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ABSTRACT
The goal of this position paper is to contribute to a clear
understanding of the commonalities and differences between
subspace clustering and text clustering. Often text data is
foisted as an ideal fit for subspace clustering due to its high
dimensional nature and sparsity of the data. Indeed, the ar-
eas of subspace clustering and text clustering share similar
challenges and the same goal, the simultaneous extraction of
both clusters and the dimensions where these clusters are de-
fined. However, there are fundamental differences between
the two areas w.r.t object feature representation, dimension
weighting and incorporation of these weights in the dissim-
ilarity computation. We make an attempt to bridge these
two domains in order to facilitate the exchange of ideas and
best practices between them.
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1. INTRODUCTION
Subspace Clustering is a new research area receiving a lot of
attention from the community [23; 18; 19; 8]. In contrast
to traditional clustering that partitions objects in the full
dimensional feature space, the subspace clustering methods
simultaneously partition both objects and dimensions. A
subspace cluster is defined in terms of both its members and
the dimensions where these members are grouped together.

As with traditional full dimensional clustering, subspace
clustering is not confined to specific data types or appli-
cation domains. Related work often mentions text data as a
candidate application for subspace clustering [23; 8] due to
the high dimensionality and sparsity of the text data [26].
Typically, documents are represented as vectors in a very
high dimensional space where the entries of this vector rep-
resent words appearing in the document collection.

Text data have been studied extensively in the fields of In-
formation Retrieval and Text Mining. The text clustering
domain [4] is among the most important ones with a lot of
applications like organization, summarization and indexing
of document content. Nowadays, it is a very active research
field due to the abundance of textual data.

Both subspace clustering and text clustering domains face
the challenge of high dimensionality and aim at extracting

both clusters and the dimensions upon which these clusters
are defined. To this end, both domains evaluate the impor-
tance of the dimensions for the clustering task and appro-
priately incorporate this importance in the distance function
and consequently, in the clustering algorithm. Besides the
common goal and the similar approach though, there are
fundamental differences between the two domains. To the
best of our knowledge, no work that elaborates on how the
two areas are related has been proposed so far. Our goal of
this work is to serve as a point for fruitful exchange of ideas
and techniques between the two domains.

The rest of the paper is organized as follows: A short
overview of subspace clustering and text clustering domains
is presented in Sections 2 and 3, respectively. The differ-
ences and commonalities between the two domains are dis-
cussed in Section 4 and refer to the following aspects: object-
feature representation (Section 4.1), dimension weighting
(Section 4.2) and incorporating dimension weights in the
similarity/distance function (Section 4.3). In Section 5, we
overview a few existing approaches that make use of con-
cepts from both domains. Section 6 concludes our work.

2. SUBSPACE CLUSTERING IN A NUT-
SHELL

The area of subspace clustering has lately emerged as a solu-
tion to the problem of high dimensional data, as it is difficult
to find meaningful clusters in hundreds or even thousands of
dimensions. Different features might be relevant for differ-
ent clusters and therefore, the goal of subspace clustering is
to find both the cluster members and the dimensions upon
which these members form a cluster.

This is in contrast to traditional clustering that searches for
clusters in the full dimensional feature space [15; 13]. Also,
this is different from global dimensionality reduction tech-
niques like PCA [16] that reduce the dimensionality of the
feature space and search for clusters in the reduced (though
still full) dimensional space. Several subspace clustering
methods have been proposed in the literature so far (for a
comprehensive overview of the area see e.g., [23], [18], [21]).

A crucial point in subspace clustering is the decision about
the relevant dimensions that should be considered for clus-
tering. Given a d-dimensional data set, the number of possi-
ble subspaces is 2d−1, therefore it is infeasible to examine all
possible subspaces for clusters. The solution is to efficiently
navigate through the search space of all possible subspaces;
to this end, two different approaches have been proposed in
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the literature [18]:

• Bottom-up approaches: They start with 1–D sub-
spaces (i.e., single dimensions) and iteratively merge
lower dimensional subspaces in order to compute
higher dimensional subspaces. The downward-closure
property of Apriori [6] is usually employed to prune
non-appropriate subspaces. The key in this category is
the merging procedure, i.e., how low dimensional sub-
spaces would be merged to yield higher dimensional
subspaces. Once the appropriate subspaces are de-
tected, the clustering algorithm is applied over each
subspace similarly to full dimensional clustering.

To this category belong methods like CLIQUE [5],
MAFIA [22] and SUBCLU [17]. These methods result
in overlapping clusters; an object might be assigned to
more than one clusters defined in different subspaces
of the original feature space.

• Top-down approaches: They start searching in the full
dimensional space and iteratively learn the “correct”
subspace for each point or cluster. The key in this
category is how to learn the “correct” subspace for a
point or cluster.

Representatives of this category are methods like
PROCLUS [3], DOC[25], COSA[11] and PreDeCon [9].

Top-down subspace clustering methods are closer to the text
clustering methods since they simultaneously search for the
best non-overlapping partitioning of the data and the best
subspace for each partition. Therefore, we refer to the top-
down subspace clustering methods from now on.

3. TEXT CLUSTERING IN A NUTSHELL
The goal of text clustering is to organize documents into
clusters of similar content, the so-called topics. Documents
are typically represented in terms of their component words,
through the vector space model [27]. Usually, no information
about the order of the words is considered in this model and
thus this model is also known as the bag of words representa-
tion model. Although more elaborate representations have
been proposed such as multi-word terms and N-Grams [28],
the vector space model remains the most popular one. This
representation though results in a high dimensional feature
space, where features correspond to words appearing in the
document collection. Moreover, only a small subset of all
words appearing in the collection appears in each document.
As a result, the document representation is very sparse.

Typically, before applying any mining technique in the text
collection, preprocessing takes place in order to remove
non–informative words. Preprocessing consists of several
steps [7]:

• Filtering: Special characters and punctuation are re-
moved since they are considered not to hold any discrim-
inative power.

• Stemming: The words are reduced to their base form or
stem or root with the goal of eliminating multiple occur-
rences of a word (e.g., the words “fish”, “fishing”, “fisher”,
“fished” are all derived from the same root “fish”). Stem-
ming is language dependent. The Porter’s algorithm [24]
is the best known stemmer for the English language.

• Stopword removal: A stopword is a word which is not
thought to convey any meaning as a dimension in the
vector space (i.e., without context), e.g., the words “the”,
“and”. Usually the document words are compared with
respect to a known list of stopwords and the detected
stopwords are removed from the document.

• Rare words removal: Rare words, i.e., words that ap-
pear in very few documents are usually removed since they
are considered not to capture much information about
some category of documents [30]. A threshold on the num-
ber of documents is used that determines whether a word
is rare and should be removed from the feature space as
an outlier.

Although preprocessing results in some sort of dimensional-
ity reduction, the number of dimensions remains very high
(hundreds or thousands of keywords1). To deal with this
problem several dimensionality reduction techniques have
been proposed which can be distinguished into feature trans-
formation and feature selection techniques. The feature
transformation techniques try to reduce the dimensional-
ity to a fewer new dimensions which are combinations of the
original dimensions. In this category belongs methods like
Principal Component Analysis (PCA) [16] and Latent Se-
mantic Indexing (LSI) [20]. Because they are global meth-
ods though, they might be problematic for topics defined
upon different keywords. Feature selection methods aim at
removing dimensions which seem irrelevant for modeling,
e.g., words appearing very often in a collection or very rarely,
aka outliers. Nevertheless, the resulting feature space is still
high dimensional and therefore dimensions’ weighting takes
place as we will explain in the following sections.

Typical examples of distance-based text clustering algo-
rithms are hierarchical clustering and k-Means [4], while
cosine similarity is the commonly used similarity function.

4. DIFFERENCES BETWEEN SUBSPACE
CLUSTERING AND TEXT CLUSTER-
ING

In the previous sections, we presented a short introduction
to the areas of subspace clustering and text clustering. Here-
after, we show how the two areas are related by pointing out
their commonalities and differences.

As already mentioned, both areas deal with high dimen-
sional data: Subspace clustering targets high dimensional
data, though not focusing on specific application domains
or data types. The data instances are described in terms of
all dimensions, in the full (high) dimensional feature space.
The vast majority of the algorithms does not deal with miss-
ing values, though recently fault tolerant subspace cluster-
ing [12] has been proposed to accommodate data with miss-
ing values. From a text clustering perspective, the keywords
of a document comprise the dimensions of the feature space
and documents are points or vectors in this space. There
are hundreds or thousands of keywords (thus, high dimen-
sional space) and the vectors describing each document are
very sparse (most of the entries are null). A null entry in
this case might mean that the corresponding keyword is ir-
relevant (e.g., consider the word “Ukraine” in a document

1The terms “word”, “keyword” “term” are used inter-
changeably.

SIGKDD Explorations Volume 15, Issue 2 Page 2



about the importance of vegetables in our daily diet) or
the corresponding word might be missing because it is im-
plied by the context (e.g., in a document about “Greece”
the word “country” might not be reported since it is known
that Greece is a country).

Note also that both areas share the same goal, namely the
simultaneous partitioning of the data points and the di-
mensions (points/ instances and dimensions/ features, re-
spectively according to the subspace clustering terminology;
documents and keywords, respectively according to the text
clustering terminology). In both cases, the notion of a clus-
ter includes, except for the cluster members, and the dimen-
sions where these members are similar enough to form the
cluster. In subspace clustering, these clusters are known as
subspace clusters, whereas in text clustering as topics.

The problem of simultaneously partitioning both the data
and the dimensions is tackled in a similar way by both sub-
space clustering and text clustering areas. In particular, the
solution involves an appropriate weighting of the dimensions
according to their relevance for the clustering task and the
incorporation of these weights in the dissimilarity function2

and consequently, in the clustering algorithm.

We present the commonalities and differences between the
two domains with respect to the following aspects: (i) the
object–feature representation (Section 4.1), (ii) the weight-
ing of the dimensions (Section 4.2) and (iii) the incorpora-
tion of dimensions’ weighting in the dissimilarity functions
and consequently, in the clustering algorithms (Section 4.3).

4.1 Object–feature representation differences
Let D = {p1, p2, ..., pn} be a dataset of n objects and let
A=(A1, A2, . . . , Ad) be the d-dimensional feature space.
Let V be a |D|×|A| matrix, referred hereafter as the object–
feature value matrix, where the rows are the objects and
the columns are the dimensions. Each entry vi,j in this
matrix corresponds to the value of the object pi ∈ D in the
dimension Aj ∈ A. We explain hereafter what these values
are for each domain.

4.1.1 Object–feature representation in subspace clus-
tering

In subspace clustering, each object is considered to have val-
ues for all dimensions3. So, the construction of the object–
feature value matrix V is rather straightforward. The rows
correspond to the objects in the database and the columns
correspond to the dimensions. Each entry vi,j in the matrix
contains the value of the object pi ∈ D in dimension Aj ∈ A.

The original values of the dimensions may refer to different
scales of reference. To prevent attributes with initially large
ranges (e.g., salary) from outweighing attributes with ini-
tial smaller ranges (e.g., age), a normalization process takes
place prior to clustering. In this way, different dimensions
can be compared meaningfully.

4.1.2 Object–feature representation in text clustering
In text clustering, the database D corresponds to a collec-
tion of documents and the dimensions A correspond to the
distinct keywords in this collection. We assume that the pre-
processing step (c.f., Section 3) has been already applied.

2We use the term “dissimilarity” to refer to either distance
or similarity function.
3Recently, subspace clustering over data with missing values
has been considered [12].

The matrix V is the result of the vector space model rep-
resentation, called document–term matrix in this settings.
Each entry vi,j in the matrix corresponds to the value of
keyword Aj ∈ A in document pi ∈ D. Usually vi,j equals
the number of times that keyword Aj appears in document
pi. To prevent biasing towards longer documents, the num-
ber of occurrences of a keyword in a document is normalized
with respect to the total number of keyword occurrences in
the document, resulting in the so-called term frequency:

Definition 1. Term Frequency (TF)
The term frequency of a term/keyword Aj ∈ A in a docu-
ment pi ∈ D is defined as follows:

TFj,i =
nj,i∑
k nk,i

where the numerator represents the number of occurrences
of keyword Aj in document pi and the denominator repre-
sents the occurrences of all keywords Ak ∈ A in pi.

The TF score expresses how important a keyword is within a
document. Its values lie in the [0, 1] range with larger values
indicating more important keywords. Hereafter, we consider
the entries of matrix V to be the TF values of the keywords
in the documents of the collection. Note that since not all
keywords in the collection appear in each single document,
there are a lot of null entries in this matrix corresponding
to non-appearing words in a document.

4.1.3 Discussion on object-feature representation dif-
ferences

There is a crucial difference in the object-feature represen-
tation of the two domains. In subspace clustering, there
are no semantics on the values of the dimensions and all
values are considered to be of the same importance. On
the contrary, in text clustering greater values indicate more
important dimensions/keywords. For example, consider a
keyword A1 appearing in two documents p1, p2 with term
frequencies 0.8, 0.2, respectively. Since 0.8 > 0.2, A1 is con-
sidered to be more important for document p1 compared to
document p2. Such a value differentiation though does not
take place in the subspace clustering domain.

Although, as already mentioned, recently subspace cluster-
ing over missing data has been proposed [12], missing data
are conceptually different from non–appearing words in a
document. A missing value in subspace clustering indicates
a value that is unknown rather than a value that is not im-
portant for the description of a document or redundant w.r.t.
already existing words in the document (as it is usually the
case for non appearing words in a document).

4.2 Dimension weighting differences
Both subspace clustering and text clustering domains rely on
some notion of weighting for the different dimensions based
on their importance for the clustering task.

In subspace clustering, the important dimensions are learned
either for an instance/object (instance–based approaches)
or for a cluster (cluster–based approaches). Representative
weighting schemes for both approaches are presented in Sec-
tion 4.2.1. In text clustering, the most well known weight-
ing schema is inverse document frequency (IDF) described
in Section 4.2.2.

We can model the dimension weighting in terms of a matrix
W referred to hereafter as the object–feature weight matrix.
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In the general case, W is a |D| × |A| matrix where the rows
correspond to objects and the columns correspond to dimen-
sions. Each entry wi,j in this matrix represents the weight
(or importance) of the dimension Aj ∈ A for the object
pi ∈ D. We explain hereafter how these entries are filled for
each domain.

4.2.1 Dimension weighting in subspace clustering
The importance of a dimension is evaluated either with re-
spect to some instances (instance–based approaches) or with
respect to some cluster (cluster–based approaches). Both
approaches rely on the so called “locality assumption” ac-
cording to which, the subspace preference for an object or
a cluster can be learned from its local neighborhood in the
full dimensional space. We describe each case below.

(i) Dimension weighting in instance–based approaches
The preferred dimensions subspace is defined per instance
and is learned by evaluating the local neighborhood of
the instance/object in the full dimensional feature space.
The definitions and details below are from the algorithm
PreDeCon [9].

Locality of an instance: For an object p ∈ D, its locality
or neighborhood (Nε(p)) consists of all objects that fall
within distance ε from p in the full dimensional space.

Preferred dimensions of an instance: Roughly speak-
ing, an object prefers a dimension if it builds “com-
pact” neighborhoods, i.e., neighborhoods of small variance,
across this dimension. The variance in the neighborhood
of p along some dimension Aj is defined as follows:

Definition 2. Variance along a dimension
Let p ∈ D and ε ∈ R. The variance in the neighborhood of
p Nε(p) along a dimension Aj ∈ A is given by:

VarAj (Nε(p)) =

∑
q∈Nε(p)

(distAj (p, q))2

|Nε(p)|

where distAj (p, q) is the distance of p, q in dimension Aj .

A small variance, with respect to a given variance thresh-
old δ, indicates a preferable dimension. For each p ∈ D,
its subspace preference vector w̄p is built [9] which distin-
guishes between preferable and non-preferable dimensions.

Definition 3. Subspace preference vector
Let p ∈ D, δ ∈ R and κ ∈ R be a constant with κ � 1.
The subspace preference vector of p is defined as:

w̄p = (w1, w2, ...wd)

where:

wi =

{
1 if VarAi(Nε(p)) > δ
κ if VarAi(Nε(p)) ≤ δ

The values of the subspace preference vector are the entries
of the object–feature weight matrix W : k-value entries in-
dicate preferable dimensions while 1-value entries indicate
non-preferable ones.

(ii) Dimension weighting in cluster–based approaches
The subspace of the preferred dimensions is defined per
cluster and is learned by evaluating the local neighbor-
hood of the cluster in the full dimensional space. The

number of clusters k is given as input to the algorithms
of this category. The definitions and details below are
from the algorithm PROCLUS [3]. Each cluster (called
projected cluster) is represented by its medoid and it
is assigned a subspace of preferred4 dimensions. Let
C = {c1, c2, . . . , ck} be a set of k medoids (for more details
on the initial selection and refinement of this set, please
refer to [3]).

Locality of a cluster: The locality Li of a cluster ci ∈ C
is defined as the set of objects in D that are within distance
δi from its medoid ci. The distance is computed in the full
dimensional space, whereas the distance threshold δi is the
minimum distance of ci from any other medoid cj ∈ C ,
i.e., δi = min{dist(ci, cj)}, i 6= j.

Preferred dimensions of a cluster: For each medoid
ci, the average distance between ci and the objects in its
locality Li is computed along each dimension Aj ∈ A, de-
noted by Xi,j . If this value is as small as possible w.r.t.
the statistical expectation, then Aj is a preferred dimen-
sion for cluster ci. The statistical expectation is evaluated
in terms of the mean Yi and the standard deviation σi.
The value Zi,j =

Xi,j−Yi

σi
is computed which indicates how

the average distance between cluster ci and its locality Li
in dimension Aj is related to the average distance in all
dimensions. The lowest Zi,j values are picked leading to a
total of k ∗ l dimensions, where l is the average dimension-
ality per cluster given as input to the algorithm.

After the weighting, each cluster in C is assigned a sub-
space of preferred dimensions. Usually a bitvector of all
dimensions is used to model the preferences and to distin-
guish between preferred (value 1) and non preferred (value
0) dimensions for a cluster [2].

The objects assigned to a cluster “inherit” the subspace
preferences of the cluster, therefore each object can be as-
sumed to have a bitvector of dimension preferences. This
way, we can fill the entries of the object–feature weight ma-
trix W with values 1 and 0 indicating preferred and non–
preferred, respectively, dimensions for an object. Note that
this way the objects belonging to the same cluster, would
have the same bitvectors of subspace preferences.

4.2.2 Dimension weighting in text clustering
In text clustering, the importance of a keyword is evalu-
ated in terms of the whole collection of documents, rather
than per document or per topic/cluster. Usually, the Inverse
Document Frequency (IDF) is employed towards this end.

Definition 4. Inverse Document Frequency (IDF)
The inverse document frequency of a keyword Aj in a col-
lection of documents D is given by:

IDFAj =
|D|

|{pi ∈ D : Aj ∈ pi}|

where the denominator represents the number of documents
in D which contain the specific keyword/dimension Aj and
|D| is the cardinality of the collection.

The basic intuition behind IDF is that common keywords
(i.e., keywords appearing very often in the collection) have
no discriminative power and thus, they are assigned a small

4We use both terms “preferred” and “projected” to describe
a dimension that is important.
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IDF score. Larger IDF scores indicate more discriminative
keywords.

Using the IDF scores of the keywords we can fill the entries of
the object–feature weight matrix W . Note that since IDF is
defined per keyword, each column of the matrix correspond-
ing to a single keyword would be filled with the same IDF
value.

4.2.3 Discussion on dimension weighting differences
Although, the weighting of the dimensions is performed in
both subspace clustering and text clustering domains, there
are core differences in the weighting schemes.

In subspace clustering, the dimension weighting is local re-
lying on the neighborhood of each object or cluster. In text
clustering, the weighting of the keywords is global and is
based upon the whole collection of documents.

Also, the dimension weights in subspace clustering act
mainly as a filter in order to distinguish between preferred
and non–preferred dimensions. For example, PreDeCon [9]
uses the dimension weights κ and 1 to model preferred
and non-preferred dimensions, respectively. Similarly, PRO-
CLUS [3] employs two dimension weights, 0 and 1 with 1 in-
dicating a preferred dimension. That is, the actual weights
of the dimensions are not considered in subspace clustering,
but rather the information about which dimension is pre-
ferred or not. This is in contrast to IDF weighting in text.

4.3 Incorporating dimension weighting in
similarity/distance computation differ-
ences

The weighting of the dimensions is incorporated in the dis-
similarity function in both subpsace clustering and text clus-
tering domains. We model this contribution in terms of a
generic dimension–weighted dissimilarity function.

Definition 5. Dimension–weighted dissimilarity
Let p, q ∈ D. We denote by V [p,Aj ] (V [q,Aj ]) the value of
object p (q, respectively) with respect to dimension Aj and
by W [p,Aj ] (W [q,Aj ]) the importance of Aj for the object
p (q, respectively). The dissimilarity between p and q is a
combination of their values and dimensions’ weights:

diss(p, q) = AggrAj∈A f(V [p,Aj ], V [q,Aj ],W [p,Aj ],W [q,Aj ])

The function f() combines the value and weights in each
dimension. The total score is an aggregation of the cor-
responding dimensions’ scores, through some aggregation
function Aggr().

We already discussed what the object values and dimension
weights stand for in each domain and how the object–feature
value matrix V and the object–feature weight matrix W
are filled. We explain hereafter how the diss() function is
instantiated per domain.

4.3.1 Dissimilarity computation in subspace cluster-
ing

We distinguish between instance–based and cluster–based
approaches, as with the weighting of dimensions case (cf.,
Section 4.2).

(i) Dissimilarity in instance–based approaches We
adapt the distance function of PreDeCon [9] to the generic
diss() function notation.

Definition 6. Preference weighted distance
Let p, q ∈ D, then their preference weighted distance is

given by:

distp(p, q) =

√√√√∑
Aj∈A

1

W [p,Aj ]
· (V [p,Aj ]− V [q,Aj ])2

The above formula considers only the preferences of p. The
symmetric version is:

dist(p, q) = max(distp(p, q), distq(p, q))

where V [p,Aj ] (V [q,Aj ]) is the value of object p (q, re-
spectively) in dimension Aj and W [p,Aj ] (W [q,Aj ]) is the
weight of Aj for point p (q, respectively).

Note, that the dimension weights are either 1 or κ (κ >>
1). Therefore, the similarity function weights attributes
with low variance (dimension weight κ) considerably lower
(by a factor 1/κ) than attributes with a high variance (di-
mension weight 1).

(ii) Dissimilarity in cluster–based approaches We
adapt the distance function of PROCLUS to the generic
diss() function notation.

Definition 7. Projected distance
Let p, q ∈ D with q being the medoid of a cluster. The

projected distance of p with respect to the medoid q is given
by:

dist(p, q) =

∑
Aj∈AW [q,Aj ] ∗ |V [p,Aj ]− V [q,Aj ]|

|{Aj : W [q,Aj ] = 1}|
W [q,Aj ] is the importance of dimension d for the cluster
represented by the medoid q. Note that in this case, weights
take values in {0, 1}. That is, the non important dimen-
sions are not considered at all during distance computation
and the important ones are equally taken into account.

4.3.2 Dissimilarity computation in text clustering
TF × IDF is the most common schema for combining key-
word weights and their values across different documents.
According to this schema, the value of a keyword in a doc-
ument (TF) is multiplied by the importance of the keyword
in the whole collection (IDF).

Definition 8. TF×IDF score
Let p ∈ D be a document and let Aj ∈ A be one of its
keywords. The TF×IDF score of Aj in p is given by:

(TF × IDF )p,Aj = TFp,Aj × IDFAj

Typically, the dissimilarity function is applied upon the
TFIDF values of the documents. A commonly used dissimi-
larity function is the cosine similarity that finds the cosine of
the angle between the two documents. It becomes 1 if the
documents are identical and 0 if there is nothing in com-
mon between them (i.e., the vectors are orthogonal to each
other).

The cosine similarity can be re-written in terms of the
generic formula diss() as follows:

Definition 9. Cosine similarity
Let p, q ∈ D be two documents. Their similarity is defined

as:

cos(p,q)=

∑
Aj∈A V [p,Aj ]∗W [p,Aj ]∗V [q,Aj ]∗W [q,Aj ]√∑

Aj∈A (V [p,Aj ]∗W [p,Aj ])
2∗

√∑
Aj∈A (V [q,Aj ]∗W [q,Aj ])

2
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Note that the weight of a keyword Aj is defined over the
whole collection D thus, documents p and q share the same
weight for this keyword, i.e.,W [p,Aj ] = W [q,Aj ] = IDFAj .

4.3.3 Discussion on incorporation of dimension
weighting in distance function differences

Although, both domains consider objects’ values and dimen-
sions’ weights for dissimilarity computation, there is a clear
difference between the two domains. The difference lies in
the fact that in text clustering the value of a dimension/
keyword in a document, i.e.,TF, also expresses some notion
of importance for the keyword in the document. This is in
contrast to subspace clustering where all values are treated
similarly and there is no importance discrimination.

This fact is also reflected in the chosen dissimilarity func-
tions. In subspace clustering, where the values carry no
semantics on their importance, the value difference in each
dimension (e.g.,, absolute as in PROCLUS [3] or squared as
in PreDeCon [9]) is considered. In text clustering, though,
the widely used cosine similarity function multiplies the ac-
tual object values at each dimension, so that higher values
result in higher scores. For example, if we consider two ob-
jects with values 0.8 and 0.6 for a specific dimension (case 1),
the contribution of this dimension to the dissimilarity score
will be 0.8−0.6 = 0.2 for PROCLUS and (0.8−0.6)2 = 0.04
for PreDeCon, whereas for the cosine similarity it will be
0.8 ∗ 0.6 = 0.48. For two other objects, with values 0.4, 0.2
in the same dimension (case 2), the result would be the same
for PROCLUS and PreDeCon since they rely on their value
difference which is again 0.2, however it will be different
for cosine similarity; the contribution of this dimension this
time would be: 0.4 ∗ 0.2 = 0.08 counting for the fact that
the actual object values are lower in case 2 than in case 1.

Also, in subspace clustering the dimension weighting pre-
dominantly indicates whether the corresponding object val-
ues should be considered or not. For example, in PRO-
CLUS [3] only projected dimensions (having weight 1) are
considered during dissimilarity assessment and there is no
special weighting per preferred dimension. In PreDeCon [9]
also, the value differences in the preferred dimensions (those
having weight κ) are down-weighted by 1/κ, but again this
holds for all preferred dimensions. On the contrary, in text
clustering the actual weights of the dimensions as expressed
by their IDF values over the whole collection of documents
are considered and contribute proportionally to the dissim-
ilarity score.

5. TOWARDS COMBINING THE BEST OF
BOTH WORLDS

In the previous section, we elaborated on the differences and
commonalities between subspace clustering and text cluster-
ing domains with respect to data representation, dimension
weighting and incorporation of these weights in the dissim-
ilarity functions. In this section, we overview approaches
that make use of concepts from both domains.

In [1], the authors study the problem of semi-supervised
text classification and use clustering to create the set of cat-
egories for the classification of documents. To improve clus-
tering quality, they use a modified version of K–Means where
they iteratively refine both the clusters and the dimensions
inside each cluster. In particular, at each iteration they filter
out some of the words of the feature space ensuring that only

words that frequently occur within the cluster are used for
the assignment process. The number of words, i.e.,projected
dimensions for each cluster, is reduced at each iteration by
a geometric factor. In their experiments, they started with
a projected dimensionality of 500 words which was finally
reduced to 200 words. This work introduces subspace clus-
tering concepts to text clustering, in particular, the local
(within each cluster) weighting of the words and selection
of the most prominent ones for cluster centroid representa-
tion. The proposed algorithm resembles PROCLUS [3] (c.f.,
Section 4.2.1), however the distance function and the selec-
tion of projected dimensions at each iteration is adopted to
the text domain. In particular, cosine function is used for
dissimilarity assessment and the selection of projected di-
mensions is done on the basis of their occurrences in each
cluster.

In [14], the authors propose a modification of W–k–
Means [10], that calculates cluster specific weights for each
feature during the clustering process, for text documents.
Totally m× k weights are produced by the algorithm where
m is the number of features and k the number of clusters.
The initial weights are randomly generated and refined dur-
ing the iteration phase, similarly to K–Means. Based on
these weights, the subset of keywords that can serve as clus-
ter label can be identified. In their experiments, the pro-
posed subspace method performed better than standard K–
Means and Bisecting–KMeans [29].

There are also methods that extract an initial clustering
with respect to the whole feature space of documents (usu-
ally through TF × IDF weighting) and refine the cluster-
ing result by applying clustering again inside each extracted
cluster but using a refined feature space. For example, in [31]
the authors propose the extraction and maintenance of a
two level hierarchy of global and local topics: the global
topics are extracted by applying clustering over the whole
collection of documents in the feature space derived from the
whole collection through TF × IDF . To extract the local
topics, clustering is applied again inside each global clus-
ter using the cluster population to generate the new cluster
specific feature space (the IDF scores are based on the clus-
ter population, rather than on the whole collection), instead
of using the generic feature space extracted from the whole
dataset. This way, the feature space is refined per cluster.

Discussion Although there are some methods for text
clustering that make use of subspace clustering concepts,
like [1], [14] and methods that refine the feature space
through global and local weighting like [31], there are still
many things that the two domains could exchange and ben-
efit from each other, like for example a concurrent incorpo-
ration of both global and local weighing of features in the
clustering process. There is a bunch of subspace clustering
algorithms in the literature, a thorough report on their per-
formance over text data would be very useful as a starting
point. Of course, the weighting of the dimensions and the
distance function should respect the peculiarities of the text
data as discussed in Section 4. There are also other fields
which resemble the semantics of the data values in text;
for example, in recommendation applications higher ratings
indicate more desired items,e.g.,movies or restaurants. Sub-
space clustering is relevant to such kind of data too, since
groups of users with different item preferences might exist,
however as with text, the data semantics should be also
taken into account.
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6. CONCLUSIONS
We outlined the differences and commonalities between sub-
space clustering and text clustering and we argued that text
data is not a straightforward application domain for sub-
space clustering as it is often suggested in the literature.
Although both domains share the same goal, the concurrent
extraction of clusters and dimensions where these clusters
are formed, and deal with similar challenges, high dimen-
sional and sparse data, there are key differences between
the two domains which we summarize bellow:

• The object values in text clustering also reflect the im-
portance of a keyword within a document (TF scores).

• Missing data in subspace clustering imply unknown
data, whereas in text clustering a non-appearing key-
word indicates words that are not important or are
probably redundant for the description of the docu-
ment.

• Both domains use some notion of dimension weighting
to count for the different importance of the dimensions
for the clustering task.

• In subspace clustering, dimension weighting is local
and is derived with respect to the local neighborhood
of a point or a cluster.

• In text clustering, dimension weighting is global and
is defined with respect to the whole collection of doc-
uments.

• Dimension weighting in subspace clustering mainly
filters important from non-important dimensions by
assigning the same weight to all important/non-
important dimensions.

• In text clustering, the actual weights of the dimensions
are used in the dissimilarity function.

• The dissimilarity function in text clustering also con-
siders the importance of a keyword within a document
(TF scores), so as more important keywords are given
higher scores compared to less important ones.

Our goal of this work is to point out the differences be-
tween the two domains and show their commonalities. Text
clustering is an established area of research with a bulk of
applications and an increased interest nowadays due to the
web and the digitization of information. On the other hand,
the subspace clustering area grows fast as high dimensional-
ity comprises one of the basic features of nowadays data. A
few works combine concepts from both domains and could
serve as a starting point for further exchange of ideas and
best practices between these domains that would be fruitful
for their further development.
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