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Abstract. We propose a stream mining method that learns opinion-
ated product features from a stream of reviews. Monitoring the attitude
of customers towards products is a field of much interest, but the prod-
ucts themselves may come in and out of the market. We rather inves-
tigate which (implicit) features of the products are important for the
customers, and monitor how customer attitude towards such features
evolves. To this purpose, we use a two-level stream clustering algorithm
that extracts features and subfeatures from an opinionated stream, and
couple it with dedicated feature-specific classifiers that assess the polar-
ity of each extracted (sub)feature. We evaluate our method on a stream
of reviews and we elaborate on how changes in the arrival rate of features
(drift) affects algorithm performance.
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1 Introduction

We investigate the problem of monitoring sentiment in product reviews. Opinion
mining on products is widespread. We rather focus on identifying and monitor-
ing the product features, which are frequently mentioned by the consumers. We
propose a stream mining method that learns the features and assesses the polar-
ity mostly associated with each feature. As the stream progresses, our method
adjusts the features, forgetting unpopular ones and recognizing emerging ones,
and monitors the change of their polarity over time - and thus the attitude of
the consumers towards product features.

Opinion monitoring over streams of reviews has gained momentum in the last
years. Stream learners have been proposed to extract opinions from streams,
detecting drifts and bursts [3,4, 15]. Opinion monitoring responds to the fact
that the attitude of people may change over time. Hence, learning from a stream
of opinionated reviews contributes to better decision making for the customers
and to better estimation of product popularity for the product owner.

One thread of opinion mining concentrates on identifying product features
and assessing the sentiment associated to them [9, 16]. A feature is an implicit
property, as e.g. in “This camera lens is cheap” (lens as property of the camera).



Monitoring of product features is a natural extension of static learning; it is useful
for two reasons. First, products enter and exit the market, but the popularity of
some features remains, e.g. the lens of any camera, the battery lifetime for any
laptop. Second, features that suddenly become popular call for the producers’
attention: if many reviews on the “charge device” of different cameras emerge,
this indicates that customers have become interested in that feature.

In this work, we study opinion monitoring for features of products 2. Our
stream mining approach encompasses (a) product feature extraction and adap-
tion to new features, (b) feature polarity learning and (c) filtering of unimpor-
tant reviews. For product feature extraction (item a) we define a hierarchy of
polarized (sub)features, so that different levels of granularity on the product
properties are found. We adapt this feature hierarchy over time, incorporating
new features and eliminating unpopular ones, so that changes in the emphasis
paid to features by customers is captured in the model. For feature polarity
learning (item b), we train one sentiment classifier per feature, so that effects of
polysemous words can be minimized (“heavy” is negative for a laptop but may
be positive for a lens). Finally, (item c¢) we introduce the notion of important
review, as review that is similar to many others and can serve as representative.
We consider only important reviews, so that we capture general trends and omit
outliers, while we gain also in efficiency. For feature extraction from important
reviews we extend our earlier method TStream [18], which monitors topics on
streams and detects novel topics.

The rest of the paper is organized as follows: In Section 2, we discuss re-
lated work. In Section 3, we describe the basic concepts, and then we introduce
our approach. Section 4 contains our experiments on a real dataset, where we
simulate drifts and bursts. The last Section concludes our study.

2 Related work

Relevant to our work are studies on sentiment analysis over streams, on feature
extraction from a stream of opinionated documents and on stream clustering.

Sentiment Analysis over Streams One of the first approaches on sentiment
analysis over a stream was proposed by Silva et al. [15]: stream learning starts
with a small seed of labeled documents, upon which a classification rules learner
is trained. The seed is gradually expanded with new relevant documents. We
also use a small seed for learning, but we train a classifier for each feature.
Bifet and Frank [3] investigate sentiment classification on a stream of tweets;
they consider unbalanced classes with drifts and shifts in the class distribution,
under the requirement of quick response under memory constraints. Closest to
our approach is their follow-up framework [4] that consists of (i) a twitter filter
to convert tweets into TF-IDF vectors, (ii) an adaptive frequent itemset miner

3 We use the terms ‘feature’ and ‘property’ as synonyms, to denote an implicit property
that must be extracted from the reviews with text (stream) mining methods.



that stores the frequency of the most frequent terms and (iii) a change detector
that explores changes in the frequency distribution of the items. The framework
monitors changes in the frequency of words. We also propose a framework for
stream learning over opinionated documents, but our objective is to first identify
the features and subfeatures of the products we study, and then to assess the
polarity of the features (using a classifier for each (sub)feature), thereby taking
feature specific words into account and also consider that features may emerge
and disappear as the stream progresses.

Feature Extraction from Reviews Feature extraction and monitoring from
a stream is a new subject. For feature extraction on a static set of reviews,
Liu identifies four research subtopics [10], of which the identification of frequent
nouns and of noun phrases are closest to our research.

Long et al. [11] extract core words for an aspect, compute their frequencies,
estimate their distance to other words and use it to acquire further words related
to the aspect. Zhu at al. [17] consider the frequency of terms that contain other
terms. Mukherjee et al. [13] extract features and relationships among them: for
feature extraction, they consider all nouns. In contrast, we suppress very frequent
nouns with the help of TF-IDF weighting. Moghaddam and Ester [12] want to
find multi-part noun phrases like “LCD display”; they use TF-IDF weighting
of nouns with non-stopword stems at document- and paragraph level and they
apply Apriori to find frequent noun combinations. We also aim to find multi-
word terms, but use two-level clustering instead; this allows us to identify also
refinements of features. All above methods are static; our approach also captures
emerging features and gradually forgets features that are no longer important.

Stream clustering We can distinguish two types of stream clustering methods.
Methods of the first type summarize the stream and maintain summaries online;
clustering is an offline step. An early approach of this type is Clustream [1],
more recent ones include DenStream [5]. We adhere to the second type of stream
clustering, where the clusters are updated as new data instances arrive. An early
approach of this type appeared in [7], the text stream clustering algorithm in [2]
adheres to this type. For text stream clustering in the current work, we build
upon our earlier method TStream [18], which is specialized in detecting new
topics from bursts of news and in accumulating them to a fixed set of clusters.

3 Extracting & Maintaining Polarized Features

We monitor a stream of product reviews, from which we extract a two-level
hierarchy of product features, assess the polarity assigned to the features by the
people who write the reviews, and identify changes in feature polarity over time.

Our approach is designed for streams of product reviews, where each review
refers to a single feature of the product. The stream itself, though, covers a
variety of features of the different products. The requirement of one feature per



review may look a bit restrictive at first. However, we are mainly interested in the
few dominant products features that customers focus on, especially when they
decide to write only brief reviews. Long appraisals of content (e.g. for books) are
beyond our scope. Long reviews that address many features of the same product
can be split into short sentences. Our framework would currently consider these
sentences as independent; exploiting their correlations is issue for future work.

Briefly, our framework works as follows. We process the stream in batches
of fixed size at timepoints tg,t1,--+,%;, - Since the batch size is fixed (to a
constant we denote as streamSpeed), the timepoints are not equidistant. On
this stream, we perform text stream clustering, by building upon our algorithm
TStreams that derives topics and subtopics from a stream of news [18]. TStreams
partitions the first batch of reviews into K, clusters at the first hierarchy level —
from these clusters we extract the product features. It then partitions each global
cluster into K local clusters —from these we extract the product subfeatures. As
new batches arrive, T'Streams pushes reviews down the hierarchy, while keeping
reviews that do not fit any cluster into containers. When containers are filled, the
hierarchy is rebuilt. We extend T'Streams to detect and process only “important”
reviews, which are, informally, similar to many other reviews and can thus serve
as representatives. For each global and local cluster, we learn a polarity classifier.
All classifiers are initialized on a first batch of labeled reviews and then extended
through label propagation. When a cluster is rebuilt, its dedicated classifier is
also re-learned. The framework is depicted in Algorithm 1 and described in detail
in subsections 3.2 and 3.3, after introducing definitions and notation.

3.1 Definitions and Notation

The objective of our framework is to learn features and their polarity. To do so,
we first extract from each batch of the reviews’ stream the “important” reviews.

Definition 1 (Review Importance). Let r be a review and R a dataset con-
taining it. We define the “importance of r with respect to R” as the number of
reviews in R that have r among their k nearest neighbors, whereby the reviews
are weighted on their “age” (cf. Def. 2 below).

importance(r, R) = Z age(r;) - isRevNeighbour(r,r;, R)
7 ER

1,7€ NN(k,r;,R)

where: isRevNeighbour(r,r;, R) = {0 otherwise

and NN (k,r;, R) is the set of k-nearest neighbors of r; in R; we use cosine
similarity as similarity function.

Hence, a review is important with respect to some dataset R. This dataset is a
cluster of the two-level hierarchy. Within R, r is imporant if it appears among
the k nearest neighbors of many recent reviews and can thus serve as their
representative. Recency is regulated by the concept of age:



Definition 2 (Review Age). The age of a review r is the average age of all
words w; contained in r: age(r) = ﬁ Soexp(=A- (t—tw,))

w; ET
where t is the current timepoint, t,, s the time of the most recent review that

contains w; and A € R is a decay factor.

On the basis of Defs. 1 & 2, we rank reviews on importance and apply a review
importance threshold 8 to select the most important ones. These constitute a
dataset R, from which we derive a feature space of nouns Fr. We use the feature
space to vectorize the reviews (with TF-IDF) and then perform clustering on R.
Then, extending the definition of “topic” in [18], we define a “polarized feature”
as a cluster centroid with an associated polarity:

Definition 3 (Polarized Feature). Let R be a dataset of reviews labeled on
polarity, and let Fr be the vector space learned upon R (through TF-IDF). Let
¢ C R be a cluster. The “polarized feature” represented by c consists of:

— the centroid ¢ =< wi,wa,...,Wp, >, where w; is the average TF-IDF
weight of keyword noun k; € Fr,i =1...|Fg|.
— the polarity label cP*'*"*Y | defined as the majority class label within ¢

TStreams builds a two-level hierarchy [18]. We extend it by learning the
clusters of the 1st level from the important reviews only. The same is done at
the 2nd hierarchy level: within each “global cluster”, the unimportant reviews
are removed, the local feature space is computed and the cluster is partitioned
into subclusters (“local clusters”). The centroid of a local cluster, associated
with the majority class label in it is then a polarized sub-feature (by Def. 3).

Not all arriving reviews can fit into the existing hierarchy. We inherit from
[18] the notion of novelty for a document with respect to the existing clusters:

Definition 4 (Review Novelty). Let r be a new review. Let 6 be a set of
clusters extracted from a dataset R. Let Fr be the vector space derived from R
(through TF-IDF). Given a similarity threshold & € [0, 1], r is novel with respect
to 0 if its cosine similarity to the closest cluster centroid is less than 0, where
the cosine similarity depends on the feature space (cosinery, ).

Novel reviews are maintained separately in containers. As in [18], we associate
the 1st hierarchy level with a global container, which accommodates reviews that
are too far from all centroids of all global clusters. Each such cluster is further
associated with a local container, which accommodates reviews that are close
to its centroid but far from all centroids of its subclusters (local clusters). To
decide when to re-cluster the contents of one global cluster only or the whole
set of global clusters, we monitor the nowvelty degree of the stream, which we
implement on the basis of the size of the containers (Def. 5 comes from [18]):

Definition 5 (Stream Novelty). Let 6 be a set of clusters. and let Z be the
container associated with 0; it contains all those reviews that are movel with
respect to 6, according to Def. 4. Given a size threshold parameter o, Z exhibits
novelty towards 6 if: |Z| > o.



When enough novel reviews have arrived, the model is updated through
reclustering at the first or second level. In-between the updates, the model is
adapted by incorporating the non-novel reviews. For the adaption, we take the
importance of the reviews into account, as defined in Def. 1, subject to the review
importance threshold 8. For our experiments, we have set 8 = 0.6.

3.2 Extracting an Initial Hierarchy of Polarized (Sub)Features

To extract the hierarchy of (sub)features from an initial set of opinionated re-
views R (line 1) we build upon TStreams [18]. Global clusters (features) are
extracted by applying clustering over the entire initial set of reviews; a total of
K, global clusters is extracted. To derive the local clusters (subfeatures), cluster-
ing is applied again over the sets of reviews corresponding to each of the global
clusters. This way, a unique TF-IDF feature space is built for each global clus-
ter and the corresponding local clusters are extracted from this feature space. A
total of K; local clusters are extracted for each global cluster.

To learn the polarity of the derived (sub)features, as expected for Def. 3, we
train a Multinomial Naive Bayes (MNB) classifier A for each global and local
cluster of the hierarchy (line 1), based on the initial reviews that are in these
clusters and thus support the corresponding (sub)features (polarized centroids,
cf. Def. 3). The choice for MNB is motivated by the good performance reported
in [14]. However, rather than training one global classifier (as in [14]) on reviews
that may be heterogeneous in content, we train local classifiers on the homo-
geneous reviews inside each cluster. Note that the hierarchy of (sub)features
evolves over time based on the new coming reviews and the ageing of the old
ones, the maintenance of the hierarchy is discussed in Section 3.3.

To vectorize the reviews, we use the Bag-of~-Words model, but we consider
only adjectives and adverbs, because, according to [10], these parts of speech
express best the subjective opinions of the authors.

3.3 Adapting the Evolving Feature Hierarchy and the Feature
Polarities

New reviews might cause smooth or drastic changes at both the hierarchy
(sub)features and their associated classifiers. Smooth changes call for adapta-
tion whereas drastic changes require re-building of (part of) the hierarchy. The
decision depends upon the novelty of the incoming reviews.

More specifically, upon the arrival of a new review r (line 6-20) from the
stream, our method works as follows:

(a) Review novelty check and novelty accumulation We first check whether the
new review r is novel (line 9) w.r.t. the global clusters (features) of the hierarchy
(cf. Def. 4). If so, r is propagated to the global container Z (line 19) where
novel reviews are stored. Otherwise, r fits to an existing global cluster ¢, i.e. it
supports the cluster’s polarized feature. Then, either r fits to some local cluster
under ¢, (line 12-14) or it is assigned to the local container Z., (line 16) [18].



Algorithm 1: Feature-Sentiment Extraction

Input : initial seed R, stream S, set of parameters £

1 t < 0; © « extractPolarizedHierarchyAndClassifiers(R, L)
2 importance Book K eepingO f Reviews(O,t, A, k)
3 batch « first streamSpeed reviews from S
4 while batch do
5 t+t+1
6 for i=1 to |batch| do
7 current Review <« it" position in batch
8 Cg « findMostProzimalGlobalCluster(current Review, d4, ©)
9 if Cg is not null then
10 updateCentroid(current Review, Cg)
11 Cl + findMostProxzimal LocalCluster(current Review, §;, C'g)
12 if Cl is not null then
13 updateCentroid(current Review, Cl)
14 L assignLabel(current Review, Aci)
15 else
16 assignToContainer(Zcg, current Review)
17 L assignLabel(current Review, Acy)
18 else
19 assignToContainer(Z® | current Review)
20 assignLabel(current Review, A?efault)
21 if |2€| > 0, then
22 Z© « add n latest important reviews
23 O ¢« extractPolarizedHierarchyAndClassifiers(Z2°, L)
24 else
25 for i=1 to K4 do
26 if |2€,.| > o1 then
27 Zggi + add n latest important reviews of C’g,e
28 relearnClusters(nge,Zggi,ﬁ)
29 relearnClassifiers(Aggi , L)
30 importance Book K eepingO f Reviews(O, t, A\, k)
31 removeUnimportant Reviews(O, 3)
32 updateClusterCentroids(©)
33 storePolarized Hierarchy(O,t)
34 batch < replace content of batch by the next streamSpeed reviews from S




Parameter|Definition Parameter |Definition
Ky, K; |number of global, respec- A decay constant
tively local clusters 153 importance threshold
0g,01 global, resp. local nov- n # important reviews to re-
elty threshold learn
dg, 01 global, resp. local simil- streamSpeed|# reviews per batch
iarity threshold k # nearest neighbors

Table 1. Set of Parameters £

(b) Review assignment A new review r that is not novel is assigned to its most
proximal global and then local cluster (line 8 & 11). This means that r is associ-
ated with the feature and subfeature described by these clusters. The centroids
of the associated clusters are updated by the content of r (line 10 & 13). We
assess the polarity of r by invoking the classifier for the local cluster, to which r
is assigned (line 14).

If r is assigned to a global cluster but not to a local one, the classifier of the
global cluster is invoked (line 17). In case r is novel and it does not fit to the
existing hierarchy, the default classifier is applied which is learned upon the whole
dataset (line 20). The default classifier is the most generic one, whereas as we
traverse the hierarchy the classifiers become more specific and thus, intuitively,
better capture the sentiment of the associated reviews.

(¢) Importance book-keeping The importance score of each review (cf. Def. 1)
is updated (line 30), since the score is affected by ageing of the words and by
changes in the neighborhoods (due to the arrival and ageing of other reviews).
Reviews that are not (no more) important are removed (line 31). Moreover, the
updating of the importance of reviews implies updates in the centroids of the
(sub)features (line 32) (cf. Def. 3), since old important reviews might be removed
whereas new reviews might now be considered important.

Note that there is no need to update the importance of all the reviews in the
hierarchy after the arrival of a new review. We do need to update the importance
of the reviews for the cluster where this review has been assigned to since the
inverse kNNs might change due to the addition of the new review. For the rest of
the reviews though, change in the importance can be triggered only due to the
natural ageing of the keywords and we need to update them once per timepoint.
Recall that more than one review might arrive per timepoint, described by the
streamSpeed parameter.

To facilitate the ageing computations in the importance formula (cf. Def. 1),
we maintain for each cluster in the hierarchy a hashmap containing the words
that appear in the cluster reviews, their frequency in the cluster and the last
timestamp where each word has been observed in the cluster. This information
is adequate for computing the ageing of each keyword in the cluster, while the
hashmap entries are easily maintained as new reviews are assigned to the cluster
and old anymore non-important reviews are removed as outdated. The inverse
kNN queries are also not a bottleneck since they are restricted within each cluster



and moreover, only the important reviews within a cluster contribute to their
computation. As already mentioned, non-important reviews are removed from
the cluster. In the experiments, we show that the consideration of only important
reviews has a big effect on the runtime of our method (cf. Figure 6).

(d) Stream novelty check and model updating When enough novel reviews have
been accumulated in the containers, the hierarchy is rebuilt totally or partially
(line 23 & 28) so as to discover new (sub)features and forget outdated ones. In
particular, we rebuild the complete hierarchy if the size of the global container
Z exceeds the novelty threshold o (cf. Def. 5) (line 21). If only a local container
is filled, only the corresponding global cluster is re-partitioned (line 26-28). For
reclustering, we use the novel reviews and the n most recent of the old important
reviews (line 22 & 27). Thus, we ensure that both new words and still popular
old words are incorporated to the updated (sub)features. This step builds upon
model updating in TStreams [18], extending it with the maintenance of the most
important reviews.

(e) Updating the classifiers When a set of reviews is re-clustered, a new classifier
must be trained for each new cluster. We have the option of using only the initial
seed for training, and the option of considering all reviews in the clusters but
with the derived polarity labels. In our experiments, we use the latter option.

When the whole hierarchy is re-built (line 23), except for the new classifiers
for the global and local clusters, the default classifier must also be trained. To
this end, all the reviews in the hierarchy are considered.

4 Experiments

To evaluate our feature extraction method we use a real dataset of product
reviews [8], from which we generate through instance permutation three streams
with different properties. For polarity learning, we compare our one-classifier-
per-cluster method to a static classifier learned once on an initial part of the
stream and to an adaptive classifier that updates the model after each batch.
We selected all parameters experimentally. The similarity thresholds used
for review importance are set to 6, = 0.6, 6; = 0.8 (similarity at 2nd level is
more restrictive), while 8 = 0.6. The novelty thresholds for the containers are
o4 = 100, o; = 15, enforcing reclusterings inside a global cluster instead of
rebuilding the whole hierarchy. The ageing factor A is set to 0.5, the number of
nearest neighbors k = 4. Batch size (streamSpeed) is equal to 50 reviews; the
initialization batch contains 100 reviews. The number of reviews to relearn is
n = 2 X streamSpeed. All results are the average of 10 runs of our algorithm.

4.1 Datasets

The product reviews dataset of [8] contains 540 reviews on 9 products, where each
review refers to one (implicit) product feature, from a total of 38 features. Most
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features are mentioned in 9 to 30 reviews. From this dataset we derived three
streams (cf. Figure 1) by sorting the reviews regarding their related features
as described bellow; also we filter reviews which are associated to features that
occur less than 9 times accross the dataset. Stream 1 (solid line) delivers all
38 features to the learner within the first 220 reviews. Stream 2 (dashed line)
delivers only 6 features in the first 100 reviews, 8 further features are in the
reviews 101 - 200 and so on; the last feature is seen around review 520. Stream
3 goes like Stream 2 but delivers a different selection of features per batch. The
exact number of observed features per batch is depicted in Figure 1. Stream 1
covers a larger number of features per batch compared to streams 2 & 3. Since
a feature corresponds to a (sub)cluster, we expect that the feature extraction
method will achieve better results on stream 1 if the number of (sub)clusters is
high. For streams 2 & 3, we expect a better performance since the number of
features per batch is almost constant over time. Although the dataset is small,
it allows us to experiment with different forms of evolution.

Figure 2 shows how the arrival of reviews triggers reclusterings. The first
column contains the number of global clusters K, and of subclusters below each
global one, K . For each stream, column a depicts the number of reclusterings at
the 1%%-level of the hierarchy (full reclusterings: they affect all clusters); column
b counts the reclusterings at the 2"¢-level (partial reclusterings: they affect one
global cluster each time). Column ¢ depicts the number of reviews seen before
the first full reclustering. A late first full reclustering and a low number of full
reclusterings are indicators of good adaption to change and also of a good per-
formance of our algorithm. As we can see, our algorithm performs better for
settings with more clusters in total clusters, even if the number of local clusters
is low (72 vs 4.6).

4.2 Evaluating The Feature Extraction Method

We evaluate the feature extraction method on the “purity” of the (sub)features
it extracts: purity is high if the number of features covered by each cluster is
low. We first define the purity of a local cluster ¢; inside a global cluster ¢, as



the percentage of the reviews supporting the most frequent feature in ¢; w.r.t.
all reviews in the cluster, weighting the reviews on importance (cf. Def. 1):

Zredfq importance(r, cg)

> ree, importance(r, cg)

localPurity(c;) = (1)
where where df,, is the set of reviews in ¢; that are related to the majority feature
w.r.t. all reviews in ¢;.

Next, we aggregate the localPurity() values of all subclusters of global cluster
¢g into globalPurity() — a normalized sum, weighted by the number of features
covered by each subcluster ¢; and by the number of reviews contained in ¢;:

>, localPurity(c;) - coveredFeatures(c;) - |ci

globalPurity(cy) = (2)

coveredFeatures(cg) - |cg|

Finally, we aggregate into the average weighted purity of a clustering ©:

avgW Purity(©) = ‘51| Z global Purity(c) (3)
ceO

In Figure 3, we study how the average weighted purity changes with the
arrival of reviews for streams 1 (left) & 3 (right) under different number of global
and local clusters; we skip stream 2, because all values are very similar to stream
3. Note that the arrival of reviews affects the number of features known and
remembered at each timepoint (cf. Figure 1). Therefore, it affects the number of
features described by each subcluster and consequently the cluster purity. Each
curve corresponds to a different number of global clusters (first number: 2, 4, 6,
7, 8) and local clusters (second number: 2, 4, 6, 8); for example, the solid line
with circles at the junctions is labeled 7_2 and corresponds to 7 global clusters,
each one containing 2 subclusters. The points at each curve do not correspond
to exact avg WPurity values but to averages over the batch size; for example, the
first point corresponds to the average of avgWPurity over the first 100 reviews.

Figure 3 shows that purity increases with the number of global clusters. For
all streams, the purity decreases after clustering the initial set of 100 reviews,
but then stabilizes and slightly increases again. We also see that the ratio of
global-to-local clusters has different effects for the different streams. For example,
the purity of the setting 2_2 is better for stream 2 & 3 than for stream 1. An
explanation is that streams 2 & 3 see less features at the arriving batches in
comparison to stream 1 (cf. Figure 1). So, some of the features seen at the
beginning of streams 2 & 3 are later forgotten, hence the clusters accommodating
them are used to describe new, emerging features. Thus, under streams 2 & 3,
the full set of features can be described with less clusters since at each timepoint
not all features are present.

We juxtapose the peaks of the curves (between 300 and 400 reviews for
streams 2 & 3, between 200 and 300 for stream 1) in Figure 3 with the number of
reclusterings shown in Figure 2. We see that the Stream 1 curves with early peaks



=) 2==1_2—%—4 6= 64 6_6 88 49 : =82 2= 0=7 2yl _G= W64 6.6 8.8 49

10.400] (100,200] (200,300] (300.400] (400,540] [0.400] (100.200] (200,300] (300,400] (400,540]
Intervals Of Reviews Over Time For Stream 1 Intervals Of Reviews Over Time For Stream 3

Fig. 3. avgWPurity for streams 1 and 3: higher values are better. Each curve c4¢
corresponds to a configuration of ¢, global and ¢; local clusters. Each point in the
curve corresponds to the average over the avgWP() values for the reviews seen within
the interval depicted in the horizontal axis.

(64,66 and 7_2) correspond to partial reclusterings. So, partial reclusterings
lead to peaks on purity and thus improve model quality.

For the setting 6.4 on stream 3, we show in Table 2 the labels of the sub-
clusters and how they change over time. The first column is the identifier of the
global cluster, the rest of the columns correspond to batches. We use the notation
¢ () to denote a local cluster ¢ occurring within a global cluster C. The upper
part of the table contains the first seven batches, whereas the remaining three
batches are depicted in the lower part of the table. As the stream progresses,
there are subclusters with empty labels (e.g. , c¢:1 (C:0) at batch 200). These
correspond to obsolete features, i.e. features that have not received any new re-
views from the stream in the recent past; the old reviews supporting them aged
and vanished. We see that some clusters, as c:4 (C:0), are very stable, covering
the same feature (for c:4 (C:0) it is “support”) throughout. According to [8], this
feature is mentioned only for three products, hence c:4 (C:0) nicely extracts the
feature independently of the products. A different example is the feature “odor”
that is supported by reviews from only one product, which is very different from
the others. This feature is not a global one; it is accommodated in local cluster
¢:21 (C:20). Thus, the two-level hierarchy captures the semantics of the features
in the reviews, whereby it is better to allow for many clusters at the 1st level;
this comes at no cost, since clusters remain empty if there are no features to be
covered.

4.3 Evaluation Of The Polarity Learning Method

For the evaluation of our one-classifier-per-cluster method we use accuracy, tak-
ing as ground truth the actual scores given to each review by the users. There
are six scores: -3 (most negative polarity),- 2, -1, 1, 2, 3 (most positive polarity).
We compare our method to two baselines, the StaticBaseline and the Dynam-
icBaseline. The StaticBaseline is a single global classifier trained over the first



[Name [100 [150 [200 [250 [300 [350 [400 ]

C:0 c:1/size; c:1/size; c:1/; c:1/; c:l/; c:1/; c:1/;
c:2/install; [c:2/install; c:i2/;  c:3/;]ei2/; c:i3/; c:i2/;  c:i3/;]e:i2/; e:i3/5lei2/; i3/
c:3/price; c:3/price; c:4/support;|c:4/support; c:4/support;|c:4/support;|c:4/support;
c:4/support; | c:4/1look;

C:5 c:6/power; |c:6/power; c:6/power; |c:6/software; |ci6/software;c:6/software]ci6/software;
c:7/power; |c:7/power; c:7/power; |c:7/power; c:7/; c:7/; c:7/;
c:8/battery; |c: 8/sound; c:8/sound; |[c:8/sound; c:8/sound; |c:8/control; |c:8/control;
c:9/working;|c:9/  work- c:9/working;|c:9/working; c:9/; c:9/; c:9/;

ing;

C:10 |c:11/use; c:11/screen; c:11/use; c:11/use; c:11/use; c:11/use; <:30/install;
¢:12/sound; [c:12/sound; ¢:12/sound; [c:12/sound; c:12/; ci12/; c:31/use;
¢:13/ head-|c:13/quality; |c:13/ head-|c:13/ head- |c:13/look; [c:13/look; |c:32/setup;
phones; c:14/ head- phones; phones; c:14/ head-|c:14/ instal-|c:33/software;
c:14/ head-|phones; c:14/ head-|c:14/ head- phones; lation;
phones; phones; phones;

C:15  |c:16/screen; |c:16/screen; ¢:16/screen; |c:16/screen; ¢:16/screen;
c:17/sound |c:17/sound c:17/sound |c:17/diaper c:17/diaper
quality; quality; quality; pail; c:18/ |pail; c:18/
c:18/battery|c:18/battery; |c:18/battery|installation; installation;
c:19/quality;|c:19/quality; c:19/; c:19/; c:19/;

C:20 [c:21/odor; [c:21/odor; c:21/odor; |ci21/odor; G:21/works; |c:21/size;  |c:21/size;
c:22/screen; |c:22/screen; c:22/LCD; |c:22/ in- |22/ in-|c:22/ in-|c:22/ in-
¢:23/diaper [c:23/sound; ¢:23/sound; |stallation; stallation; |stallation; |stallation;
pail; c:24/control;  |c:24/control;fc:23/sound; ¢:23/sound; [c:23/sound; |c:23/size;
¢:24/control; c:24/control;  |c:24/control;c:24/control; c:24/control;

C:25 c:26/works; [c:26/ bat- c:26/ bat-

c:27/ ad-|tery life; tery life;
justment; |c:27/  ad- |c:27/  ad-
¢:28/works; |justment; justment;
c:29/  ad-|c:28/works; c:28/works;
justment; |c:29/ ad-  [c:29/ ad-
justment; justment;

[Name [450 [500 [540

C:39 c:40/interface; c:4l/;
c:42/control; c:43/;

C:44 |c:45/battery;  c:46/iTunes;|c:45/install; c:46/software;|c:64/install; c:65/bluetooth; c:66/control;
c:47/battery; c:48/; ¢:47 /setup; c:48/; ¢:67/screen;

C:54 c:55/; c:56/storage;|c:55/; c¢:56/sound; ¢:57/;[c:55/; ¢:56/sound; ¢:57/; ¢:58/;
c:57/price; c:58/; c:58/;

C:59  [c:60/; c:61/battery; ci62/;

c:63/;

Table 2. Stream 3, setting 6_4: labels of the local clusters (c : ) within global clusters
(C : y) for each batch

100 reviews from the stream. The DynamicBaseline trains an initial classifier
over the first 100 reviews. Then, as in prequential evaluation [6], classifier is first
evaluated on the next batch of reviews, then the true labels are used for learn-
ing. the next batch of reviews is used first to evaluate the classifier and then
for learning based on the true review labels. The accuracy values are shown in
Figure 4 for stream 3.

In Figure 4, we see that in the early phases of the stream, our approach
outperforms the baselines for most of the settings. This indicates that the use of
dedicated feature-specific classifiers is a good alternative to a global, generic clas-
sifier as long as the features are well-separated.Towards the end of the stream,
the accuracy of our approach deteriorates, although it never drops much below
the baselines. An explanation is that the last batches of stream 3 contain many
more features than can be accommodated in the clusters, thus affecting also the
performance of the dedicated classifiers.

What polarity values are depicted for the extracted features? In Figure 5,
we show the feature names and polarities (setting 4.4) under stream 1. The
polarity is captured as a shade of gray (dark stands for positive). We see the
evolution of the features across the vertical axis (time) and from left to right,
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Fig. 4. Accuracy over time for stream 3

since larger cluster identifiers correspond to later clusters. For example, observe
cluster C:35, which first describes the feature “interface” (a positively perceived
product property). Its polarity changes at the next timepoint, indicating that this
feature is not perceived positively anymore. Then, the feature becomes obsolete
and is replaced by another one, “price”, which is also perceived rather negatively
in this dataset. The cluster C:35 dies out at timepoint 7.

9
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Fig. 5. Label & Polarity evolution per cluster on Stream 1 for 4 global clusters and 4
local ones: The polarity is captured as a shade of gray, where dark stands for positive

Finally, we studied how the filtering of unimportant reviews affects the run-
time of our approach. In Figure 6, we vary the threshold S that determines how
many reviews will be considered as important. As expected, the more selective
the importance filter is (higher § values), the lower the execution time. Thus,
the runtime of our algorithm is regulated by the value of 8 rather than the size
of the stream.
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Fig. 6. Execution time of our method for different 8 values

5 Conclusion

We presented a method for the discovery of opinionated product features in a
stream of product reviews. We use a stream clustering algorithm to extract and
maintain a two-level hierarchy of product features. For each feature, we learn a
dedicated classifier that predicts and monitors feature polarity over time. Our
method can capture new features in the data and forget obsolete ones, whereupon
it rebuilds the model in a parsimonious way, re-learning only locally (within
some clusters) whenever possible. To avoid noise and decrease execution time,
we concentrate only on “important” reviews for learning, i.e. we sample the
arriving reviews, selecting those that are similar to many others and can thus
serve as representatives for them.

We evaluated our approach on a stream of product reviews with respect to
the quality of the extracted features and to the accuracy of the dedicated classi-
fiers. Our experiments show that our method performs well, especially when the
number of clusters in the two-level hierarchy is large enough to accommodate all
features. Clusters that accommodate no features remain empty, hence specify-
ing a large number of clusters does not incur substantial overhead. Further, the
execution time of our method is governed by the number of important reviews
it considers and not by the size of the whole stream.

As a next step, we want to investigate the interplay between cluster purity
(how many features are covered by a cluster) and classifier performance, so that
classifiers for features with very few and possibly heterogeneous reviews are
avoided. Moreover, we want to evaluate our method on reviews that cover more
than one feature, where there is one feature per sentence. Also we want to study
heuristics to adapt the number of global/local clusters dynamically based on the
heterogeneity of the reviews which are detected as novel. Further, we want to
investigate ways of making the classifiers adaptive, instead of re-learning them
from scratch whenever some global cluster is re-built.
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