
Scalable Online-Offline Stream Clustering in Apache Spark

Omar Backhoff
Technische Universität München (TUM)

Munich, Germany
omarbackhoff@gmail.com

Eirini Ntoutsi
Leibniz Universität Hannover

Hanover, Germany
ntoutsi@kbs.uni-hannover.de

Abstract—Two of the most popular approaches for dealing
with big data are distributed computing and stream mining. In
this paper, we incorporate both approaches in order to bring a
competitive stream clustering algorithm, namely CluStream [8],
into a modern framework for distributed computing, namely,
Apache Spark. CluStream is one of the most popular clustering
approaches for stream clustering and the one that introduced
the online-offline mining process: the online phase summarizes
the stream through statistical summaries and the offline phase
generates the final clusters upon these summaries. We obtain
a scalable stream clustering method which is open source and
can be used by the Apache Spark community. Our experiments
show that our adaptation, Spark-CluStream achieves similar
quality to the original approach [8], while it is more efficient.

Keywords-big data streams; stream mining; stream cluster-
ing; CluStream; Apache Spark

I. INTRODUCTION

The analysis of data streams comes with important ques-
tions: what kind of data is it? What important information is
contained in the stream? How does the stream evolve? The
later comprises the key question for our work, i.e., dealing
with the evolution of the stream. We focus on the clustering
task, i.e., how can we maintain a valid clustering structure
in a volatile and evolving data stream environment.

Clustering is one of the main tasks in data mining, also
referred as an exploratory task as it allows us to get to know
our data. The goal is to find groups of objects that share
similar characteristics. One of the most popular algorithms
for stream clustering is CluStream [8], proposed in 2003,
which provides more information than previously developed
algorithms for data stream clustering by that time.

Recently, distributed computing frameworks are employed
to deal with big data challenges and many algorithms have
been adapted to these settings. In this work, we adapt
CluStream to the Apache Spark framework in order to
obtain a distributed stream clustering algorithm that can deal
with clustering over big data streams. As CluStream was
not designed for a distributed setting, the adaptation is not
straightforward and involves re-designing core parts of the
algorithm.

II. RELATED WORK/ BASIC CONCEPTS

A. CluStream

CluStream is a method developed in the Watson Research
Center at IBM and the University of Illinois, UIUC. This
method presented a different approach on the matter of
clustering streams of data with respect to a modified version
of K-Means which was adapted to work also with data
streams. The main difference relies on the separation of the
clustering process into two parts: one which would handle
the data stream itself gathering only statistically relevant
information (online part) and another which actually process
the results of the former to produce the actual clusters
wanted (offline part).

Separating the clustering process provides the user several
advantages, among others:

• by saving only statistical data, rather than the original
content, it is possible to save physical storage space
(e.g. hard drive space) and therefore reducing costs and
allowing a wider range in time to be clustered.

• The method also allows the analysis of the evolution
of the data, as the necessary information for that is
contained in the stored statistical information.

• Because the two parts operate independently it allows
the user to select a time horizon, or even a time window,
to perform the offline clustering part using the stored
statistical information.

1) The CluStream framework: This method is built over a
few ideas that need to be conceptualized, which will answer
fundamental questions and set up a basis of terminology
useful along this work.

• Micro-Clusters: that is the given name for the statis-
tical information summaries that is computed during
the online component. They are a temporal extension
of cluster feature vectors [18], which benefit from an
additive feature that makes them a natural choice for
the data stream problem [8].

• Pyramidal time frame: micro-clusters are stored pe-
riodically following a pyramidal pattern. This allows a
nice tradeoff between the ability to store large amounts
of information while giving the user the possible to
work with different time horizons without loosing too
much precision. The statistical summaries stored are



used by the offline component to compute finally the
macro-clusters which are the actual clusters the user
intended to get.

2) Maintaining the micro-clusters: Whenever a new point
arrives, it is necessary to find its nearest micro-cluster. It is
possible to calculate an average radious or RMSD, only to
then compare the distance to the point to a factor of it: when
the distance between a point and its nearest micro-cluster is
smaller or equal to the average radiuos (of the micro-cluster
in question) times a user defined factor, then this point is
added to the micro-cluster. Adding a point to a micro-cluster
means that the properties of the micro-cluster change, such
as RMSD and size (number of points).

Whenever a point (outlier) does not fulfill the mentioned
condition, then a new micro-cluster has to be created in order
to give this point a chance as a potential new cluster. In
order to do so, an older micro-cluster has to be deleted or
two micro-clusters have to be merged. To determine which
solution is appropriate a recency value for each micro-cluster
has to be determined1 and until all the micro-clusters which
have an older recency value than a user specified parameter
are deleted, it is possible to start merging the micro-clusters
which are closest to one another.

3) Offline macro-clusterig: The macro-clustering part is
done by selecting a time window and then performing a
modified version of K-Means to cluster the center of the
current micro-clusters using the size as weights.

B. SPARK

Apache Spark is an open source framework developed in
the AMPLab at the University of California. Traditionally,
MapReduce and DAG engines are based on an acyclic data
flow, which makes them non optimal for these applications
listed above. In this flow, data has to be read from a stable
storage system, like a distributed file system, and then
processed on a series of jobs only to be written back to
the stable storage. This process of reading and writing data
on each step of the workflow causes a significant rise in
computational cost.

The solution proposed offers resilient distributed datasets
(RDDs) to overcome this issue efficiently. RDDs are stored
in memory between queries (no need of replication) and
they can rebuild themselves in case of failure as they
remember how they were originally built from other datasets
by transformations such as map, group, join.

C. SPARK streaming

Figure 1 shows the general idea of Spark streaming [4], a
raw stream is linked to this module which gets transformed
into batches of data at user-defined intervals. These batches
of data are then treated as RDDs, thus it gets distributed
over the cluster where Spark runs. The abstraction of a

1See [8] for more details.

Figure 1: Flow of data in Spark streaming

data stream in Spark is called DStream, which stands for
Discretized Stream, and is continuous series of RDDs. In a
DStream, each RDD contains data from a specific interval
of time, as it can be seen in Figure 2.

Figure 2: DStreams are Spark streaming’s abstraction of a
data stream

D. Existing CluStream implementations in distributed com-
puting frameworks

CluStream has been implemented in different types of
software and libraries, being SAMOA - Scalable Advanced
Massive Online Analysis one of the options. It is also a
distributed computing implementation of the algorithm. The
difference is that it is not implemented in Spark, but rather
in a Distributed Stream Processing Engine which adapts the
MapReduce approach to parallel stream processing [17].

Main differences with this adaptation:

• It does not include an offline macro-clustering phase.
• It is developed in Java and not designed to work with

Spark.

StreamDM is a collection of algorithms for mining big
data streams 2. One of the included methods for stream
clustering is CluStream. This collection of algorithms is
developed for Spark.

Main differences with this adaptation:

• It does not include an offline macro-clustering phase.

III. CLUSTREAM IN APACHE SPARK

There are some modifications which had to be done in or-
der to adapt CluStream in Spark. Working with Spark means
working distributed computing and, thus, the algorithm has
to be able to work in parallel. Both parts (online and offline)
were adapted.

2As it is stated by them here: http://huawei-noah.github.io/streamDM/



A. CluStreamOnline class (online phase)
Two processes were modified: processing the stream and

updating the micro-clusters. As this adaptation uses Spark
Streaming, the points coming from the stream are processed
in batches at user specified time intervals. This contrasts
with the original methodology which indicates to process
point by point.

1) Finding nearest micro-cluster: The maintenance of the
micro-clusters starts with this operation. After initialization
(described in [8]) is performed, finding the nearest micro-
clusters for all the points is the very first thing to be done
for every new batch of data.

Algorithm 1 Find nearest micro-cluster.

Input: rdd: RDD[breeze.linalg.Vector[Double]], mcInfo:
Array[(McI,Int)]— rdd is an RDD containing data
points and mcInfo is the collection of the micro-clusters
information.

Output: rdd: RDD[(Int, breeze.linalg.Vector[Double])] —
returns a tuple of the point itself and the unique ID of
the nearest micro-cluster.

1: for all p ∈ rdd do
2: minDistance← Double.PositiveInfinity
3: minIndex← Int.MaxV alue
4: for all mc ∈ mcInfo do
5: distance← squaredDistance(p,mc1.centroid)
6: if distance ≤ minDistance then
7: minDistance← distance
8: minIndex← mc2
9: end if

10: end for
11: p = (minIndex, p)
12: end forreturn rdd

Finding the nearest micro-clusters is an operation of
complexity O(n ∗ q ∗ d), where n is the number of points,
q the number of micro-clusters and d the dimension of the
points; q and d remain constant during runtime but n might
vary. Algorithm 1 describes a simple search for the minimum
distance for every point in the RDD to the micro-clusters.

At this point, every node performs this operation to find
the nearest micro-cluster for all the points they locally have.

2) Processing points: The points are separated in two:
points within micro-clusters and outliers, it is possible to
compute the necessary information from them to update the
micro-clusters. It is important to perform this step before
handling the outliers because this adaptation process the
points for batches of data and not points individually as
they arrive, and the reasons are:

• Every point in a batch is treated equally in terms of
temporal properties as this batch gets distributed among
the cluster with the same time stamp and there is no
constant communication among nodes.

• The process of handling outliers involves deleting and
merging micro-clusters for every outlier, modifying the
micro-clusters’ structure. A sequential implementation
was preferred to reduce communication costs.

These two points are some of the key differences between
the original CluStream method and this adaptation. For the
original, it is possible to handle point by point as each have
different clear time stamps.

3) Handling outliers: First the micro-clusters which are
safe to delete are determined, then the outliers can be
handled. In general, there are three possible scenarios for
outliers:

• If the point lies within the restriction regarding the
RMSD for its nearest micro-cluster in the array
newMicroClusters, the point is added to it. This
stores all newly created micro-clusters.

• If the point does not lie within any of the new micro-
clusters, then it replaces a micro-cluster from the
safeDelete array, while there are safe-to-delete micro-
clusters.

• If none of the previous scenarios are viable,
then the two micro-clusters that are closest to
each other get merged, freeing one spot to cre-
ate the new micro-cluster. This is the the most
computationally expensive scenario. The function
getTwoClosestMicroClusters() has a complexity of
O(pmd · q!

2!(q−2)! ), where pm is the number of outliers
that require a merge, d the dimension of the points, and
q the number of micro-clusters.

Algorithm 2 handle outliers.

1: j ← 0
2: for all p ∈ dataOut do
3: distance,mcID ←
getMinDistanceFromIDs(newMicroClusters, p2)

4: if distance < t ∗mcInfo[mcID]1.rmsd then
5: addPointToMicroCluster(mcID, p2)
6: else
7: if safeDelete[j].isDefined then
8: replaceMicroCluster(safeDelete[j], p2)
9: newMicroClusters.append(j)

10: j ← j + 1
11: else
12: index1, index2←

getTwoClosestMicroClusters(keepOrMerge)
13: mergeMicroClusters(index1, index2)
14: replaceMicroClusters(index2, p2)
15: newMicroClusters.append(j)
16: j ← j + 1
17: end if
18: end if
19: end for



It is important in the procedure described in Algorithm 2
to locally update the mcInfo every time a point is added to
a micro-cluster, two micro clusters are merged and when
a new micro-cluster is created. There could be a lot of
change, depending on the outliers, and this loop requires
up-to-date information for each iteration, otherwise merges
and the RMSD check would be inaccurate.

B. CluStream class (offline phase)

Using a weighted K-Means approach, as described in
[8] was not directly possible, and for that reason, a new
adaptation had to be done in order to achive similar results.

The fakeKMeans solution:
The original CluStream method suggests to use a slightly

modified version of K-Means, a version for which one can
initialize the seeds (initial clusters) by sampling from the
micro-clusters’ centroids taking into account the number of
points each micro-cluster has and for which one can use
these centroids as weighted input points. These weights,
again, are related to the number of points they absorbed.
Spark’s (current) implementation of K-Means does allow to
initialize the seeds but unfortunately it is not possible to
predefine the weights for the input points.

In order to solve this issue, a new version of K-Means
needs to be implemented. This version uses, in fact, Spark’s
own version, but to overcome the problem of not being able
to define the weights at the beginning, this new version
uses as input many points sampled from the micro-clusters’
centroids.

IV. EXPERIMENTS

A. Experiments setting

For the experiments we used the Network Intrusion
dataset3, which consists of 494,021 instances. For the anal-
ysis, we used only the numerical attributes (#34 out of #43
attributes). We vary the speed of the stream and the horizon
and we derive two different stream configurations. The first
one, denoted as DS1, has a speed v = 2, 0000 points per
timestamp, which implies that it lasts for 494,021

2,000 ≈ 247
time units, and a horizon H = 1. The second one, denoted
as DS2, has a speed of v = 200 points per timestamp,
thus lasting for a period of 494021

200 ≈ 2470 time points,
and a horizon H = 256. To evaluate the clustering quality,
we report in Section IV-B on the sum of square distances
(SSQ) from the points to their nearest micro-cluster, using
Euclidean distance as the distance function, within a horizon
H . Efficiency and scalability is discussed in Section IV-C.

B. Clustering quality

We first compare Spark-CluStream to the original CluS-
tream (Section IV-B1) and then against other stream clus-
tering approaches in Spark (Section IV-B2).

3Source: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

1) Quality of Spark − CluStream vs original
CluStream:

Results for DS1: We used the same parameters as
in [8], i.e., α = 2, l = 10, InitNumber = 2000, δ =
512, t = 2. The parameter m, for m last points, was the
only one not provided, we set it to m = 20. m is used to
determine the approximate recency value as if the time of
arrival of the last m points was averaged. For DS1, both
m and δ are irrelevant and the reason is that the threshold
is never reached (247 time units vs. 512). The number of
micro-clusters was set to q = 50, 10 times the number of
final clusters (5).

In Table I we show the SSQ scores for our Spark-
CluStream and the results from CluStream as reported in
[8] - these are approximate results “extracted” from the
original paper. Although we don’t know the exact values for
CluStream, we can see that the magnitudes of the average
SSQ are comparable.

Results for DS2: Parameters were set as for DS1. The
exact scores of Spark-CluStream and the approximate values
from CluStream are reported in Table II. Again the quality
scores are comparable, i.e., our Spark-CluStream achieves
similar quality clusterings to the original CluStream .

2) Spark−CluStream vs other clustering approaches in
SPARK: We compare our Spark-CluStream against available
solutions for stream clustering in Spark and in particular
againstStreaming K-Means 4 andStreamDM-CluStream 5.
We report here on their clustering quality, the efficiency issue
is discussed in Section IV-C.

We roughly overview these methods hereafter.
• Streaming K-Means 6:

– An option is to use the parameter halfLife, which
can be configured to let the algorithm to com-
pletely adjust the clusters after HL points or
batches.

– The alternative would be to set the decayFactor,
which sets the weight for the clusters of the ”old”
data (only the current batch is considered ”new”
data). This is a number between 0 and 1, such
that if it is 0 then only the clusters for ”new”
data determine the final clusters, if it is set to 1,
then the clusters of past data will have the same
influence on the final clusters. As it also considers
the number of points, after some time ”old” data
will be considerably larger than new batches.

• StreamDM-CluStream 7:
– This adaptation of CluStream does not include the

offline part as a separate module, meaning that

4More information: https://databricks.com/blog/2015/01/28/introducing-
streaming-k-means-in-spark-1-2.html

5More information: http://huawei-noah.github.io/streamDM/
6More information: https://databricks.com/blog/2015/01/28/introducing-

streaming-k-means-in-spark-1-2.html
7More information: http://huawei-noah.github.io/streamDM/



DS1 - avg SSQ 10k 40k 160k 320k
CluStream 105-106 1012-1013 ≈ 106 102-103

Spark − CluStream 3.099× 105 6.676× 1012 7.833× 105 4.191× 102

Table I: DS1 - Average SSQ values

DS2 - avg SSQ 150k 250k 350k 450k
CluStream 1013-1014 ≈ 105 1012-1013 ≈ 108

Spark-CluStream 5.402× 1013 5.143× 104 1.892× 1013 9.646× 107

Table II: DS2 - Average SSQ values

it does not save snapshots and therefore it has
to perform the macro-clustering process for every
batch. This brings some limitations, the horizon H
no longer has the same meaning: the δ parameter is
used instead as an equivalent, relying on the micro-
clustering part only and its ability to delete and
create new micro-clusters.

Results on DS1: For the DS1 stream the results are
shown in Figure 3. For Streaming K-Means, the horizon
H = 1 is transformed to halfLife = 1, 000 points, as the
stream speed is 2,000 points. The decayFactor is set to 0,
i.e., only the last 2,000 points will influence on the clusters.
StreamDM-CluStream is set up with its default parameters,
only changing the horizon to 1 and the number of micro-
clusters to 50 to match those of Spark-CluStream . As we

Figure 3: Average SSQ for different stream clustering meth-
ods in SPARK. DS1 (Stream speed v = 2,000, H=1)

can see, our Spark-CluStream delivers results which are very
close to those of Streaming K-Means, whereas Streaming K-
Means with the decayFactor (DF) is the best. The surprising
results come from StreamDM-CluStream, which is the worse
among the tested methods, especially for the last two points,
i.e., at 160k and 320k. To further investigate this, we conduct
another experiment where we compare Spark-CluStream
without snapshots against StreamDM-CluStream. The results
are shown in Figure 4.

Figure 4: Spark-CluStream without snapshots vs StreamDM-
CluStream. DS1 (Stream speed v = 2, 000, H = 1, m =
100).

As we can see, Spark-CluStream outperforms StreamDM-
CluStream even if we remove the snapshot part, but the
quality is lower comparing to the snapshot version.

Results on DS2: For the DS2 stream the results are
shown in Figure 5. All parameters remained the same for all
methods, except for the halfLife parameter for Streaming
K-Means, which is set to halfLife = 25, 600 (200 · 256 =
51, 200). We calculate the decayFactor as follows: At
150,000 points, the ratio of the points to cluster to the
total number of points at that particular time is 51,200

150,000 ≈
0.3413. At 250,000 points, this equals to 51,200

250,000 ≈ 0.2048.
At 350,000 points, this equals to 51,200

350,000 ≈ 0.1462. At
450,000 points, this equals to 51,200

450,000 ≈ 0.1137. Averaging
those ratios leads to a decayFactor = 0.2015. As we can
see, Spark-CluStream performs consistently well and bet-
ter than StreamDM-CluStream. As expected Streaming K-
Means with the decayFactor achieves the best performance.

We repeat the without-snapshot experiment, the results
are shown in Figure 6. As we can see, Spark-CluStream
delivers better results than StreamDM-CluStream but the
difference is reduced significantly comparing to DS1. These
results might indicate that StreamDM-CluStream benefits
from larger horizons.



Figure 5: Average SSQ for different stream clustering meth-
ods in SPARK. DS2 (Stream speed v = 200, H=256)

Figure 6: Spark-CluStream without snapshots vs StreamDM-
CluStream. DS2 (Stream speed v = 200, H = 256, m =
100).

C. Scalability

We test the scalability with respect to data dimensionality
and number of microclusters, using data generated by a
Random Radial Basis Function generator.

The scalability tests are performed in two different sce-
narios: one being an analysis of how it scales for different
number of attributes (dimensions of the data points) using
only 20 micro-clusters and the other one using 200 micro-
clusters as the number of attributes and the number of final
clusters for a specific purpose are two key factors which
determine the complexity of Spark-CluStream. The speed of
the stream is controlled for 10000 points for every batch of
data because it is easier to test the scalability when many
computations have to be done. An application using Spark
streaming assigns one core exclusively to handle the stream,
therefore the number of processors mentioned in here is
the total, but the real number of processors used for the
computations is that number minus one.

Figure 7 shows that using only 20 micro-clusters and

2 dimensions has poor scalability, not even being able
to perform twice as fast as for a single processor (2 in
total). Even for this high speed streaming, one processor
is enough to process the batches of data before a new batch
is processed, meaning that the setup is stable.

Increasing the dimensionality of the points increases the
computational effort needed to process the points in every
batch of data and here is where Spark-CluStream shows
its scalability, which is almost linear8 for up to 16-17
processors, as it can be seen in Figure 8. From the average
processing time per batch, it can be seen that from 32
to 40 processors it does not improve much anymore and
the speedup does not increase quasi-linearly anymore. Here
a total of 9 processors were required to stabilize Spark-
CluStream.

Interestingly, increasing the number of micro-clusters by
a factor of 10 for 2 attributes resulted in good scalability,
similarly to the scenario with 20 micro-clusters and 100
attributes. Here a total of 8 processors were enough for a
stable run, as shown in Figure 9.

Finally, when the number of clusters and the number
of attributes are both increased significantly, Figure 10
shows for Spark-CluStream quasi-linear scalability but this
time only up to about 8-9 processors. After that point, the
speedup slows down showing almost no improvement after
16 processors. This test never reached a stable configuration.

D. Performance

In this section, the scalability of Spark-CluStream is com-
pared to that of StreamDM-CluStream and Spark’s Streaming
K-Means using the Spark cluster setup for q = 20 and
d = 100, for the CluStream method. Also, a test on a
single machine is performed.

When it comes to higher dimensions, Spark-CluStream
shows a significant improvement over StreamDM-
CluStream, which never got to the point were it was
stable (below the 1 second mark), as shown in Figure 11,
it seems to scale as fast as Spark-CluStream but it was not
enough even with 40 processors.

Another interesting comparison, is the processing time per
batch of data for a single machine, using a real dataset such
as the Network Intrusion. Here, communication is less of
an issue as all the partitions lie in the same share memory
space, and still there are 4 virtual cores in disposition for
the algorithms to run.

The test was performed using a stream speed of 2000
points per batch and with a horizon H = 1, to match one
of the validation tests.

The results shown in Figure 12 are quite remarkable. As
StreamDM-CluStream shows a very significant disadvantage
when using greater numbers of micro-clusters and higher
dimensions.

8By linear scalability does not mean it scales with a 1 to 1 ratio, but
rather linearly proportional.



Figure 7: Dimension: d = 2 Figure 8: Dimension: d = 100

Scalability-dimensionality comparison for Stream speed = 10000 and q = 20

Figure 9: Dimension: d = 2 Figure 10: Dimension: d = 100

Scalability-dimensionality comparison for Stream speed = 10000 and q = 200

For this single machine test, Spark-CluStream was about
18 times faster on average than StreamDM-CluStream and
about two times slower than Streaming K-Means on average.

Another consideration to be made, is that Spark-
CluStream saves a snapshot for every batch of data, having
to write to disk, while the other two algorithms never access
the disk for this matter.

V. CONCLUSIONS

We proposed a variation of CluStream tailored to Apache
Spark, Spark-CluStream . Our experiments show that Spark-
CluStream achieves similar quality to the original ap-

proach [8], while it is far more efficient. Comparing to other
stream clustering approaches in Spark, our results show that
Streaming K-Means is the fastest algorithm among the three
tested (highly optimized for Spark), but it does not offer
the flexibility of the online-offline clustering approaches
like CluStream that better fit evolving data streams. Com-
paring Spark-CluStream to StreamDM-CluStream , Spark-
CluStream delivers more consistent and accurate results, and
outperforms StreamDM-CluStream in most cases, including
one up to around 18 times faster.

As part of our future work, we will focus on minimizing
the communication cost between the different nodes to



Figure 11: Processing time comparison: q = 20, d = 100

Figure 12: Processing time comparison for a single machine:
q = 50, d = 34

further improve the efficiency and also on dealing with
outliers to improve quality.

A. Final comments

A package Spark-CluStream exists in spark-packages.org,
which can be installed to an existing SPARK installation.
There, a link to the GitHub repository can be found.

REFERENCES

[1] Apache spark. http://spark.apache.org/. Accessed:
08.07.2015.

[2] Apache spark: Preparing for the next wave of reactive big
data. https://www.typesafe.com/blog/apache-spark-preparing-
for-the-next-wave-of-reactive-big-data. January 27, 2015.

[3] Apache spark, research. http://spark.apache.org/research. Ac-
cessed: 24.01.2016.

[4] Apache spark, streaming. http://spark.apache.org/docs/latest/streaming-
programming-guide.html. Accessed: 01.03.2016.

[5] Databricks, streaming k-means.
https://databricks.com/blog/2015/01/28/introducing-
streaming-k-means-in-spark-1-2.html. Accessed: 01.03.2016.

[6] Scikit-learn: Mini batch kmeans. http://scikit-
learn.org/stable/modules/clustering.html. 2010-2014 BSD
License, Accessed: 08.07.2015.

[7] Spark’s mlib: Clustering. http://spark.apache.org/docs/latest/mllib-
clustering.html. Accessed: 08.07.2015.

[8] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S.
Yu. A framework for clustering evolving data streams. In
Proceedings of the 29th International Conference on Very
Large Data Bases - Volume 29, VLDB ’03, pages 81–92.
VLDB Endowment, 2003.

[9] E. Alpaydin. Introduction to Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, 2014.

[10] Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. In OSDI 04: PROCEED-
INGS OF THE 6TH CONFERENCE ON SYMPOSIUM ON
OPERATING SYSTEMS DESIGN AND IMPLEMENTATION.
USENIX Association, 2004.

[12] D. Garg and K. Trivedi. Fuzzy k-mean clustering in mapre-
duce on cloud based hadoop. In Advanced Communication
Control and Computing Technologies (ICACCCT), 2014 In-
ternational Conference on, pages 1607–1610, May 2014.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP ’03,
pages 29–43, New York, NY, USA, 2003. ACM.

[14] Satish Gopalani and Rohan Arora. Article: Comparing apache
spark and map reduce with performance analysis using k-
means. International Journal of Computer Applications,
113(1):8–11, March 2015. Full text available.

[15] Hai-Guang Li, Gong-Qing Wu, Xue-Gang Hu, Jing Zhang,
Lian Li, and Xindong Wu. K-means clustering with bagging
and mapreduce. In System Sciences (HICSS), 2011 44th
Hawaii International Conference on, pages 1–8, Jan 2011.

[16] SimoneA. Ludwig. Mapreduce-based fuzzy c-means cluster-
ing algorithm: implementation and scalability. International
Journal of Machine Learning and Cybernetics, pages 1–12,
2015.

[17] Gianmarco De Francisci Morales and Albert Bifet. Samoa:
Scalable advanced massive online analysis. Journal of Ma-
chine Learning Research, 16:149–153, 2015.

[18] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH:
an efficient data clustering method for very large databases.
In Jennifer Widom, editor, SIGMOD ’96: Proceedings of the
1996 ACM SIGMOD International Conference on Manage-
ment of Data, pages 103–114. ACM Press, 1996.


