWM (2005-), and member of the SSTD endowment (2010-). He has offered several tutorials
in top conferences (with the most recent at EDBT’09) and invited lectures in Greece and abroad
(including PhD/MSc courses at Venice, Milano, KAUST, Aalborg and Trento) on Mobility Data
Management and Data Mining topics. He has co-authored three monographs and more than
100 refereed articles in scientific journals and conferences, receiving more than 800 citations.

