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Abstract. The long-term analysis of opinionated streams requires algo-
rithms that predict the polarity of opinionated documents, while adapt-
ing to different forms of concept drift: the class distribution may change
but also the vocabulary used by the document authors may change. One
of the key properties of a stream classifier is adaptation to concept drifts
and shifts; this is typically achieved through ageing of the data. Surpris-
ingly, for one of the most popular classifiers, Multinomial Naive Bayes
(MNB), no ageing has been considered thus far. MNB is particularly
appropriate for opinionated streams, because it allows the seamless ad-
justment of word probabilities, as new words appear for the first time.
However, to adapt properly to drift, MNB must also be extended to take
the age of documents and words into account.
In this study, we incorporate ageing into the learning process of MNB, by
introducing the notion of fading for words, on the basis of the recency of
the documents containing them. We propose two fading versions, grad-
ual fading and aggressive fading, of which the latter discards old data at
a faster pace. Our experiments with Twitter data show that the ageing
based MNBs outperform the standard accumulative MNB approach and
manage to recover very fast in times of change. We experiment with dif-
ferent data granularities in the stream and different data ageing degrees
and we show how they “work together” towards adaptation to change.

1 Introduction

Nowadays, we experience an increasing interest on word-of-mouth communica-
tion in social media, including opinion sharing [16]. A vast amount of voluntary
and bona fide feedback accumulates, referring to products, persons, events etc.
Opinionated information is valuable for consumers, who benefit from the experi-
ences of other consumers, in order to make better buying decisions [13], but also
for vendors, who can get insights on what customers like and dislike [18]. The
extraction of such insights requires a proper analysis of the opinionated data.

In this work, we address the issue of polarity learning over opinionated
streams. The accumulating opinionated documents are subject to different forms
of drift: the subjects discussed change, the attitude of people towards specific
products, events or other forms of entities change, the vocabulary changes. As a



matter of fact, the impact of the vocabulary is less investigated. It is well-known
that the polarity of some words depends on the context they are used in; this
subject is investigated e.g. in the context of recurring concepts [8]. However, the
impact of the vocabulary in an opinionated stream is much more broad: an opin-
ionated word can appear in more contexts than we can (or want to) trace, since
some contexts are rare or do not recur. More importantly, new words emerge and
some words are used less. This implies that the polarity learner should be able to
cope with an evolving feature space. To deal with concept drift in the opinion-
ated data and their feature space, we propose a fading Multinomial Naive Bayes
polarity learner. We extend the Multinomial Naive Bayes (MNB) with an ageing
function that gradually forgets (fades away) old data and outdated words.

Multinomial Naive Bayes (MNB) classifiers comprise one of the most well-
known classifiers and are widely used also for sentiment analysis although most
of the approaches cover the non-stream case [17]. For opinionated streams, MNB
has a cardinal advantage: it allows the seamless adaptation of the vocabulary,
by simply requiring the computation of the class probabilities for each word. No
other stream classification algorithm can respond so intuitively to an evolving
feature space. Surprisingly, so far, MNB is used in opinionated streams mostly
without forgetting past data and without extending to a new vocabulary 3.
This is problematic, because the model may overfit to old data and, fore-mostly,
to an outdated vocabulary. In this study, we propose two different forgetting
mechanisms that differ on how drastically they forget over time.

The rest of the paper is organized as follows: Related work is discussed in
Section 2. The basic concepts and motivation are presented in Section 3. The
ageing-based MNBs are introduced in Section 4. Experimental results are shown
in Section 5. Conclusions and open issues are discussed in Section 6.

2 Related work

Stream mining algorithms typically assume that the most recent data are the
most informative, and thus employ different strategies to downgrade old, obsolete
data. In a recent survey [6], Gama et al. discuss two forgetting mechanisms: (i)
abrupt forgetting where only recent instances, within a sliding window, contribute
to the model, and (ii) gradual forgetting where all instances contribute to the
model but with a weight that is regulated by their age. In the context of our
study, the forgetting strategy affects also the vocabulary – the feature space. In
particular, if a set of documents is deleted (abrupt forgetting), all words that
are in them but in none of the more recent documents are also removed from the
feature space. This may harm the classifier, because such words may re-appear
soon after their removal. Therefore, we opt for gradual forgetting.

Another approach for selecting features/ words for polarity classification in
a dynamic environment is presented in [11]. In this approach, selection does not
rely on the age of the words but rather on their usefulness, defined as their contri-
bution to the classification task. Usefulness is used in [11] as selection criterion,

3 An exception is our own prior work [24, 25].



when the data volume is high, but is also appropriate for streams with recur-
ring concepts. Concept recurrence is studied e.g. in [8] (where meta-classifiers
are trained on data referring to a given concept), and in [12] (where a concept
is represented by a data bucket, and recurrence refers to similar buckets). Such
methods can be beneficial for opinion stream classification, if all encountered
opinionated words can be linked to a reasonably small number of concepts that
do recur. In our study, we do not pose this requirement; word polarity can be
assessed in our MNB model, without linking the words to concepts.

Multinomial Naive Bayes (MNB) [14] is a popular classifier due to its sim-
plicity and good performance, despite its assumption on the class-conditional
independence of the words [5, 22]. Its simplicity and easy online maintenance
constitutes it particularly appealing for data streams. As pointed out in Section
1, MNB is particularly appropriate for adaptation to an evolving vocabulary. In
[24, 25], we present functions that recompute the class probabilities of each word.
In this study, we use different functions, as explained in the last paragraph of
this section.

Bermingham et al. [2] compared the performance of Support Vector Ma-
chines (SVM) and MNB classifiers on microblog data and reviews (not streams)
and showed that MNB performs well on short-length, opinion-rich microblog
messages (rather than on long texts). In [10], popular classification algorithms
were studied such as MNBs, Random Forest, Bayesian Logistic Regression and
SVMs using sequential minimal optimization for the classification in Twitter
streams while building classifiers at different samples. Across the tested classi-
fiers, MNBs showed the best performance for all applied data sets.

In [3], MNB has been compared to Stochastic Gradient Descend (SGD) and
Hoeffding Trees for polarity classification on streams. Their MNB approach is
incremental, i.e., it accumulates information on class appearances and word-in-
class appearances over the stream, however, it did not forget anything. Their
experiments showed that MNB had the largest difficulty in dealing with drifts in
the stream population, although its performance in times of stability was very
good. Regarding runtime, MNB was the fastest model due to its simplicity in
predictions but also due to the easy incorporation of new instances in the model.
The poor performance of MNB in times of change was also observed in [21], and
triggered our ageing-based MNB approach.

Closest to our approach is our earlier work [24]. There, MNB is in the core of
a polarity learner that uses two adaptation techniques: i) a forward adaptation
technique that selects “useful” instances from the stream for model update and
ii) a backward adaptation technique that downgrades the importance of old
words from the model based on their age. There are two differences between
that earlier method (and our methods that build upon it, e.g. [25]) and the
work proposed here. First, the method in [24] is semi-supervised: after receiving
an initial seed of labeled documents, it relies solely on the labels it derives
from the learner. Backward adaptation is not performing well in that scenario,
presumably because the importance of the words in the initial seed of documents
diminishes over time. Furthermore, in [24], the ageing of the word-class counts



is based directly upon the age of the original documents containing the words.
The word-class counts are weighted locally, i.e., within the documents containing
the words, and the final word-class counts are aggregations of these local scores.
In our current work, we do not monitor the age of the documents. Rather, we
use the words as first class objects, which age with time. Therefore the ageing
of a word depends solely on the last time the word has been observed in some
document from the stream.

3 Basic concepts

We observe a stream S of opinionated documents arriving at distinct timepoints
t0, . . ., ti, . . .; at each ti a batch of documents might arrive. The definition of
the batch depends on the application per se: i) one can define the batch at the
instance level, i.e., a fixed number of instances is received at each timepoint or ii)
at the temporal level, i.e., the batch consists of the instances arriving within each
time period, e.g. on a daily basis if day is the considered temporal granularity.
A document d ∈ S is represented by the bag-of-words model and for each word
wi ∈ d its frequency fdi is also stored.

Our goal is to build a polarity classifier for the prediction of the polarity of
new arriving documents. As it is typical in streams, the underlying population
might undergo changes over time, referred in the literature as concept drift. The
changes are caused by two reasons: i) change in the sentiment of existing words
(for example, words have different sentiment for different contexts, e.g. the word
“heavy” is negative for a camera, but positive for a solid wood piece of furniture);
ii) new words might appear over time and old words might become obsolete (for
example, new topics emerge all the time in the news and some topics are not
mentioned anymore). The drift in the population might be gradual or drastic; the
later is referred also as concept shift in the literature. A stream classifier should
be able to adapt to drift while maintaining a good predictive power. Except for
the quality of predictions, another important factor for a stream classifier is fast
adaptation to the underlying evolving stream population.

3.1 Basic model: Multinomial Naive Bayes

According to the underpinnings of the Multinomial Naive Bayes (MNB) [14],
the probability of a document d belonging to a class c is given by:

P (c|d) = P (c)

|d|∏
i=1

P (wi|c)f
d
i (1)

where P (c) is the prior probability of class c, P (wi|c) is the conditional proba-
bility that word wi belongs to class c and fdi is the number of occurrences of wi
in document d. These probabilities are typically estimated based on a dataset
D with class labels (training set); we indicate the estimates from now on by a
“hat” as in P̂ .



The class prior P (c) is easily estimated as the fraction of the set of training
documents belonging to class c, i.e.,:

P̂ (c) =
Nc
|D|

(2)

where Nc is the number of documents in D belonging to class c and |D| is the
total number of documents in D.

The conditional probability P (wi|c) is estimated by the relative frequency of
the word wi ∈ V in documents of class c:

P̂ (wi|c) =
Nic∑|V |
j=1Njc

(3)

where Nic is the number of occurrences of word wi in documents with label c
in D, V is the vocabulary over the training set D. For words that are unknown
during prediction, i.e., not in V , we apply the Laplace correction and initialize
their probability to 1/|V |.

From the above formulas, it is clear that the quantities we need in order to
estimate the class prior P̂ (c) and the class conditional word estimates P̂ (wi|c)
are the class prior counts Nc and the word-class counts Nic, where wi ∈ V, c ∈ C
are all computed from the training set D. The conventional, static MNB uses
the whole training set D at once to compute these counts.

The typical extension for data streams [3], updates the counts based on new
instances from the stream. Let d be a new incoming document from the stream
S with class label c. Updating the MNB model means actually updating the
class and word-class counts based on the incoming document. In particular, the
number of documents belonging to class c is increased, i.e.,: Nc+ = 1. Similarly,
the class-word counts for each word wi ∈ d are updated, i.e., Nic+ = fdi , where
fdi is the frequency of wi in d. For existing words in the model, this implies
just an update of their counts. For so-far unknown words, this implies that
a new entry is created for them in the model. These accumulative counts are
used during polarity prediction in Equations 2 and 3. We refer to this model as
accumulativeMNB.

From the above description it is clear that the typical MNB stream model
exhibits a very long memory as nothing is forgotten with time, and therefore it
cannot respond fast to changes. Next, we present our extensions to MNB: we
weight documents and words on their age, ensuring that the model forgets and
responds faster to change.

4 Ageing-based Multinomial Naive Bayes

The reason for the poor performance of an MNB model in times of change is its
accumulative nature. As already mentioned, once entering the model nothing is
forgotten, neither words nor class prior information. To make MNBs adaptable
to change, we introduce the notion of time (Section 4.1) and we show how such
a “temporal” model can be used for polarity learning in a stream environment
(Sections 4.2, 4.3).



4.1 Ageing-based MNB model

In the typical, accumulative MNB classifier there is no notion of time, rather all
words are considered equally important independently of their arrival times. We
couple the MNB with an ageing mechanism that allows for a differentiation of
the words based on their last observation time in the stream.

Ageing is one of the core mechanism in data streams for dealing with concept
drifts and shifts in the underlying population. Several ageing mechanisms have
been proposed [7] including the landmark window model, the sliding window
model and the damped window model. We opt for the damped window model,
as already explained, as it comprises a natural choice for temporal applications
and data streams [4, 1, 15]. According to the damped window model, the data are
subject to ageing based on an ageing function so that recent data are considered
more important than older ones. One of the most commonly used ageing func-
tions is the exponential fading function that exponentially decays the weights of
data instances with time.

Definition 1 (Ageing function). Let d be a document arriving from the stream
S at timepoint td. The weight of d at the current timepoint t ≥ td is given by:
age(d, t) = e−λ·(t−td) where λ > 0 is the decay rate.

The weight of the document d decays over time based on the time period elapsing
from the arrival of d and the decay factor λ. The higher the value of λ, the lower
the impact of historical data comparing to recent data. The ageing factor λ is
critical for the ageing process as it determines what is the contribution of old
data to the model and how fast old data is forgotten. Another way of thinking
of λ is by considering that 1

λ is the period for an instance to loose half of its
original weight. For example, if λ = 0.5 and timestamps correspond to days, this
means that 1

0.5 = 2 days after its observation an instance will loose 50% of its
weight. For λ = 0 there is no ageing and therefore the classifier is equivalent to
the accumulative MNB (cf. Section 3.1).

The timestamp of the document from the stream is “transferred” to its com-
ponent words and finally, to the MNB model. In particular, each word-class pair
(w, c) entry in the model is associated with

– the last observation time, tlo, which represents the last time that the word
w has been observed in the stream in a document of class c.

The tlo entry indicates how recent is the last observation of word w in class c.
Similarly, each class entry in the model is associated with a last observation

timestamp indicating the last time that the class was observed in the stream.
Based on the above, the ageing-based MNB model consists of the temporally
annotated class prior counts (Nc, t

c
lo) and class conditional word counts (Nic, t

ic
lo).

Hereafter, we focus on how such a temporal model can be used for predic-
tion while being maintained online. We distinguish between a normal fading
MNB approach (Section 4.2) and an aggressive/drastic fading MNB approach
(Section 4.3).



4.2 Ageing-based MNB classification

In order to predict the class label of a new document d arriving from the stream
S at timepoint t, we employ the ageing-based version of MNB: in particular, the
temporal information associated with the class prior counts and the class condi-
tional word counts is incorporated in the class prior estimation P̂ (c) and in the
class conditional word probability estimation P̂ (wi|c), i.e., in Equations 2 and 3,
respectively.

The updated temporal class prior for class c ∈ C at timepoint t is given by :

P̂ t(c) =
N t
c ∗ e−λ·(t−t

c
lo)

|St|
(4)

where N t
c is the number of documents in the stream up to timepoint t belonging

to class c and |St| is the total number of document in the stream thus far, which
can be easily derived from the class counts as |St| =

∑
c′∈C

N t
c′ . Note that the class

counts, Nc, are maintained online over the stream as described below. The tclo is
the last observation of class c in the stream and (t− tclo) describes the temporal
gap from the last appearance of the class label c in the stream to timepoint t.

The updated temporal class conditional word probability for a word wi ∈ d
at t is given by:

P̂ t(wi|c) =
N t
ic ∗ e−λ·(t−t

(wi,c)

lo )

|V t|∑
j=1

N t
jc ∗ e−λ·(t−t

(wj,c)

lo )
(5)

where N t
ic is the number of appearances of word wi in class c in the stream up to

timepoint t and V t is the vocabulary (i.e., distinct words) accumulated from the
stream up to timepoint t. It is stressed that the vocabulary changes over time as
new words may arrive from the stream. where it is stressed that the vocabulary
size may change as new words may be added and as the weight of some words
decreases to zero.

The word conditional class counts, Nic, are also maintained online over the
stream as described hereafter.

Online model maintenance The update of the MNB model consists of up-
dating the class count and word-class count entries and their temporal counter-
parts. If d with timestamp t is a new document to be included in the MNB model
and c is its class label, then the corresponding class count is increased by one,
i.e., Nc+ = 1 and for each word wi ∈ d, the class conditional word counts Nic
are increased based on the frequency of wi in d, i.e., Nic+ = fdwi

. The temporal
counterpart of Nc is updated w.r.t. arrival time t of d, i.e., tclo = t.

Similarly the temporal counterparts of any word class combination count Nic
in d will be updated, i.e., ticlo = t. We refer to this method as fadingMNB here-
after.



4.3 Aggressive fading MNB alternative

The fadingMNB approach presented in the previous subsection, accumulates
evidence about class appearances and word-class appearances in the stream up
to the current time and applies the ageing function upon these accumulated
counts. The bigger the gap between the last observation of a word in a class
and the current timepoint, the more the weight of this word in the specific class
would be decayed. However, as soon as we observe the word-class combination
again in the stream, the total count is revived. This is because the counts are
accumulative and the ageing function is applied a posteriori.

An alternative approach to make the exponential fading even more rapid and
adapt more quickly to changes is to store in the model the aged-counts instead
of the accumulated ones. That is, the ageing is applied over the faded counts.
Obviously, such an approach implies a more drastic ageing of the data compared
to fadingMNB. The decay is not exponential anymore and it depends also on
how often a word is observed in the stream. In particular, words that appear
constantly in the stream, i.e., at each time point, will not be affected (as with
the fadingMNB approach) but if some period intervenes between consecutive
appearances of a word, the word will be “penalized” for this gap. We refer to
this method as aggressiveFadingMNB.

5 Experiments

In our experiments, we compare the original MNB stream model (accumula-
tiveMNB), to our fading MNB model (fadingMNB) and to the aggressive fading
MNB model (aggressiveFadingMNB). In Section 5.1, we present the Twitter
dataset we use for the evaluation, and in Section 5.2 we present the evalua-
tion measures. We present the results on classfication quality in Section 5.3. In
Section 5.4, we discuss the role of the fading factor λ. We have run these exper-
iments on all time granularities: hour, day and week. Due to lack of space, we
report only on the hourly-aggregated stream in Sections 5.3 and 5.4. Then, in
Section 5.5, we discuss the role of the stream granularity on the quality of the
different models and how it is connected to the fading factor λ.

5.1 Data and Concept Changes

We use the TwitterSentiment dataset [19], introduced in [9]. The dataset was
collected by querying the Twitter API for messages between April 6, 2009 and
June 25, 2009. The query terms belong to different categories, such as compa-
nies (e.g. query terms “aig”, “at&t”), products (e.g. query terms “kindle2”, “visa
card”), persons (e.g. “warren buffet”, “obama”), events (e.g. “indian election”,
“world cup”). Evidently, the stream is very heterogeneous. It has not been la-
beled manually. Rather, the authors of [9] derived the labels with a Maximum
Entropy classifier that was trained on emoticons.

We preprocessed the dataset as in our previous work [21], including following
steps: (i) dealing with data negation (e.g. replacing “not good” with “not goo”,



“not pretty” with “ugly” etc.), (ii) dealing with colloquial language (e.g. conver-
ing “luv” to “love” and “youuuuuuuuu” to “you”), (iii) elimination of superfluous
words (e.g. Twitter signs like or #), stopwords (e.g. “the”, “and”), special char-
acters and numbers, (iv) stemming (e.g. “fishing”, “fisher” were mapped to their
root word “fish”). A detailed description of the preprocessing steps is in [20].

The final stream consists of 1,600,000 opinionated tweets, 50% of which are
positive and 50% negative (two classes). The class distribution changes over
time.

How to choose the temporal granularity of such a stream? On Figure 1, we
show the tweets at different levels of temporal granularity: weeks (left), days
(center), hours (right). The weekly-aggregated stream (Figure 1, left) consists
of #12 distinct weeks (the x-axis shows the week of the year). Both classes
are present up to week 25, but after that only instances of the negative class
appear. In the middle of the figure, we see the same data aggregated at day
level: there are #49 days (the horizontal axis denotes the day of the year). Up
to day 168, we see positive and negative documents; the positive class (green)
is overrepresented. But towards the end of the stream the class distribution
changes and the positive class disappears. We see a similar behavior in the
hourly-aggregated stream (Figure 1, right), where the x-axis depicts the hour
(of the year). On Figure 1, we see that independently of the aggregation level,
the amount of data received at each timepoint varies: there are high-traffic time
points, like day 157 or week 23 and low-traffic ones, like day 96 or week 15. Also,
there are “gaps” in the monitoring period. For example, in the daily-aggregated
stream there are several 1-day gaps like day 132 but also “bigger gaps” like 10
days of missing observations between day 97 and day 107.

Fig. 1: Class distribution in the stream at different temporal granularities: weekly
(left), daily (center), hourly (right).

The time granularity affects the ageing mechanism, since all documents as-
sociated with the same time unit (e.g. day) have the same age/weight. In the
following, we experiment with all three levels of granularity.

5.2 Evaluation methods and evaluation measures

The two most popular methods for evaluating classification algorithms are hold-
out evaluation and prequential evaluation. Their fundamental difference is in



the order in which they perform training and testing and the ordering of the
dataset [7]. In hold-out evaluation, the current model is evaluated over a sin-
gle independent hold-out test set. The hold-out set is the same over the whole
course of the stream. For our experiments, the hold-out set consists of 30% of
all instances randomly selected from the stream. In prequential evaluation, each
instance from the stream is first used for testing and then for training the model.
This way, the model is updated continuously based on new instances.

To evaluate the quality of the different classifiers, we employed accuracy
and kappa [23] over an evaluation window, evalW . Accuracy is the percentage
of correct classifications in w. Bifet et al. [3] use the kappa statistic defined
as k = p0−pc

1−pc , where p0 is the accuracy of the studied classifier and pc is the
accuracy of the chance classifier. Kappa lies between -1 and 1.

5.3 Classifier performance

Accuracy and kappa in prequential evaluation. We compare the performance of
our fadingMNB and aggressiveFadingMNB to the original accumulativeMNB al-
gorithm in the hourly-aggregated stream, using prequential evaluation. As crite-
ria for classification performance, we use accuracy (Figure 2) and kappa (Figure
3). In both figures, we see that classification performance has two phases, before
and after the arrival of instance 1,341,000; around that time, there has been
a drastic change in the class distribution, cf. Figure 1. We discuss these two
phases, i.e., the left, respectively right part of the figures, separately.

Fig. 2: Prequential evaluation on accu-
racy in the hourly-aggregated stream –
fading factor λ = 0.1, evaluation win-
dow evalW = 1000

Fig. 3: Prequential evaluation on kappa
in the hourly-aggregated stream – same
parameters as in Figure 2, i.e., λ = 0.1,
evalW = 1000

The left part of the accuracy plots on Figure 2 shows that accumulativeMNB has
the best accuracy, followed closely by fadingMNB, while aggressiveFadingMNB
has slightly inferior performance. In the left part of the plots on kappa (Fig-
ure 3), the relative performance is the same, but the performance inferiority of
accumulativeMNB is more apparent.



In the right part of the accuracy plots on Figure 2, i.e., after the dras-
tic change in the class distribution, we see that accumulativeMNB experiences
a slight performance drop, while the accuracy of our two algorithms ascends
rapidly to 100% (the two curves coincide). The intuitive explanation for the in-
ferior performance of accumulativeMNB is that it remembers all past data, so
it cannot adapt to the disappearance of the positive class. The proposed fad-
ingMNB and aggressiveFadingMNB, on the contrary, manage to recover after
the change.

The right part of the plots on kappa (Figure 3) gives a different picture: the
performance of all three algorithms drops to zero after the concept shift (the
three curves coincide). This is owed to the nature of kappa: it juxtaposes the
performance of the classifier to that of a random classifier; as soon as there is
only one class in the data (here: the negative one), no classifier can be better
than the random classifier. Since the accuracy plots and the kappa plots show
the same trends before the drastic concept change, and since the accuracy plots
reflect the behavior of the classifiers after the change much better than kappa
does, we concentrate on accuracy as evaluation measure hereafter.

Accuracy in hold-out evaluation. Under prequential evaluation, each labeled doc-
ument is used first for testing and, then, immediately for learning. In a more re-
alistic setting, we would expect that the “expert” is not available all the time to
deliver fresh labels for each incoming document from the stream. We are there-
fore interested to study the performance of the algorithms when less labeled
data can be exploited. In this experiment, we train the algorithms in a random
sample of 70% of the data and test them in the remaining 30%. The results are
on Figure 4.

Fig. 4: Hold-out evaluation on accuracy in the hourly-aggregated stream – same
parameters as in Figure 2, i.e., λ = 0.1, evalW = 1000; 30% of the data are used
for testing the stream, after learning on the complete training sample (70% of
the data).



As pointed out in Figure 4, this hold-out evaluation was done after learning
on 70% of the complete stream. Thus, the concept drift is incorporated into the
learned model and the performance is stable. This allows us to highlight the
influence of the hold-out data on the vocabulary. In particular, since the test
instances constitute 30% of the dataset, some words belonging to them may be
absent from the vocabulary used for training, or be so rare in the training sample
that the class probabilities have not been well estimated. This effect cannot be
traced under prequential evaluation, because all instances are gradually incorpo-
rated into the model. With our variant of a hold-out evaluation, we can observe
on Figure 4 how the absence of a part of the vocabulary affects performance.

Figure 4 shows that aggressiveFadingMNB performs very poorly. This is ex-
pected, because this algorithm forgets instances too fast and thus cannot main-
tain good estimates of the polarity probabilities of the words. More remarkable
is the performance difference between fadingMNB and accumulativeMNB : the
gradual fading of some instances leads to a better model! An explanation may
be that accumulativeMNB experiences an overfitting on the large vocabulary
of all training instances, while fadingMNB forgets some training data and thus
uses a “smaller vocabulary” that is still adequate to predict the labels of the test
instances. We intend to investigate this further by studying the contents of the
vocabularies used by the learning algorithms.

5.4 Impact of the fading factor λ on the new algorithms

On Figure 2, we have seen that both fadingMNB and aggressiveFadingMNB
adapted immediately to the drastic change in the class distribution. In this
experiment, we investigate how the fading factor λ affects the accuracy of the
classifiers. First, we compare the performance of the two algorithms for a very
small value of λ, cf. Figure 5.

Fig. 5: Prequential evaluation on accu-
racy in the hourly-aggregated stream –
same evalW = 1000 as in Figure 2, but
λ = 0.000003.

Fig. 6: Effect of fading factor λ on ac-
curacy in the hourly-aggregated stream;
prequential evaluation, evaluation win-
dow evalW = 1000.



Figure 5 shows that aggressiveFadingMNB manages to adapt to changes,
while fadingMNB does not. Since small λ values increase the impact of the old
data, i.e., enforce a long memory, the performance of fadingMNB deteriorates,
as is the case for accumulativeMNB. In contrast, aggressiveFadingMNB needs
such a small λ to remember some data in the first place.

As an extreme case, λ = 0 implies that no forgetting takes place and therefore
corresponds to accumulativeMNB. A high value of λ implies that aggressiveFad-
ingMNB forgets all data; a very low value of λ causes fadingMNB to remember
a lot and therefore it degenerates to accumulativeMNB. To visualize these “con-
nections” and to better understand the effect of the fading factor λ on each
method, we experiment with different values of λ over the hourly-aggregated
stream, cf. Figure 6.

Figure 6 depicts a constant performance of accumulativeMNB as it does not
depend on λ. The fadingMNB and the aggressiveFadingMNB have a complemen-
tary performance. For small values of λ, aggressiveFadingMNB performs best;
as the λ increases, its performance drops. This is expected since low values im-
ply that the classifier gradually forgets in a moderate pace, whereas high values
mean that the past is forgotten very fast. The performance of fadingMNB is the
opposite, for very small values of λ there is no actual ageing and therefore the
performance is low (and similar to accumulativeMNB); whereas as λ increases,
fadingMNB exploits the ageing of the old data, so its performance improves.

5.5 The effect of temporal granularity and how to set λ

The temporal granularity of the streams (e.g. hourly, daily, weekly, etc.) and the
fading factor λ clearly affect each other. To illustrate this, for decay degree of
λ = 0.1, the weight of a instance is halved every 1

0.1 = 10 hours, days, weeks for
hourly, daily, weekly temporal aggregation of the stream, respectively. The 10
weeks rate might be too low for some fast changing applications, whereas the
10 hours rate might be too high for other applications. Therefore, the choice of
the decay factor λ should be done in conjunction with the temporal granularity
of the stream. In the subfigures of Figure 7, we show the performance of the
ageing-based classifiers for the different temporal-aggregations versions of the
stream and different values of λ.

On the left part of Figure 7, we show the accuracy for λ = 0.1. This value
means that an instance loses half of its weight after 10 hours, 10 days, 10 weeks
for the hourly, daily, weekly aggregated stream respectively. We can see that
hourly aggregation deals best with the change in the distributions as it performs
best after the distribution changes; closely followed by aggressive fading in a daily
aggregation. The worst performance occurs when using weekly aggregation and
the fadingMNB, which indicates that forgetting every 10 weeks is not appropriate
in this case; a more frequent forgetting of the data is more appropriate.

We increase the forgetting rate to λ = 0.2 (mid part of Figure 7), i.e., an
instance loses half its weight after 5 hours, 5 days, 5 weeks for the hourly, daily,
weekly aggregated stream respectively. The results are close to what we observed
before; the hourly aggregation has the best performance for this dataset.
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Fig. 7: Prequential accuracy of fadingMNB, aggressiveFadingMNB in comparison
to accumulativeMNB (horizontal line) for different levels of granularity in the
stream (using evalW = 1000): λ = 0.1 (left), λ = 0.2 (middle), λ = 1.0 (right)

The results for a much larger λ, λ = 1.0, are shown in the right part of Fig-
ure 7. A λ = 1.0 means that an instance loses half its weight after 1 hour, 1 day,
1 week for the hourly, daily, weekly aggregated stream respectively. The aggres-
siveFadingMNB performs worse when there is no drift in the stream, because the
classifier forgets too fast. This fast forgetting though allows the classifier to adapt
fast in times of change, i.e., when drift occurs after instance 1.341.000. Among
the different streams, in times of stability in the stream, the aggressive fading
classifier in the hourly aggregated stream shows the worst performance, followed
closely by the daily and then the weekly aggregated streams. In times of change
however, the behavior is the opposite with the hourly aggregated stream showing
the best adaptation rate, because of no memory. Regarding fadingMNB, daily
and weekly aggregation show best performance in times of stability followed by
the hourly aggregated stream. In times of drift on the other hand, the hourly
aggregation adapts the fastest, followed by daily and weekly aggregation streams.

To summarize, the value of λ affects the performance of the classifier over
the whole course of the stream. In times of drifts in the stream, a larger λ is
preferable as it allows for fast adaptation to the new concepts appearing in the
stream. In times of stability though, a smaller λ is preferable as it allows the
classifier to exploit already learned concepts in the stream. The selection of λ
“works” in collaboration with the stream granularity. Obviously, at a very high
granularity (such as a time unit of one hour), lambda can be higher than at a
lower granularity (such as a time unit of one week).

6 Conclusions & Outlook

Learning a stream classifier is a challenging task due to the changes in the stream
population (at both instance and feature levels) and the necessity for classifier
adaptation to change. Adapting to change means that the model should be
updated online; this update might mean that existing parts of the model are
updated based on new observations, new model parts are added and old model
parts are forgotten.

In this work we couple a very popular classifier, Multinomial Naive Bayes,
with adaptation-to-change mechanisms. In particular, we introduce the notion of



ageing in MNBs and we derive a gradually fading MNB approach (fadingMNB)
and an aggressive fading MNB approach (aggressiveFadingMNB). We compare
our methods to the traditional stream MNB approach (accumulativeMNB) and
we show its superior performance in an evolving stream of tweets. Our ageing-
based approaches recover fast after changes in the stream population, while main-
taining a good performance in times of stability, i.e., when no drastic changes
are observed. We also show how the fading factor, that regulates the ageing of
old data, affects the results and its “connection” to the temporal granularity of
the stream.

Our ongoing work involves experimenting with different streams from diverse
domains and tuning the fading factor λ online based on the stream, instead of
having a constant fading factor over time. As we observed in the current exper-
iments, fast forgetting is important for times of change but in times of stability
forgetting should be slower. Another direction of future work encompasses book-
keeping of the model at regular time intervals. In particular, one can maintain
a more compact model by removing words that do not contribute much in the
classification decision due to ageing, or whose observations in the stream are
lower than the expected observations based on their age.
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