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INTRODUCTION

Data streams are used in many modern ap-
plications and impose new challenges for the 
data management systems because of their size 
and high degree of variability. One of the chal-
lenges is the efficient detection and monitoring 
of changes in the underlying population. For 
example, changes in the patterns known to a 
network intrusion detection system may indicate 
that intruders test new attacks and abandon old, 
already known (and blocked) intrusion patterns. 

In general, monitoring of change is essential for 
applications demanding long-term prediction 
and pro-action.

Cluster models are commonly used as a tool 
for studying the dynamics of a population. In 
recent years actually, due to the dynamic nature 
of data, it has been recognized that clusters upon 
the data of many real applications are affected 
by changes in the underlying population of 
customer transactions, user activities, network 
accesses or documents. A lot of research has been 
devoted in adapting the clusters to the changed 
population. Recently, research has expanded 
to encompass tracing and understanding of 
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the changes themselves, as means of gaining 
insights on the population; see for example the 
survey of Spiliopoulou (2011) on the evolution 
of social networks. Understanding change is 
also important when taking strategic decisions: 
Consider, for example, a business analyst who 
studies customer profiles; understanding how 
such profiles change over time would allow for 
a long-term proactive portfolio design instead 
of reactive portfolio adaptation. While much 
research has been recently devoted to pattern 
change detection, little work has been done on 
the efficient maintenance of the pattern changes.

The maintenance and summarization of 
pattern changes upon a stream is a new problem. 
Summarization of data (rather than patterns); 
however, has been studied extensively: Popular 
summarization methods include histograms 
and wavelets, and there is much work on the 
efficient maintenance of these structures and 
on the adaptation of their contents when data 
change; however, these methods do not show 
how the data change nor do they maintain the 
changes themselves. There is also research on 
storing, modifying and querying patterns in 
inductive or conventional databases (e.g., Bar-
tolini, Ciaccia, Ntoutsi, Patella, & Theodoridis, 
2004); however, those approaches have not been 
designed for patterns over streams and, although 
there is provision for modifying patterns when 
new data arrive, there are no solutions on the 
efficient maintenance of changes over time. 
Finally, there are methods for pattern change 
detection (e.g., Aggarwal, 2005; Mei & Zhai, 
2005; Spiliopoulou, Ntoutsi, Theodoridis, & 
Schult, 2006), in which different types of change 
can be identified and highlighted; however, the 
efficient long-term maintenance of the changes 
over an “infinite” stream is not considered.

Evolution is a permanent characteristic of 
streamed data, thus long-term perusal requires 
a space-efficient accommodation of the evolv-
ing patterns and a representation that highlights 
remarkable changes while suppressing trivial 
pattern perturbations. In this study, we propose 
a graph representation of pattern changes/tran-
sitions and two algorithms that condense this 
graph into a “fingerprint” - a structure in which 

similar patterns are efficiently summarized, 
subject to an information loss function.

The rest of the paper is organized as fol-
lows: Related work is discussed in the upcom-
ing section. We then present our graph model 
for the representation of cluster transitions. 
The criteria for the summarization of cluster 
changes and the actual summarization meth-
ods are presented afterwards. Experiments are 
presented in the next section. Finally, the last 
section concludes our work.

RELATED WORK

Relevant to our work is the work on data 
summarization, stream clustering and change 
detection. We review these areas hereafter and 
point out how we differentiate.

Summarization Methods

Summarization for a set of transactions with 
categorical attributes is studied by Chandola 
and Kumar (2005). In one of their methods, they 
derive summaries by clustering the transactions, 
extracting the feature/value pairs supported by 
all transactions in a cluster and using them as 
cluster summaries. They do not address the issue 
of cluster change upon a stream, but propose 
two metrics that characterize the output of the 
summarization algorithm, “compaction gain” 
and “information loss”. Quite naturally, our 
metrics are similarly motivated and have similar 
names. However, they summarize static data 
using clusters, while we summarize evolving 
clusters upon an “infinite” data stream.

Summarization and change are considered 
by Ipeirotis, Ntoulas, and Gravano (2005), who 
study changes of database content summaries. 
They define as “content summary” for a database 
a set of keywords, weighted on their importance 
within the database. Meta-search services use 
such summaries to select appropriate databases, 
towards which they issue keyword-based que-
ries. The reliability of such a summary dete-
riorates as the contents of the database change 
over time. So, the authors propose methods to 
quantify and detect summary changes. This 
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study addresses both the issue of summarization 
over the evolving database and the discovery 
of changes. However, the maintenance of the 
summaries themselves in a condensed form is 
beyond the scope of their work. On the other 
hand, the proposed FINGERPRINT method 
emphasizes on the summarization of the dis-
covered population transitions.

The discovery and representation of cluster 
changes for text streams are studied in Mei and 
Zhai (2005). They apply soft clustering with 
mixture models at each time period, extract the 
representative keyword-list (“theme”) for each 
cluster and then monitor the evolution of these 
lists by tracing divergences between a current 
keyword list and past ones. Theme transitions 
are maintained on a “theme evolution graph,” 
which is then used to extract the life cycle of 
themes (through Hidden Markov Models). The 
graph structure is used to reflect pattern changes, 
but the maintenance of this ever-growing graph 
is not studied and the need for summarizing it 
without losing information is not anticipated.

Stream Clustering Methods

Relevant to our work is the work on stream clus-
tering. Usually, storing an entire data stream or 
scanning a stream multiple times is impossible 
due to its tremendous volume (Gama, 2010; 
(Farnstrom, Lewis, & Elkan, 2000). To this 
end, several clustering algorithms have been 
proposed which aggregate the stream online 
through some appropriate summary structure 
and cluster these summaries offline.

This rationale was first introduced in CluS-
tream (Aggarwal, Han, Wang, & Yu, 2003); 
the summary structure, called micro-cluster, 
is a temporal extension of the cluster feature 
vector of BIRCH (Zhang, Ramakrishnan, & 
Livny, 1996). CluStream starts with k initial 
micro–cluster summaries and as new points 
arrive, the summaries are updated such that a 
total of k micro-clusters is maintained at each 
time point. The clusters are detected offline 
using a modified version of k-Means over sum-
maries instead of raw data; the user chooses the 
summaries to be considered by specifying the 
time interval. Micro-clusters can be observed 

as cluster summaries and are indeed designed to 
reduce space demand. Nonetheless, CluStream 
focuses on combining them into clusters rather 
than in summarizing them over time. Also, 
the information loss affected through summa-
rization is not discussed. The same holds for 
DENstream (Cao, Ester, Qian, & Zhou, 2006) 
and DStream (Chen & Tu, 2007), which also 
follow the online–offline rationale.

Recently, a method has been proposed 
(Al-Mula & Al Aghbari, 2011) that clusters 
subsequences of a data stream in order to find 
frequent subsequences; this method, though, 
refers to multiple data streams.

Change Detection Methods

Change detection methods are also relevant 
to our work. Aggarwal (2005) models clusters 
through kernel functions and changes as ker-
nel density changes at each spatial location of 
the trajectory. The emphasis is on computing 
change velocity and finding the locations with 
the highest velocity - the epicenters. This model 
of change is very powerful, but is restricted to 
data over a fixed feature space. Kalnis, Mamou-
lis, and Bakiras (2005) propose a special type 
of cluster change, the moving cluster, whose 
contents may change while its density function 
remains the same during its lifetime. They find 
moving clusters by tracing common data records 
(based on their IDs) between clusters of con-
secutive timepoints. Yang, Parthasarathy, and 
Mehta (2005) detect formation and dissipation 
events upon clusters of spatial scientific data. 
Their framework supports four types of spatial 
object association patterns (SOAP), namely 
Star, Clique, Sequence, and minLink, which 
are used to model different interactions among 
spatial objects. Such methods however, assume 
that the feature space does not change. Thus, 
they cannot be used for dynamic feature spaces, 
e.g., text stream mining, where features are usu-
ally frequent words. Furthermore, hierarchical 
clustering algorithms cannot be coupled with 
such a method.

Cluster transition modeling and detection 
methods are presented in the MONIC frame-
work of Spiliopoulou, Ntoutsi, Theodoridis, 
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and Schult (2006), where both changes in the 
data and in the feature space are anticipated. 
Differently from the model of Aggarwal (2005), 
MONIC covers changes that involve more than 
one cluster (external transitions), such as split 
and absorption, allowing insights in the whole 
clustering. Internal transitions, i.e., changes 
within a single cluster (shrink, shift, etc.), are 
also supported. The transition tracking mecha-
nism of MONIC is based on the contents of the 
underlying data stream, thus it is independent 
of the clustering algorithm and of the cluster 
summarization/labeling method; differently 
from Mei and Zhai (2005). For these reasons, 
we use the cluster transition model of MONIC 
as input to our methods for the summarization 
of cluster changes.

BUILDING THE 
EVOLUTION GRAPH

We model cluster evolution across a sequence 
of timepoints t1, …, tn and denote as ξ1, ..., ξn 
the clusterings discovered at those timepoints. 
A clustering ξi, i > 1 may be the result of a 
complete re-clustering at ti or of the adaptation 
of clustering ξi-1. We further denote as di the 
substream of data records seen in the interval 
(ti-1, ti] and as Di the substream of records, on 
which ξi is based. Depending on whether 
data ageing is considered or not, Di may be 
equal to the set of all records seen thus far  
(D d

i j
i

j
= ∪ =1 ) or to the substream seen within 

a time window.
The Evolution Graph EG = G(V, E) spans 

the whole period of observation (n timepoints). 
The set of nodes V corresponds to the set of 
clusters seen during this time period, i.e., V = 
{ξ1, ..., ξn}. The set of edges E contains the 
cluster transitions; for each e = (v, v’) ∈  E, 
there is a timepoint ti; 1 ≤ i < n such that v ∈  
ξ, v’ ∈  ξi+1. By this specification of the Evolu-
tion Graph, the edges connect nodes/clusters 
found at adjacent timepoints. An example is 
depicted in Figure 1: A dotted/green edge de-
notes a “split” of the source cluster to multiple 

target clusters. A dashed/orange edge describes 
an “absorption”; the source cluster is contained 
in the target cluster. A solid/blue edge indicates 
a “survival”; the source cluster has survived 
into the target cluster with minor changes, such 
as changes in size or homogeneity (Spiliopou-
lou, Ntoutsi, Theodoridis, & Schult, 2006). This 
example graph depicts three types of cluster 
transitions: split, absorption and survival 
(Spiliopoulou, Ntoutsi, Theodoridis, & Schult, 
2006). In the next subsection, we describe how 
we assign the semantics of those transitions to 
the edges of the graph.

Semantics of the Graph Nodes

A node c ∈V represents a cluster found at 
timepoint ti, i.e., belonging to clustering ξi. A 
node in the evolution graph is adorned with a 
“label” c.label or ĉ , i.e., an intentional/ sum-
marized representation of its members. There 
are many elaborate summarized representations 
proposed in the literature, including micro-
clusters (Aggarwal, Han, Wang, &Yu, 2003) 
and “droplets” over text data (Aggarwal & Yu, 
2006). We opt for two simple representations, 
the cluster’s centroid for clusters over arbitrary 
numerical data and the cluster’s topic for clus-
ters over text data.

Definition 1 (Centroid as Label). Let c be a 
cluster in an m-dimensional space of nu-
merical properties. Its centroid is the vec-
tor of the mean values, ˆ ,...,c

m
= 〈 〉µ µ

1
, 

where µ
l

l m: 1≤ ≤ is the average of the 
data records’ values across the lth-dimen-
sion.

Definition 2 (Keyword-based label). Let c be 
a cluster of text documents, where each 
document di ∈c is a vector in the feature 
space of the keywords {k1, …, km}. 
The cluster  label  is  defined as  
ˆ ,...,c w w

k km
= 〈 〉

1
, where w

kl
 is the fre-

quency of the lth-keyword within c, if this 
frequency exceeds a boundary b and zero 
otherwise.
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Semantics of the Graph Edges

An edge e = (c, c’) ∈E denotes that a cluster 
c∈ξi found at ti has been “succeeded” by a 
cluster c’ ∈  ξi+1 of the next timepoint. Succes-
sion means that among the clusters of ξi+1, the 
cluster c’ is the one most similar to the cluster 
c. The semantics of cluster succession can be 
designed according to any of the approaches 
proposed for cluster evolution monitoring (e.g., 
Aggarwal, 2005; Mei & Zhai, 2005; Spiliopou-
lou, Ntoutsi, Theodoridis, & Schult, 2006). We 
have opted for the MONIC approach (Spilio-
poulou, Ntoutsi, Theodoridis, & Schult, 2006) 
because it is independent of the clustering al-
gorithm and can thus be used for any type of 
clusters, in contrary to, e.g., Aggarwal (2005). 
Also, it considers ageing of data which is im-
portant for streams.

In MONIC, cluster succession is based 
on the notions of cluster overlap and cluster 
matching: Let c be a cluster in clustering ξi at ti 
and c’ be a cluster in clustering ξi+1 at ti+1. The 
overlap of c and c’ is defined as:

overlap(c,c')
|c c'|

=
∩
| |c

	

This means that the overlap depends on 
the members of c that are still remembered at 
ti+1. Then, the “best match” or simply “match” 

of c in ξi+1 is the cluster c’ ∈ξi+1 that has the 
maximum overlap to c, subject to a threshold 
τmatch. If the threshold is not reached, then there 
is no match for c in ξi+1, i.e., c has disappeared/ 
died. Depending on the match(es) of an old 
cluster among the new clusters, the old cluster 
may experience the following transitions:

1. 	 Survival, denoted as c c→ ' : c ∈ξi survives 
into c’ ∈ξi+1 iff c’ is the match for c and 
there is no other cluster z ∈ξi, for which 
c’ is the match.

2. 	 Absorption, denoted as c c→
⊂

' : c ∈ξi is 
absorbed by c’∈  ξi+1 iff c’ is the match for 
c and there is at least one more cluster z ∈
ξi, for which c’ is the match.

3. 	 Split, denoted as c c c c
p

→
⊂

{ , ,..., }
1 2

: c ∈ξi 
is split into c1, …, cp ∈ξi+1, with p > 1, iff 
the overlap of c to each of these clusters 
exceeds a threshold τsplit and the overlap of 
all these clusters to together exceeds the 
match threshold τ.

4. 	 Disappearance, denoted as c → ⊗ : c ∈
ξi disappears if none of the above mentioned 
cases holds for ξi+1.

In our Evolution Graph, an edge is drawn 
from c to c’ for each of the first three cases; if 
a cluster has no outgoing edges, then the forth 
case has occurred. Further, we adorn the edges 

Figure 1. Example of an evolution graph (EG)
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with information on the transition type. In 
particular, let e = (c, c’) ∈E be an edge from 
cluster c ∈  ξi to c’ ∈ξi+1. Then, the edge e is 
adorned with a label e.extTrans that describes 
the type of external transition as one of {sur-
vival, split, absorption}. If a cluster in ξi has no 
outgoing edge, it has disappeared. If a cluster 
in ξi+1 has no ingoing edge, it has just emerged. 
For an emerged cluster, we form its cluster trace 
as follows:

Definition 3 (Cluster Trace). Let EG be an 
Evolution Graph captured for the time-
points t1, …, tn. For each emerged cluster 
c that appeared for the first time at ti (i.e., 
a cluster without ingoing edge), we define 
its “cluster trace”, trace(c) ≡ trace(c, ti), as 
the sequence πc1 c2 … cmϕ, where c1 ≡ c, m 
≤ n - i and for each ci; i ≥ 2 there is an edge 
ei = (ci-1, ci) such that e.extTrans = survival. 
We denote the traceset of EG as TEG.

For example, the traceset TEG for the Evolu-
tion Graph of Figure 1 consists of the following 
sequences: (a) trace πc11c21c31c41c51ϕ, indicating 
that the emerged cluster c11 has survived across 
all five timepoints, (b) trace πc22c32c42c52ϕ of 
the emerged cluster c22, one of the clusters to 
which c12 has been split and (c) the two-node 
traces πc13c24ϕ and πc33c43ϕ. The other clusters 
c12, c23, c24 only existed for one timepoint and 
therefore built no traces.

Construction of the 
Evolution Graph

The Evolution Graph is built incrementally as 
new clusterings arrive at timepoints t1, … tn. The 
pseudocode of the algorithm is depicted in Fig-
ure 2. When a new clustering ξi arrives at ti; i > 
1, our earlier algorithm MONIC (Spiliopoulou, 
Ntoutsi, Theodoridis, & Schult, 2006) is applied 
on the previous clustering ξi-1 and the current 
one ξi (line 4): transitions between clusters of 
ξi-1, ξi are detected and an edge is added to the 
Evolution Graph for each detected transition 
adorned with information on the transition type 
(line 5). Clusters at ξi are also added as nodes 

to the graph and labels are assigned to them 
(line 2). Note that MONIC uses the cluster 
contents (data members) for transition detection. 
Hence, we retain this information until the next 
timepoint only (line 6). So, the data members 
of the clusters at ti-1 are retained only until ti, 
so as the transitions between clusters at ti, ti-1 
to be detected.

Algorithm Complexity

We turn now our attention to the complexity 
of the evolution graph construction algorithm. 
Adding a new clustering ζi into the Evolution 
Graph imposes the following costs: i) the 
computation of centroid labels for its cluster-
members and ii) the computation of transitions 
between this clustering (ζi) and the clustering 
of the previous timepoint (ζj). Let cost(c) be 
the cost of computing the centroid label of a 
cluster c. Then, the centroid labels computa-
tion for clustering ζi costs: |ζi| · cost(c). The 
cost of detecting transitions between the two 
consecutive clusterings ζi, ζj is the MONIC cost: 
O(|ζi|·|ζj|+|Di|·|Dj|) (Spiliopoulou, Ntoutsi, 
Theodoridis & Schult, 2006). Thus, the com-
putational cost for adding clustering ζi into the 
evolution graph becomes:

addCost = O(|ζi| · cost(c) + |ζi|·|ζj|+|Di|·|Dj|)	

If we consider an observation period of n 
timepoints, the building cost becomes:

EGbuildCost = (n-1)  addCost⋅ 	

There is also the evolution graph storage 
cost, which refers to the space requirements for 
storing cluster labels, i.e., centroids, and their 
transitions. For a timepoint i, we should store 
the centroids of the clusters of the correspond-
ing clustering ζi as well as the cluster transitions 
between this clustering and the previous time-
point clustering, tj. If |centroid| is the storage 
cost of a cluster centroid summary, then the 
storage cost for the ζi cluster centroid summa-
ries is: | | | |ζ

i
centroid∗ . If |edge| is the stor-

age cost for an edge, then the storage cost for 
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the transitions between ζi and ζj is: 
| | | | | |ζ ζ
i j

edge∗ ∗ .
Considering the n-timepoints observation 

period, the storage cost becomes:

EGstorageCost centroid
i

i n

i
i n j i

= ⋅

+
=

= = +

∑ 
 

| | | |

| |
...

... - ,

ζ

ζ
1

1 1 11
∑ ⋅ ⋅| | | |ζ

j
edge

	

In the above formula, the first term corre-
sponds to the cost of storing the cluster centroid 
labels, whereas the second term corresponds to 
the cost of storing the cluster transitions.

Note that during Evolution Graph construc-
tion, we should also store the contests of the 
most recent clustering, ζj. This is because, in 
order to find transitions of the next incoming 
clustering ζi with respect to clustering ζj, the 
contents of ζj should be available. This cost is 
O(|Dj|), where Dj are the data members of ζj .

QUERYING THE 
EVOLUTION GRAPH

The Evolution Graph contains a wealth of 
information regarding the evolution of the 
underlying population. Different queries might 
be imposed over the Evolution Graph so as to 
facilitate the end user to gain insights in the 
population and its evolution. We present some 
representative examples:

•	 Forward History Queries: How does X 
evolve?
Answer sketch: Start from X and fol-

low its outgoing edge(s) until its 
descendant(s) disappear(s).

•	 Backward History Queries: How did X 
emerge?
Answer sketch: Start from X and follow its 

incoming edge(s) until its ancestor(s) 
appear(s) for the first time.

•	 Comparison Queries: What other clusters 
have a similar forward history of transi-
tions, or backward history, or both as X?
Answer sketch: Use the history of X as 

the query object and check whether 
the sequence of transitions that X has 
encompassed agrees with the sequence 
of transitions encompassed by some 
other cluster.

•	 Impact Queries: Which clusters and at 
which timepoints have most influenced X 
into its current shape and content?
Answer sketch: Assign an importance 

factor to each cluster Y participating 
in the history of X. Such a factor may 
be computed on the basis of, e.g., the 
overlap of Y with respect to its outgo-
ing cluster/node on the history of X or 
the distance between Y and X as the 
number of in-between edges. Then, 
clusters can be ranked with respect to 
this importance factor.

Figure 2. The evolution graph (EG) construction algorithm
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SUMMARIZING THE 
EVOLUTION GRAPH TO 
ITS FINGERPRINT

The Evolution Graph captures the whole history 
of the population under observation and allows 
the study of cluster transitions and the inspec-
tion of cluster interrelationships. However, this 
graph is space consuming and highly redundant. 
Concretely, it contains information about each 
change but also contains information for clus-
ters that did not change at all or have slightly 
changed. Hence, we summarize the Evolution 
Graph in such a way that cluster transitions 
are reflected but redundancies are omitted. 
For this, we summarize traces, i.e., sequences 
of cluster survivals, into “fingerprints”. These 
trace summaries constitute the “fingerprint” of 
the Evolution Graph. We first define the no-
tion of “trace summary” and then present our 
algorithm FINGERPRINT in two variants, a 
batch and an incremental one.

Summarizing a Trace

The summarization process is applied over 
cluster traces (cf. Definition 3). Each trace T is 
traversed and the “removable” nodes are identi-
fied: These are the nodes that can be replaced by 
a smaller number of derived nodes, which are 
called “virtual centers” and are defined below.

Definition 4 (Virtual Center). Let ≺c1 c2 … cm≻ 
be the trace of an emerged cluster c, trace(c) 
and let X = ≺cj … cj+k≻ be a subtrace of this 
trace, i.e., a subsequence of adjacent nodes 
in the trace (k ≤ m - 1, j ≥ 1). We define 
the “virtual center” of X, vcenter(X) = X̂  
as a derived node composed of the aver-
ages of the labels of the nodes in X:

ˆ[ ]
| |

[̂ ]X i
X

c i
c Xi

=
∈
∑1 	

where [i] is the ith dimension and ĉ  denotes 
the label of cluster c. We use the notation 

c X

ˆ  to indicate that cluster c X∈ has been 
“mapped to” the virtual center X̂ .

If labels are centroid-based (Definition 1), 
X̂  is the center of the centroids of the clusters 
in X. If labels are keyword-based (Definition 
2), X̂  contains the average frequencies of all 
frequent keywords in the clusters of X.

After introducing the virtual center as the 
summary of a subtrace, we define the summary 
of a trace: It consists of a sequence of nodes, 
each node being either an original cluster or a 
virtual center that summarizes a subtrace.

Definition 5 (Trace Summary). Let T = ≺c1 
c2 … cm≻ be a trace. A sequence S = ≺a1 
a2 … ak≻ is a summary of T if and only if 
(a) k ≤m and (b) for each ci ∈T there is an 
aj∈S such that either ci = aj or ci  aj, i.e., 
ci belongs to a subtrace that was summa-
rized to the virtual center aj .

There are several possible summarizations 
of a trace, each one corresponding to a different 
partitioning of the trace into subtraces and con-
sequently producing different virtual centers. 
We are interested in summarizations that achieve 
high space reduction while keeping information 
loss minimal. We generalize these objectives 
into functions measuring “space reduction” and 
“information loss,” as explained.

The replacement of a subtrace X by its 
virtual center X̂ results in storage space reduc-
tion, since less nodes are stored, but also in loss 
of information, since the original clusters are 
replaced by a “virtual center.” We model the 
information loss of each original cluster c∈X 
as its distance from the virtual center X̂  to 
which it has been assigned after summarization:

ILoss cluster c X dist c X_ ( , ˆ) ( ,̂ ˆ)= 	 (1)

where dist c X( ,̂ ˆ)  is the distance between the 
label of the original cluster ĉ and that of the 
virtual center X̂ .

The information loss for a cluster/node 
is now aggregated at the level of the trace, to 
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which the node belonged. The space reduction 
is also defined for traces.

Definition 6 (Information Loss). Let T be a 
trace and S be a summary of this trace. 
The “information loss” of T towards S is:

ILoss trace T S ILoss cluster c a
cc T

_ ( , ) _ ( , )=
∈∑ 	

(2)

where ac∈S corresponds to either the virtual 
center to which c is mapped after the summa-
rization or to the cluster c itself. In the latter 
case, ILoss cluster(c,ac) = 0.

Definition 7 (Space Reduction). Let T be a 
trace and S be a summary of this trace. 
The “space reduction” of T towards S is 
the decrease in the number of nodes and 
edges that need to be stored:

SReduction_trace(T,S)

=
− + − − −

+ −

=
× −
× −

≈

(| | | |) (| | | ( | ))

| | | |
(| | | |)

(| | )

|

T S T S

T T
T S

T

1 1

1
2

2 1

TT S

T

| | |

| |

−

	

(3)

where |T| is the number of nodes in T and 
|T|-1 the number of edges among its nodes 
(similarly for S).

This definition is similar to the definition 
of compaction gain in Chandola and Kumar 
(2005).

Next, we define the “fingerprint” of a trace 
as a summary, the virtual centers of which are 
proximal to the original cluster labels, subject 
to a distance upper boundary τ, so that the 
information loss effected through the replace-
ment of a cluster by a virtual center is kept low.

Definition 8 (Fingerprint for a Trace). Let T 
be a trace and S be a summary of T. S is a 
“fingerprint” of T with respect to a distance 
threshold τ if and only if:

(C1) For each node c ∈X replaced by a 
virtual center a ∈S it holds that dist(
ĉ ,a) ≤ τ and,

(C2) for each (sub)trace ≺c1 c2 … ck≻ of T 
that has been summarized into a single 
virtual center a it holds that 
∀ = − ≤+i k dist c c

i i
1 1

1
,..., : (ˆ , ˆ ) τ .

By this definition, S is a fingerprint of T 
if it has partitioned T into subtraces of clusters 
that are similar to each other (condition C2) and 
each such subtrace has a virtual center that is 
close to all its original nodes (condition C1).

Once traces are summarized into fin-
gerprints, the Evolution Graph can also be 
summarized, resulting in space reduction and 
information loss at the graph level.

Definition 9 (Fingerprint for an Evolution 
Graph). Let EG be an Evolution Graph 
and TEG be its traceset. For each trace T ∈
TEG, let ST be its fingerprint (Definition 8), 
subject to a distance threshold τ οn the 
distance among centroids. The set SEG:= 
{ST: T ∈  TEG} is the “fingerprint of the 
Evolution Graph.” It effects a space reduc-
tion SR(EG, SEG) and an information loss 
IL(EG, SEG):

SR EG S S duction trace T S
EG T T

( , ) _ ( , )=∑ Re 	
(4)

IL EG S ILoss trace T S
EG TT

( , ) _ ( , )=∑ 	
(5)

We next present the two variants of 
our algorithm FINGERPRINT. The variant 
batchFINGERPRINT creates the fingerprint 
of an Evolution Graph by partitioning traces in 
such a way that their fingerprints can be built. 
This variant requires that the Evolution Graph is 
first constructed and stored as a whole. Then, we 
present the online variant incFINGERPRINT, 
which builds the fingerprints of the traces incre-
mentally as new cluster transitions are detected, 
i.e., without requiring the construction of the 
Evolution Graph first.
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Batch Summarization of the Graph

The batchFINGERPRINT summarizes an 
Evolution Graph EG by identifying its traces, 
building a fingerprint for each trace and substi-
tuting the traces in EG with their fingerprints. 
The batchFINGERPRINT satisfies the two 
conditions of Definition 8 by applying two 
heuristics on each (sub)trace T:

•	 Heuristic A: If T contains adjacent nodes 
that are in larger distance from each other 
than τ, then the pair of adjacent nodes c, 
c’ with the maximum distance is detected 
and T is then partitioned into T1, T2 so that 
c is the last node of T1 and c’ is the first 
node of T2.

•	 Heuristic B: If T satisfies condition C2 but 
contains nodes that are in larger distance 
from the virtual center than τ, then T is split 
as follows: The node c that has the maxi-
mum distance from vcenter(T) is detected 
and T is partitioned into T1, T2 so that c is 
the last node of T1 and its successor c’ is 
the first node of T2.

Heuristic A deals with violations of condi-
tion C2 and Heuristic B deals with violations 
of condition C1 for (sub)traces that already 
satisfy C2. We show the algorithm in Figure 3.

The batchFINGERPRINT creates a finger-
print of the Evolution Graph by traversing the 
graph, extracting its traces (line 1, condition 
C2) and summarizing each of them (line 4). 
The “produced” fingerprints of the traces are 
added to the fingerprint graph FEG (line 5). 
This operation encapsulates the attachment of 
a summarized trace to the graph by redirecting 
the ingoing/ outgoing edges of the original trace 
towards the ends of the summarized trace.

The batchFINGERPRINT invokes sum-
marize_HeuristicA() which recursively splits 
the trace into subtraces according to Heuristic 
A until C2 is satisfied. If the trace consists of 
only one node, then this node is returned (line 
1). Otherwise, we test whether the trace contains 

nodes whose labels are further off each other 
than the threshold τ (line 2). If C2 is satisfied, 
then summarize_HeuristicB() is invoked (line 
8): It checks for condition C1 and returns the 
fingerprint of the (sub)trace input to it. If C2 
is violated, the trace is partitioned according to 
Heuristic A (lines 3,4) and summarize_Heuris-
ticA() is invoked for each partition (lines 5, 6). 
Finally, the summarized (sub)traces are concat-
enated (line 7) and returned. This concatenation 
operation restores or redirects the edges across 
which the split (line 4) was performed

The recursive function summarize_Heu-
risticB() operates similarly. It takes as input a 
(sub)trace T that has more than one nodes and 
satisfies condition C2. It builds the virtual center 
for T according to Definition 4. It then checks 
condition C1 by comparing the distance of the 
virtual center from each node to τ (line 2). If τ 
is not exceeded, the virtual center is returned 
(line 3). Otherwise, T is split at the node that 
has the highest distance from the virtual cen-
ter, according to Heuristic B (lines 5, 6). The 
summarize_HeuristicB() is invoked for each 
partition (lines 7, 8). The returned fingerprints 
are concatenated into the fingerprint of T.

Incremental Summarization 
of the Graph

The batch summarization algorithm of Figure 
3 requires as input the complete Evolution 
Graph, before building its fingerprint. This is 
resource-intensive, since the graph is grow-
ing continuously. We have therefore designed 
incFINGERPRINT, a fingerprint construction 
algorithm that summarizes the traces incre-
mentally and does not require the a priori 
construction of the Evolution Graph. We show 
incFINGERPRINT in Figure 4.

Our incFINGERPRINT invokes (in line 
1) our earlier algorithm MONIC (Spiliopoulou, 
Ntoutsi, Theodoridis, & Schult, 2006): MON-
IC compares the current clustering ξ (timepoint 
ti) to the most recent one ζ (timepoint ti-1), 
identifies the cluster transitions and returns 
them as a set Ei of labeled edges, according to 
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previous subsection. The source of each edge 
corresponds to a node that is already in the 
fingerprint graph FEG. It is stressed that 
MONIC operates on the clusterings rather than 
the cluster labels retained in the nodes of the 
fingerprint graph. So, from line 2 on, incFIN-
GERPRINT transfers information about the 
detected transitions in the FEG, summarizing 
survivals wherever possible. The result is an 
already summarized version of the Evolution 
Graph.

For each edge e = (x, y), incFINGERPRINT 
examines whether e is a survival transition (line 
3), i.e., whether e is part of a trace. If not, FEG 
is expanded by adding the cluster y and the edge 
e (lines 4, 5).We do not add the whole cluster; 

we only retain its label (cf. “Change detection 
methods”).

If e = (x, y) does belong to a trace, incFIN-
GERPRINT checks whether the labels of x and 
y are similar to each other, according to condi-
tion C2 of Definition 8 (line 6). Since cluster 
x has already been added to FEG, we access its 
label x.label directly, while the label of cluster 
y must be computed as ŷ . If condition C2 is 
not satisfied, the FEG is expanded by y and e 
as before. If finally, C2 is satisfied, then y and 
e do not need to be added to FEG. Instead, x 
and y are summarized into their virtual center 
v (line 10) and the node x is replaced by v (line 
11). This means that all edges pointing to x are 
redirected to v.

Figure 3. Offline summarization of the evolution graph with batchFINGERPRINT
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The incFINGERPRINT not need to check 
for condition C1, since the distance of the virtual 
center of two nodes is less than the distance 
between the two nodes as a whole; the latter 
is less than τ by virtue of condition C2. This 
algorithm operates locally, treating pairs of 
adjacent nodes only, instead of whole traces. 
Thus, it has the advantage of not requiring the 
a priori construction of the Evolution Graph.

EXPERIMENTAL RESULTS

The goal of our experiments is to measure the 
space reduction and information loss for the 
two different summarization techniques and 
for different values of the centroid similarity 
threshold τ (cf. Definition 8) that governs the 
summarization process.

Datasets

We experimented with two numerical data-
sets, the Network Intrusion dataset and the 
Charitable Donation dataset, and with one 
text dataset, the ACM H2.8 dataset. The two 
numerical datasets have been used often in 
stream experiments (e.g., Aggarwal, Han, Wang, 

& Yu, 2003; Cao, Ester, Qian, & Zhou, 2006). 
The text dataset has been used in the experiments 
of MONIC (Spiliopoulou, Ntoutsi, Theodoridis, 
& Schult, 2006). With respect to their evolving 
nature, the first dataset is rapidly evolving, the 
second one is relatively stable, while the third 
one evolves in an unbalanced way - one of the 
classes grows faster than the others.

The Network Intrusion dataset (KDD 
Cup’99) contains TCP connection logs from 
two weeks of LAN network traffic (424,021 
records). Each record corresponds to a normal 
connection or an attack. The attacks fall into 
four main categories: DOS, R2L, U2R, and 
PROBING. So, we set the number of clusters to 
5, including the class of normal connections. We 
used all 34 continuous attributes for clustering 
and removed one outlier point, as in Aggarwal, 
Han, Wang, and Yu (2003). We turned the dataset 
into a stream by sorting on the data input order. 
We assumed a uniform flow in speed of 2,000 
instances per time period. For data ageing, we 
assumed a sliding window of 2 time periods/
timepoints.

The Charitable Donation dataset (KDD 
Cup’98) contains information (95,412 records) 
on people who have made charitable donations 

Figure 4. Online summarization of the evolution graph with incFINGERPRINT
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in response to direct mailings. Clustering iden-
tifies groups of donors with similar donation 
behavior. Similar to Farnstrom, Lewis, and 
Elkan (2000), we used 56 out of the 481 fields 
and set the number of clusters to 10. As with the 
previous dataset, we used the data input order 
for streaming and assumed a uniform flow with 
200 instances per time period. For data ageing, 
we used a sliding window of size 2.

The ACM H2.8 document set is the set of 
documents inserted between 1997 and 2004 
in the ACM Digital Library, category H2.8 on 
“Database Applications.” This dataset contains 
publications on (1) data mining, (2) spatial 
databases, (3) image databases, (4) statistical 
databases and (5) scientific databases. It further 
contains (6) uncategorized documents, i.e., 
those assigned in the parent class “database 
applications [only].” The subarchive consists 
of the documents whose primary (or secondary) 
class is one of these 6 classes (4,920 records). 
It evolves in an unbalanced way (Spiliopoulou, 
Ntoutsi, Theodoridis, & Schult, 2006): The 
category (1) is larger than all the others together 
and grows faster than the others. For the experi-
ments in Spiliopoulou, Ntoutsi, Theodoridis, 
and Schult (2006), only the title and a list of 
keywords were considered for each document. 
We have used the same vectors and the same 
clustering algorithm, bisecting K-means, for K = 
10.We turned the data into a stream by using the 
publication date for the ordering of the records. 
We considered n = 7 timepoints corresponding 
to the 7 publication years from 19981 to 2004; 
the corresponding data batches have different 
sizes varying from 837 in 1998 to 617 in 2004. 
The size of the sliding window was set to 2. A 
cluster label consists of the terms appearing in 
more than 60% of the cluster’s vectors.

Example Traces and Fingerprints

To highlight the behavior of the summarization 
algorithms, we depict here some traces from 
the ACM H2.8 dataset and their correspond-
ing fingerprints in Table 1, as produced by our 
summarization algorithms.

In 1998, we observe a new cluster with the 
label “information system” which is further 
developed in the next two years, 1999 and 2000. 
Its trace is:

trace c c c c( ) , ,
1998 1998 1999 20002 2 6 3

=≺ � 	

The notation c
yi

refers to the ith cluster of 
year y, i = 1 … 9 (cluster 0 is the garbage clus-
ter)2. At all time points, the cluster centroids 
contain the terms “information” and “system” 
but with different frequencies, as follows:

ĉ
19982
=< information(0.96); system(0.61) >	

ĉ
19996
=< information(0.88); system(0.74) >	

ĉ
20003
= < information(0.76); system(0.78) >	

Both summarization algorithms condense 
this trace into a single virtual center. The batch 
algorithm creates this new node v in one step: 
v̂ = < information(0.87); system(0.71) >, 
whereas the incremental algorithm first sum-
marizes ĉ

19982
 and ĉ

19996
into a virtual center: 

v̂
0
= < information(0.92); system(0.68) >, and 

then summarizes v̂
0
 and ĉ

20003
into a new vir-

tual center: ˆ’v = < information(0.84); sys-
tem(0.73) >.

A further cluster that emerged in 1998 had 
the one-term label < analysis(1.0) >. In 1999, 
it was split into two clusters, one labeled < 
mining(1.0); datum(0.74) > and one cluster with 
no label (garbage cluster). The former survived 
for two periods, thus resulting in the trace: 
≺ �c c c

1999 2000 20018 4 6
, , .

The information delivered without sum-
marization is:

c c c c c
1998 1999 1999 2000 20019 4 8 4 6
→
⊂

{ , , , }≺ � .	
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Instead, the summarization delivers the 

fingerprint c c v
1998 19999 4
→
⊂

{ , }̂ , where v̂ is the 

summary of the trace≺ �c c c
1999 2000 20018 4 6

, , .
Although the dataset is small (it spans only 7 

time points), the above examples clearly display 
the advantages of cluster monitoring and sum-
marization. Due to the re-occurrence of clusters 
(corresponding to real world concepts like 
information systems, image retrieval, etc.), the 
fingerprint produces an efficient and effective 
dataset overview over time. Such an overview 
is much more “readable” by the end user.

Space Reduction and 
Information Loss

We evaluated the space reduction achieved by 
the batch and the incremental summarization 
methods for different values of the centroid 

distance threshold τ. The results for the two 
numerical datasets are depicted in Figure 5.

As expected, for both incFINGERPRINT 
and batchFINGERPRINT, the space reduction 
increases for larger values of τ, because less 
proximal centroids can be merged. The two 
algorithms achieve similar space savings al-
though batchFINGERPRINT shows slightly 
higher values for most values of τ, especially 
in the Network Intrusion dataset.

The total space reduction for each dataset 
depends of course on the number of survivals 
per se: Among the total of 1,195 clusters/nodes 
generated for the Network Intrusion dataset, 
only 400 nodes participate in traces (~33%); 
the space reduction values achieved by both 
algorithms are in the range [21%, 33%] of the 
total size of the Evolution Graph. The Evolu-
tion Graph of the Charitable Donation dataset 
contained 4,770 clusters, of which 614 were 
involved in traces (~13%); the space reduction 

Table 1. Example clusters and traces in the ACM H2.8 dataset 

Figure 5. Impact of threshold τ on space reduction for the Network Intrusion dataset (left) and 
the Charitable Donation dataset (right)
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over the whole graph was thus no more than 
7%. For the ACM H2.8 sub-archive, 24 out of 
70 nodes were involved in traces (~34%), so 
that the space reduction over the whole graph 
ranged between 9% and 33%.

In Figure 6, we depict the information loss 
affected upon the datasets when summarizing 
incrementally versus in batch. The information 
loss increases with τ, since a larger τ implies that 
less similar centroids can be merged.

For the Charitable Donation dataset, the 
information loss incurred by the incremental 
algorithm is slightly higher than for the batch 
algorithm but follows the same curve for dif-
ferent values of τ. For the Network Intrusion 
dataset, the performance difference is dra-
matic: While the batch algorithm achieves a 

very low information loss, the incremental 
algorithm performs very poorly. A possible 
explanation for the poor performance of in-
cFINGERPRINT in the Network Intrusion 
dataset is the volatility of the dataset: It is 
likely that the survived clusters were unstable 
and not very similar to each other. Hence, in-
cFINGERPRINT produced virtual centers that 
were not very close to the original pairs of 
centroids, while batchFINGERPRINT managed 
to build better virtual centers among multiple 
adjacent centroids.

In Figure 7, we show the joint curves of 
space reduction and information loss for the two 
datasets and for different values of the centroid 
distance threshold τ.

Figure 6. Impact of threshold τ on information loss for the Network Intrusion dataset (left) and 
the Charitable Donation dataset (right)

Figure 7. Correlation between information loss and space reduction for different values of τ for 
the Network Intrusion dataset (left) and the Charitable Donation dataset (right)
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CONCLUSION AND OUTLOOK

We have studied the effective summarization 
of cluster changes over an evolving stream 
of data. We modeled cluster transitions in a 
graph structure, the Evolution Graph, and 
proposed two algorithms that summarize it into 
a “fingerprint.” A fingerprint is a condensed 
representation, in which less informative cluster 
transitions are suppressed. We derived functions 
that measure the effected information loss and 
space reduction and we presented heuristics 
that drive the summarization process. One of 
our algorithms summarizes the Evolution Graph 
as a whole, while the other creates the graph’s 
fingerprint incrementally, during the process 
of cluster transition discovery. We have run 
experiments on three real datasets and have 
seen that incFINGERPRINT achieves similar 
space reduction to batchFINGERPRINT, but the 
information loss may be much higher depending 
on the volatility of the dataset.

The batch algorithm batchFINGERPRINT 
shows better performance comparing to the 
incFINGERPRINT algorithm, but it requires 
the whole dataset of transitions as an input. A 
hybrid summarization algorithm using both an 
online and an offline component is worth pursu-
ing. Another interesting direction is modeling 
and investigation of the impact of the quality 
and stability of the original clustering on the 
summarization process. In this work, we have 
concentrated on the summarization of cluster 
survivals. A survival is the transition of a cluster 
to a similar successor cluster. Instead of placing 
constraints on the similarity among clusters, we 
want to study models of information loss for the 
summarization of arbitrary cluster transitions, 
so that only the most informative changes are 
delivered to the end-user.
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