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Abstract—Data science methods have the potential to benefit
other scientific fields by shedding new light on common questions.
One such task is choosing good features for analysis. In this
paper, we introduce a data science framework that was designed
to allow domain experts to consider their domain knowledge
in assembling suitable data sources for complex analyses. The
structure of experimental data as represented by a clustering
is used to measure the relevance as well as the redundancy
of each feature. We present an application of this technique
to bioarchaelogical data from a region in the European Alps,
a transalpine passage of eminent archaeological importance in
European prehistory, the Inn-Eisack-Adige passage, spanning
Italy, Austria, and Germany. These results are applied to the
task of provenance analysis. The application of the presented
data mining technique leads to new insights which were not found
using standard bioarchaeological approaches.

I. INTRODUCTION

Multivariate evaluation of measurement data has become
common practice in many sciences. However, faced with
multi-dimensional data many domain scientists struggle to
understand analysis results. A common task in multi-variate
data analysis is assessing which features to generate and
consider in the first place. While there are fully automatic
multi-variate feature analysis methods, they do not allow the
domain scientist to evaluate a feature’s merit in light of
domain-specific considerations. In this paper we introduce a
feature evaluation technique that allows domain scientists to
understand each feature’s role in the data distribution and to
evaluate its importance for the analysis at hand.

The project which motivated this paper aims at the con-
struction of a large scale isotopic map covering a specific
transect across the European Alps, namely the Inn-Eisack-
Adige passage via the Brenner pass. This transect has been
in use at least since the Mesolithic and is therefore of eminent
archaeological importance. The isotopic mapping of the tran-
sect aims at answering open archaeological questions related to

transalpine mobility and culture transfer1. The term isotopic
landscape describes maps of isotopic variation produced by
iteratively applying (predictive) models across regions of space
using gridded environmental data sets, whereby one common
use of isoscapes is as a source of estimated isotopic values at
unmonitored sites, which can be an important implementation
for both local- and global-scale studies if the isoscape is based
on a robust and well-studied model [1]. In bioarchaeology,
variations of isotopes (atoms with different numbers of neu-
trons) are used to predict patterns that characterize the origin
of geological and biological materials at a small spatial scale.
Such isotopic maps are empirically generated by sampling
the relevant environmental components and measuring their
isotopic signatures. However, the vast majority of stable iso-
tope studies in this field are small scale projects that lack the
fundamental capabilities of prediction and modeling.

In this paper, we use isotope data to investigate the question
which features should be measured in order to keep the costs
for generating a reliable data source for this isotope map
moderate. We describe a framework that was developed to
solve this problem and, thus, supports the domain experts in
making decisions during data generation. The data mining task
was to discover which features were most relevant or most
redundant and therefore irrelevant for analysis. The results
are of high value for the domain scientists. Our framework
for solving the aforementioned data mining task is based
on a technique that explores the relevance and redundancy
of individual variables to a clustering in comparison to a
reference clustering. There is no obvious reference clustering,
because no ground truth is known. However, domain specific
knowledge and assumptions can be used to generate several
plausible reference clusterings that are estimations of a ground
truth. Thus, we explore how the relevance and the redun-
dancy of single features behave under different ground truth

1See www.for1670-transalpine.uni-muenchen.de



Fig. 1: Sampling sites across the transalpine Inn-Eisack-Adige passage. Data from these locations is used in the evaluation in
Section III.

assumptions and derive conclusions from these observations.
The results have been carefully discussed with the domain
experts and the resulting conclusions confirm that we were
able to benefit their work.

In summary, our contributions are as follows:

• We describe a new framework that solves a real prob-
lem in the application domain. The framework supports
identifying relevant features that need to be measured
and redundant features that need not to be measured.
The framework is a real data science product, because
it emerged in tight interdisciplinary collaboration.

• We describe a new application from archaeobiology that
strongly benefits in multiple ways from an interdisci-
plinary data science approach.

• Based on problems in the application domain, we identify
new challenges for the data mining community that
will enable researchers from archaeobiology to improve
experiment design and understand the resulting data.

• We discuss the resulting conclusions and added values
for the domain experts.

The rest of the paper is organized as follows: In Section II
we describe our data-driven approach for the analysis and the
evaluation of individual features. In Section III we introduce

the task of isotopic mapping, the underlying data, and impor-
tant challenges. We also present our dataset, which comes from
a specific region in the Alps in Europe, experimental results,
evaluated by domain experts, and insights gained through this
study. In Section IV we conclude our study and highlight
challenges and opportunities in this domain for the data mining
community.

II. FEATURE EVALUATION

In our approach, the quality of a feature, or feature subset,
is assessed based on its contribution to one ore more reference
data structures. In particular, we assess how stable (i.e., un-
changed) the data structure is across feature space projections.
Our assumption is that a highly relevant projection will result
in a data structure that resembles the reference data structure.

The task of assessing the importance of a feature for
provenance analysis is reminiscent of feature selection and
feature ranking. Feature selection generates a subset of the
most suitable features for a given task, whereas feature ranking
returns an ordering of features according to their importance
for the task [2]. Most of the common approaches are super-
vised, meaning that they require class labels for accessing the
quality of a feature or feature subspace [3]. Such information
is not available for the discussed usecase, therefore we have



to rely on unsupervised feature selection approaches [4]. In
particular, we follow a wrapper-based approach [5] where we
use a learning algorithm (EM clustering in our case) for the
evaluation of a feature or a subspace. A big part of research
on feature selection and feature ranking methods is focused on
reducing the exponential search space of possible solutions.
In our case, the feature space is low-dimensional but the
domain scientists are interested especially on understanding
i) the importance of each feature for the final model and
ii) whether there are other features in the feature space that
can replicate the “contribution” of that feature. The reason
is that feature acquisition is an expensive process as domain
experts have to follow lengthy and time consuming processes
of cleaning the findings and measuring the isotope values.
Moreover, in some cases it is not possible to measure all
differenet isotopes for all available samples. This is the case
for our project, where the oxygen isotope cannot be measured
for cremated human findings. So it is extremely important for
the domain experts to understand whether oxygen is a key
feature for the analysis and also whether the remaining features
can compensate for oxygen’s contribution to the final model.
Therefore, we follow a clustering-based feature evaluation
approach, where we compare unsupervised learning results
that convey aspects of the data structure (from a single feature
point of view) with the data structure (as captured by the
reference clustering). That is, the data structure is represented
by the clusters extracted from the data. To assess the effect of
a projection on the data structure, we compare the projection-
based partitioning to the reference data partitioning.

Our proposed unsupervised feature evaluation framework
consists of three steps:

1) data structure extraction (clustering)
2) data structure comparison (Adjusted Rand Index)
3) feature evaluation

Before explaining each of these steps, we introduce some
notation: Let D be a dataset in a feature space F . Let F0 ⊂ F
be the feature set from which a model of the reference data
structure is extracted by clustering; we refer to ΘF0 as the
reference clustering and to F0 as the reference feature space.
Let Fv ⊂ F be a set of features to investigate w.r.t. their
quality for the reference data structure, ΘF0 . Note that Fv

and F0 are treated as being independent from each other even
though they need not be disjunct.

A. Unsupervised data structure extraction

To extract structure from the data, we use a clustering
approach [6]. Domain knowledge suggests continuous values
for the measurements, which can be best modeled as a
mixture model of continuous distributions, like a Gaussian
Mixture Model. To extract a robust indication of the data’s
structure in an unsupervised way, we applied the Expectation-
Maximization (EM) algorithm [7]. EM fits a number of multi-
variate normal distributions over the given data set. The result
is a soft-clustering; in our dataset though the assignment is
typically fairly hard. A typical run over the isotope dataset
(see Section III-C) results in a standard deviation of 0.115

Fig. 2: Example EM clustering on isotope data. Image best
viewed in color. Left: spatial projection of hard clustering
(maximum likelihood cluster). Right: membership likelihood
of soft clustering (red highest, yellow lowest).

for the maximum likelihood cluster labels. As an example,
Figure 2 depicts the membership and spatial structure of a
sample clustering done on the set of 217 bones where only
the seven isotopic features are used. For easier handling, we
convert the cluster probabilities to hard cluster assignment by
their maximum likelihood. The result of the clustering is a set
of partitions, ΘF = {θ1, θ2, . . . , θk}, where k is the number
of clusters (optimized by cross-validation, see below).

B. Comparing clusterings

To compare how well a clustering ΘFv extracted from an
investigated feature projection Fv reflects the structure of a
reference clustering ΘF0 , we employ the Adjusted Rand Index
(ARI) [8] of the two clustering partitionings:

s(F0, Fv) := ARI(ΘF0 ,ΘFv )

ARI evaluates the agreement between two clusterings by
counting pairs assigned to the same cluster under both clus-
terings and pairs assigned to different clusters versus the total
number of pairs in the dataset. ARI was proposed to reduce
the influence of randomness on the traditional Rand Index
(RI) [9] and has been proven to perform better when the
number of clusters in the two clusterings is not the same [10],
[11]. Like the rand index, ARI has a maximum value of 1 and
takes the value 0 when the index equals its expected value.
However, negative values are also possible and indicate an
agreement that is even less than one expected between two
random clusterings.



C. Unsupervised feature evaluation

Not all attributes are equally important for a given analysis
task: A feature may be unnecessary to describe the result
of a given analysis or the data reflected in the feature may
be noise or encompassed by other attributes. By selecting a
suitable comparison feature space we investigate the structural
relevance of a feature (i.e., how well it captures the structure in
isolation) for a clustering as well as its structural redundancy
(i.e., if the clustering becomes unstable without this particular
feature).

To generate these scores, we extract a single feature f ∈ Fv .
Let Df be our original dataset projected onto dimension f and
let Θf be the clustering over Df : Θf = {θ1, θ2, . . . , θk′},
where k′ is the number of clusters. We refer to Θf as the
univariate clustering. Let f− = Fv \ f be the complemen-
tary feature space, that is, all dimensions in Fv except for
the investigated feature f . Let Df− be the complementary
dataset, i.e., the dataset projected onto the complementary
feature space f−. Applying EM on Df− generates a clustering
Θf− = {θ1, θ2, . . . , θk′′} where k′′ is the number of clusters.
We refer to Θf− as the complementary clustering.

To calculate the structural relevance of f , we compare the
univariate clustering Θf derived from the specific feature f to
the reference clustering ΘF0 :

srelevance(f, F0) := ARI(Θf ,ΘF0)

To calculate the structural redundancy of f , we compare the
complementary clustering Θf− derived from the complemen-
tary feature space f− to the reference clustering ΘF0 :

sredundancy(f, F0) := ARI(Θf− ,ΘF0)

The first comparison evaluates the structural relevance of f for
ΘF0 , whereas the second evaluates whether f ’s contribution
can be reproduced by other features in the feature space. In that
sense, the first score derives the specific feature’s structural
relevance and the second score its structural redundancy due
to the existence of other feature(s) in the feature space.

Combining structural relevance and structural redundancy
scores in a single score is not straightforward, due to their
complimentary semantics. We characterize each feature f in
terms of both structural relevance and structural redundancy.
To help a domain expert glance the effect a feature may have
on their analysis, we combine the two scores in one plot where
the x-axis reflects the structural relevance score and the y-axis
the structural redundancy. In other words, the x-axis represents
the degree to which the reference clustering structure is evident
in a single dimension f , while the y-axis shows whether the
reference clustering structure can be captured by the rest of
the dimensions. These plots can be seen in Figures 4, 5, and 6.
They will be explained in detail later in this paper. We present
a study using this technique in the following section.

III. DATA ANALYSIS IN BIOARCHAEOLOGICAL SCIENCES

The presented technique was conceived for an international
and interdisciplinary project involving classical archaeology,

bioarchaeology, biology, geology, and computer science. The
final goal of the project is to generate an isotopic map of
the reference region based on isotopic measurements in bone
samples of three vertebrate taxa from excavation sites along
the Inn-Eisack-Adige passage. A geographic map of the ref-
erence region including the sample sites is shown in Figure 1.
The envisioned isotopic map will represent the common, local
isotopic signatures (or fingerprints) characteristic for a given
spatial region. Archaeologists can apply this map to differen-
tiate between local and non-local finds, and to define the place
of origin (provenance analysis [12], [13]) of the latter in order
to answer the aforementioned scientific questions regarding
mobility, trade, and cultural transfer. The reason behind this
application is that knowledge of the spatial distribution of
stable isotopes in the environment allows identifying outliers
that represent primarily non-local individuals.

Based on the experience of the domain experts, seven
isotopic systems from three elements (oxygen, strontium, and
lead) were identified as being potentially relevant for the differ-
entiation between local and non-local finds, and the definition
of the place of origin of the latter, i.e., the construction of
the envisioned map. From the sites displayed in Figure 1
samples were selected and for each seven isotope ratios were
measured. The goal of this study is to identify which of
the isotopic systems (oxygen, strontium, lead) to use for
provenance analysis in this reference region. The processing
of the material and the measurement of isotopic signatures
is costly, time consuming, and wastes precious archaeological
material. Thus, the design of the underlying data collection
(which samples and isotopic systems are measured, etc.) are
crucial for the inference of a sound and reliable map.

It should be stressed that the results presented in this study
only hold for the specific reference region, i.e., the Inn-Eisack-
Adige passage. However, our framework is quite generic and
is applicable to other reference regions and/or other isotopic
systems and even entirely different data sets from a multitude
of disciplines and use cases.

A. A Brief Introduction to Isotopic Mapping

Bioarchaeologists are frequently faced with the task of
distilling a relatively simple model from measurements that
are tainted by the complexity of the biological processes
involved. This is especially characteristic of isotopic mapping.
Nevertheless, stable isotopes are indispensable markers for
the monitoring of the flow of matter through biogeochemical
systems. Isotopes are atoms of the same element that have
the same number of protons and electrons, but differ in the
number of neutrons. Isotopes are generated, e.g., by the decay
of parent isotopes, or by reactions with subatomic particles
in the environment. For example, the three stable isotopes of
oxygen are 16O, 17O, and 18O. All of these have 8 protons
and 8 electrons, but range from 8 (16O) to 10 neutrons (18O).
An isotope is called “stable” if it does not decay into another
isotope. Oxygen atoms with fewer (e.g. 15O) or more (e.g.
19O) neutrons are unstable and will eventually decay into other
stable isotopes.



Differences in the number of neutrons results in different
atomic masses and lead to differences in molecular bond
strength and vibration energies. This, and the different thermo-
dynamic reactivity of light and heavy isotopes leads to isotopic
fractionation (i.e., uneven partitioning of isotopes between
source and product). Isotopic fractionation and mixing in an
ecosystem generate compartments with characteristic isotopic
signatures. For example, evaporation and condensation in the
course of hydrological processes lead to predictable distribu-
tions of oxygen isotopes in the atmosphere and in precipita-
tion. Isotopic labels, which are shared by certain ecological
components such as soil, water, plants, microbia, and animals,
have been successfully used for the generation of isotopic
maps or isoscapes for the investigation of landscape ecology.
Such isotopic maps representing the common, local isotopic
signatures (or fingerprints), can later be applied to distinguish
local and non-local finds: a local outlier, i.e., a sample found
at location l that has an isotopic fingerprint different to the
local fingerprint of l according to the map, is interpreted as
non-local. If the isotopic fingerprint of the non-local sample
matches the isotopic fingerprint of another location o, it is
likely that o is its place of origin. Both the knowledge of
outliers and their potential places of origin is very valuable for
answering research questions in bioarchaeology. For example,
isotopic fingerprints of ivory samples are used to predict the
place of orgin of this ivory sample (potentially classifying this
sample as illegally harvested) [14].

Isotopic maps are empirically generated by sampling the
relevant environmental components and by measuring their
isotopic signatures. In bioarchaelogy, such samples are human
and animal remains found in archaeological sites. However,
due to intricate biological and chemical processes, these
samples do not directly reflect the geological characteristics.
Examples of such processes include metabolic differences
between species and individuals (some of the inter-species
differences can be reduced by applying empirically determined
formulas), aging, integration over various environmental con-
ditions, weathering of bones, metabolization, etc. Thus the
geological characteristics of a region are only one of a few
factors contributing to the measured isotope ratios. Since we
cannot know the details of the metabolism that crucially influ-
ence the isotopic composition of an organism, the only realistic
way of modeling the distribution of isotopes in animals found
in a region is by building a model based on the measurements
associated with them. One way to allow all other influences to
average out is to aggregate over samples from spatially close
sites. However, the resulting values may not be applicable as
a model to a single sample, which is still subject to individual
variability as outlined above. In addition, on the one hand,
non-local finds at a specific site will most likely impact the
aggregated local model in an undesired way. But, on the other
hand, the identification of non-local finds requires a reliable
local model. As a consequence, the local isotopic fingerprints
provided by isotopic maps will never be as reliable as the term
fingerprint may suggest, but are always subject to probabilistic
interpretation.
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Fig. 3: Distribution of δ18O by region. Although very large
regions were picked, there is only a very weak correlation
discernable.

Historically, stable isotopes in bioarchaeological finds were
measured and simply compared to the known spatial distri-
bution of the isotopic system under study such as 87Sr/86Sr
in geological maps, or the climate and habitat dependent
distribution of C3- and C4-plants which is reflected in the
13C-values of the consumers’ tissues. Outliers, detectable by
conservative statistics (e.g. [15]), were readily interpreted as
immigrant individuals. Very often, this was simply done by
measuring one specific isotopic system, e.g. δ18O from phos-
phate in bones, and manually determining local models and
outliers in the univariate plots of the resulting values. However,
growing insights into small-scale variabilities in isotopically
characterized ecogeographical compartments gave rise to more
fruitful discussions on mobility versus migration and trade in
the past. Pretty soon it became obvious that measurement
of stable isotopes for the reconstruction of migration and
trade in bioarchaeology can not be looked at in isolation
but rather necessitates collecting a lot of accompanying data
(e.g., analysis of not only human, but also animal bones,
or soil sampled from the same site) for the assessment of
ecogeographical baseline values to account for the small-scale
variability in time and space.

One important effect of the complicated nature of this area is
that there is no ground truth available. Handling the problem
in an unsupervised way means that the investigation cannot
rely on an authorized reference, but has to make and use its
own references heavily based on assumptions and experiences
of the domain experts. This makes this application ideal for a
data-driven approach that is underpinned by domain-expertise.

B. The Application: Mobility in the European Alps

The prehistoric transalpine passage following the Inn, Ei-
sack, and Adige rivers from modern-day Germany, through
Austria, into Italy is of great archaeological interest for having
been an important trade route over the Alps mountains. An



international research group has investigated 30 archaeological
sites along this route and at its southern and northern ends (see
Figure 1) to generate a dataset based on which an isotopic
map can be derived for this reference region. The application
of this map will leverage the investigation of questions about
transfer of humans, goods, and culture through the passage.
Of particular interest were animal remains that were uncovered
at the examined sites with a focus on archaeological bones of
three vertebrate taxa: pig, cattle, and red deer. These three
animals have different characteristics in terms of mobility.

In general, it is very time consuming and costly to generate
the data an isotopic map is based on. The measurement of
an isotopic value requires a complex procedure including,
among others, the extraction of a suitable part of the material,
cleaning, etc. Typically, the material used for one measurement
is destroyed in the analysis and cannot be used for further
runs. Thus, one crucial first step towards the establishment
of the final map is to decide which isotopic measures to
generate. For that purpose, a case study was done with a small
set of 217 samples derived from 30 investigated sites. From
each investigated specimen, seven isotopes were measured:
18O, 86Sr, 87Sr, 204Pb, 206Pb, 207Pb, and 208Pb. Due to
technical particularities of isotope measuring, the strontium
(Sr) and lead (Pb) isotopes were measured and recorded as
fractions of isotopes of the same element, yielding the frac-
tions 87Sr/86Sr, 208Pb/204Pb, 207Pb/204Pb, 206Pb/204Pb,
208Pb/207Pb, and 206Pb/207Pb. The oxygen isotope was
normalized against ocean water isotope levels and recorded
as δ18O. This yields a 7-dimensional feature vector for each
recovered sample. In addition to these isotope measurements,
each sample was annotated with a spatial description (latitude,
longitude, altitude) based on the discovery area. Also, each
sample was recognized as one of the three animal species
(pig, cattle, and red deer).

Due to its popularity in provenance analysis, we first fo-
cused on oxygen as a marker to distinguish between local
and non-local finds. A preliminary manual analysis of the
δ18O of 118 of the 217 animal bone samples by a domain
expert revealed a highly significant correlation (r = −0.68)
between δ18O and altitude, whereby the averaged δ18O values
plotted exactly on the regression between altitude and δ18O
in precipitation in the Alps as published by Kern et al. [16].
However, although the δ18O values behaved as expected and,
thus, are potentially suitable for provenance analysis as a
single marker, in this study it proved impossible to distinguish
even rough spatial compartments (such as north, center, and
south of the Alps). The histogram of δ18O values shown
in Figure 3 illustrates this variability. The samples from
the three very coarse compartments north, center, and south
derived from a hypothesis of the domain experts are marked
in different colors. The same observation was made when
considering species-specific fractionation factors. Interindivid-
ual variability remained high and did not permit for a firm
assignment of individual animals to spatial regions.

These first results already gave the domain experts some
very interesting hints and further questions arose. In particular,

Reference Description
clustering (feature set)

I all 7 isotopic features
(87Sr/86Sr,208 Pb/204Pb,207 Pb/204Pb,206 Pb/204Pb,
208Pb/207Pb,206 Pb/207Pb, δ18O)

I−O all isotopic features except oxygen
(87Sr/86Sr,208 Pb/204Pb,207 Pb/204Pb,206 Pb/204Pb,
208Pb/207Pb,206 Pb/207Pb)

S all 3 spatial attributes
(altitude, latitude, longitude)

S−lon all spatial features except longitude
(altitude, latitude)

TABLE I: Notations for the different subsets of features used
to derive reference clusterings.

the domain experts were even more interested in deeper
insights into the relevance and redundancy of the measured
isotopes. Especially, whether the hypothesis can be confirmed
that oxygen isotopes can be omitted or easily replaced by a (set
of) other isotopes. Then it would be possible to use datasets
of samples where oxygen isotopes could not be measured
for the same analyses. These samples are common, because
oxygen isotopes are not stable at high temperatures, i.e., in
cremated material. Cremated material is very common for
human remains in this reference region. The measuring of the
other isotopes is slightly easier. If the subset without oxygen
is enough for origin prediction, a more detailed model might
be derived by augmenting the dataset with human cremation
data. Thus, the data science task was to score the measured
isotopic features in the dataset of the case study in terms of
relevance and redundancy with respect to provenance analysis.

C. The Results

The defintion of the reference clustering is crucial for
our ARI-based feature evaluation presented in the previous
section. However, there is no ground truth reference clustering
available for the region under inspection. A purely data-driven
approach is also not possible since we cannot be sure about
the originality of each finding, i.e., we do not know if a bone
found a specific site s in fact originates from s or is a non-local
outlier. As a consequence, even if we explore local isotopic
outliers within each site, we are not sure if the outliers are non-
local finds or local ones. However, the domain experts have
some assumptions and hypotheses available about possible
spatial compartments that could be used to derive potentially
plausible approximations of the ground truth. Thus, we follow
a mixture between a data driven approach enriched by domain
expertise.

1) Reference clusterings: Instead of using just one potential
reference clustering, we investigated several possible defini-
tions for the reference clustering based on the available fea-
tures, in close collaboration with the domain experts. In other
words, we generated reference clusterings using a data driven
approach based on clustering, but rely on the domain experts
for deciding which features were used for the clustering. As
a result of this process we decided on multiple feature spaces



to generate reference clusterings: from containing all isotope
and spatial features to containing only single domain features,
i.e., isotopes or spatial coordinates. In the following, the set
I := {87Sr/86Sr, 208Pb/204Pb, 207Pb/204Pb, 206Pb/204Pb,
208Pb/207Pb, 206Pb/207Pb, δ18O} denotes all isotopic fea-
tures, I−O := {87Sr/86Sr, 208Pb/204Pb, 207Pb/204Pb,
206Pb/204Pb, 208Pb/207Pb, 206Pb/207Pb} denotes all iso-
topic features except oxygen. In addition, we use S :=
{altitude, latitude, longitude} for all spatial attributes and
S−lon := {altitude, latitude} refers to the spatial attributes
without longitude (see Table I for an overview). We list
the different set-ups for the feature spaces that we used to
generate the reference clusterings based on the input of the
domain experts below. For this first set of experiments, the
set of features under investigation is always the set of isotopic
features, i.e., Fv := I .
F0 = I ∪ S (Isotopes + Spatial) The feature space consists

of all available isotopic features and spatial features. This
is the most information we have and, thus, serves as the
starting point of the study.

F0 = I ∪ S−lon (Isotopes + (latitude, altitude)) From the
spatial attributes only those that have been found to have
an effect on the isotopes are retained, namely altitude
and latitude. Since the passage under inspection is mostly
north/south, the domain experts expect that longitude has
only minor influence on the spatial compartments.

F0 = I (Isotopes only) The feature space consists only of
the isotopic features. There is no spatial influence. Such
a feature space is typically used for fingeprinting and
predicting the origin of new samples (with unknown
spatial coordinates).

In a second analogously conducted series of experiments,
oxygen was removed from the reference clusterings since the
domain experts wanted to test the hypothesis that oxygen
is much less relevant than other isotopes in this reference
region and for this sample selection. This has been observed
in other provenance studies. Especially the sample selection
using a mix of three different species may have a blurring
impact on the δ18O-values according to the domain experts.
Analogously, the set of features under investigation is always
the set of isotopic features without oxygen, i.e., Fv = I−O.
The resulting configurations are similar to the four alternatives
listed above:
F0 = I−OS (Isotopes (except oxygen) + Spatial) The fea-

ture space consists of all isotopes minus oxygen and all
spatial features.

F0 = I−O (Isotopes only (except oxygen)) Only the isotope
description, without the oxygen feature.

F0 = I−O ∪ S−lon (Isotopes (except oxygen) + (latitude +
altitude)) Isotope description, without the oxygen feature
and spatial coordinates except longitude.

A supplementary feature space to be used as a reference
clustering is purely spatial:
F0 = S (Spatial only) The feature space consists only of

spatial coordinates. Isotopic values do not play any role

and findings from spatially close sites are considered to
be the same cluster (compartment). This ground truth
scenario must be complemented by a corresponding set
of investigated features, i.e., Fv = I , and Fv = I−O.

2) Experiments: For each of the feature spaces described
above, we apply EM to derive the reference clustering and we
evaluate how each isotope attribute “contributes" to the corre-
sponding reference clustering. We illustrate these results in the
structural relevance-vs-structural redundancy plots presented
in the previous section. For the EM, the number of clusters
was selected by cross-validation as in the Weka data mining
framework [17]. When examining the presented reference
attribute sets, we chose Fv = I or Fv = I−O to reflect the
isotopes in the reference attributes. That is, where F0 contains
I , Fv becomes I , where F0 contains only I−O, Fv becomes
I−O. A special case is F0 = S, which does not contain any
isotopes to compare with. In these scenarios, we investigated
both Fv = I and Fv = I−O for completeness.

The results of reference clusterings containing isotopes
including oxygen are presented in Figure 4, experiments with
isotopes excluding oxygen are presented in Figure 5, and
those with only spatial attributes are presented in Figure 6.
Regarding the ARI values, a score of zero indicates random
behavior while a score of one indicates identical clusterings.

In the following we discuss the individual experiments
showing structural redundancy and structural relevance for
all described reference feature sets and discussing potential
explanations for the observed values.

a) F0 = I ∪ S, Fv = I: See Figure 4a. Strontium is the
most prominent attribute as it has the highest structural rele-
vance score and the lowest structural redundancy score. Lead
isotopes depict a similar behavior, scoring average relevance
and redundancy scores. An exception is 208Pb/204Pb, which
has a very low relevance; a closer inspection of the results
shows that a clustering based on 208Pb/204Pb only places all
instances in the same cluster, i.e., the values in this feature
follow one Gaussian distribution. Oxygen has also a very low
relevance score.

b) F0 = I ∪ S−lon, Fv = I: See Figure 4b. F0 now
includes no longitude information. There is little difference in
the rankings compared to the IS case, although the scores are
higher. An interesting change is the repositioning of oxygen:
its redundancy became lower and relevance became higher.

c) F0 = I , Fv = I: See Figure 4c. The removal of
all spatial information from F0 pits the isotopes against each
other. This might be due to the better quality clusterings
we obtain by also employing spatial information. Strontium
is still the top relevant isotope, however two lead isotopes
score very close, namely 206Pb/207Pb and 206Pb/204Pb. Both
isotopes re-positioned in the plot after the removal of the
spatial information from the reference clustering. In particular
they became more relevant and less redundant. Also, the
redundancy of oxygen increased.

d) F0 = S, Fv = I: See Figure 6a. This scenario tests
how well the isotope’s structure lines up with the spatial struc-
ture. We expect very little alignment as the spatial structure
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Fig. 4: Structural relevance-vs-structural redundancy plots using reference clusterings with all isotope features.
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Fig. 5: Structural relevance-vs-structural redundancy plots using reference clusterings with all isotopes except oxygen.

will be dominated by the density of sample sites, which the
isotope values reflect indirectly at best. The lead isotopes
have very low redundancy and relevance scores, indicating
that they neither reflect the spatial structure, nor does their
complimentary feature space do so. Strontium seems to reflect
all the structure: the sets of isotopes that contains strontium
achieve a median score of 0.08 and strontium by itself achieves
a score of 0.13. All other isotopes have relevance scores
around zero (oxygen scoring highest at 0.04).

e) F0 = I−O ∪ S, Fv = I−O: See Figure 5a. With-
out oxygen, strontium is again the most prominent attribute,
whereas the relevance of lead decreases.

f) F0 = I−O ∪ S−lon, Fv = I−O: See Figure 5b.
Compared with the previous scenario containing the entire
set of spatial attributes, strontium retains very similar scores,
but some lead isotopes’ relevance increases. This indicates a
stronger role of those lead isotopes in the formation of the
structure, possibly because longitude supports other structural
elements that are now being expressed less strongly.

g) F0 = I−O, Fv = I−O: See Figure 5c. Removal of
all spatial information (and oxygen), affects the ranking of
strontium. Lead isotopes are now more relevant comparing to
strontium, but still more redundant than strontium.

h) F0 = S, Fv = I−O: See Figure 6b. If oxygen is
omitted, the situation changes only marginally compared to
the original setup with Fv = I . This indicates that oxygen had
little influence on the structure of the isotope space, consistent
with the analysis above.

3) Discussion: We already pointed out that each experiment
refers to a specific reference clustering and therefore it is not
straightforward to compare scores between them. However
we can draw some conclusions about the dataset from the
interpretation of all experiments.

First of all, it is clear that the choice of reference clustering
influences the ranking of different isotopes with respect to
their structural relevance and structural redundancy. There are
however some features which are repeated across different
configurations. In particular, there is a much better separation
in the rankings when spatial coordinates are considered, cf.
Figure 4a and 4b. A possible explanation is that the reference
clustering is much more differentiated when considering the
complete feature space. A similar observation holds when
we remove oxygen from the feature space, cf. Figure 5. The
worst distinction is manifested when we consider all isotopes,
including oxygen, cf. Figure 4c.

Regarding the behavior of the different isotopes, strontium
and lead are the top structurally relevant isotopes, i.e., they
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are based on all isotopes (a) and all isotopes except oxygen (b).

display higher values in the structural relevance axis. This
implies that in isolation these isotopes manage to capture most
of the reference clustering structure. Oxygen depicts a low
structural relevance score, meaning that alone it is not a good
indicator of the reference clustering.

With respect to structural redundancy, strontium has the
lowest redundancy, implying that the information in strontium
is not replicated by some other isotope or combination of iso-
topes in the dataset. The lead isotopes display high redundancy
as expected since we have five different lead isotopes in our
dataset. Related behavior within the lead group is expected,
because the lead isotopes used in this study are measured
relatively against baseline isotopes 204Pb and 207Pb. This
implies that each isotope is measured multiple times as part of
different fractions. Although they are measured independently,
these fractions can be mathematically converted into one
another by multiplying two of each data point’s measurements
and the derived values are generally very close. Accordingly,
lead isotope ratios generally score higher on the redundancy
score than other isotopes. This multiplicative relationship is
not clearly reflected in the data structure and the redundancy
scores of lead isotopes are therefore not exceptionally high.
It is interesting to note that the lead isotope ratios generally
change uniformly and that correlations between the scores
of fractions that share an isotope can only be observed in a
few cases. Two that do behave similarly are 206Pb/207Pb and
206Pb/204Pb. There seems to be no obvious explanation for
why these systems in particular show this behavior, but it may
indicate that stable lead isotopes can be used for provenance
analysis. This warrants further research.

Overall low relevance scores indicate that no isotope alone
reflects the full structure of the data. This supports the emerg-
ing trend to use multivariate analyses in the domain sciences.

The bad scores achieved by all isotopes against the reference
clustering including only spatial coordinates illustrates that
there is no trivial correspondence between the two domains,
isotope and spatial. Domain knowledge suggests a connection,
but it is not pronounced enough to be automatically reflected

by the isotope feature set. Therefore the combination of both
domains to extract a spatially coherent isotope map is also not
trivial and will require more complex models.

D. Insights

Our study resulted in two major insights that were previ-
ously uncertain and represented major added values for the
domain experts.
Insight 1: A multivariate isotopic fingerprint is needed instead
of a univariate analysis relying on oxygen only.
Our analysis showed that despite its popularity, oxygen does
not provide exceptional structure to the dataset (average struc-
tural relevance), nor is it unique in the role it plays (no
exceptionally low structural redundancy values). Thus, at least
in this reference region, provenance studies based solely on
oxygen is bound to fail. On the other hand, the implication
from our results is that the envisioned isotopic map can
benefit strongly from a multi-isotopic fingerprint that includes
strontium and lead isotopes as well.
Insight 2: Omission of oxygen in the isotopic fingerprint does
not considerably decrease the quality of the fingerprinting.
Oxygen did not show a particularly low redundancy. Its
redudancy scores were always comparable with other isotopes,
reaching values of up to 35%. This indicates that oxygen
does not play an exceptional role in the data’s structure and
that other isotopes can provide much the same information as
oxygen. Its low relevance score indicates that oxygen does not
dominate the structure (i.e., other isotopes are needed).
Implications and Added Values: The fact that oxygen seems
not very relevant to provenance analysis in the reference
region, opens up several opportunities.
• Although the inclusion of oxygen does not seem to

diminish the clustering results, its omission also has little
negative impact. This makes oxygen a potential candidate
to save costs and time when generating the data source
on which an isotopic map is based.

• So far, the isotopic map was designed to rely on animal
bones only. Including human remains would be generally



beneficial but ancient human remains in this reference
region typically are cremated, and, thus oxygen values
cannot be derived. The low relevance of oxygen opens
up the possibility to explore this cremated material on a
larger scale.

IV. CONCLUSION

This paper presented a technique for domain scientists to
assess the relevance of features for analysis. The technique’s
purpose is to inform decisions about features, such as whether
to record a variable in the first place, as well as guide further
investigations into the role of a feature. After analysis, domain
scientists are presented with two scores for each isotope: the
structural relevance, which indicates to what degree the data’s
structure is represented in a given feature, and the structural
redundancy, which indicates how much of the data structure
is lost without the feature.

By splitting the result into two independent scores (struc-
tural relevance and structural redundancy) we allow domain
scientists to grasp two important orthogonal properties of the
data that could otherwise not be discerned from univariate
and bivariate visualizations. A variable that is structurally
relevant, but redundant, may still be less important than one
that is structurally less relevant, but cannot be replaced by a
combination of different isotopes, or the other way around. In
low-dimensional datasets individual variables are expected to
be generally more relevant than in higher-dimensional ones.
However, no single variable is indispensible if multi-variate
analysis is employed. Indeed if the analysis could be based
on only a single variable, multi-variate analysis would not be
necessary for the application at hand.

In an application context these measurements inform further
investigations of the role of features in domain models. In
the presented case study, domain scientists were presented
with scatter plots of the structural relevance and structural
redundancy scores of each isotope system in an archaeological
dataset. The presented study was only an early step towards
the overall goal of the interdisciplinary research project of
mobility and cultural transfer in the past in a specific reference
region. This analysis was important since it revealed many new
insights for the domain experts, mainly in terms of how the
data should be generated (e.g., which findings to include into
the analysis, which isotopic values should be measured or can
be omitted, etc.) so that a reliable map can be derived.

Analysing the presented data to generate the aspired isotopic
map presents further data science challenges. Suitable methods
will be needed to identify the small scale compartments with
characteristic isotopic fingerprints. Based on these compart-
ments and their characteristic fingerprints, a predictive model
needs to be derived in order to classify local findings and non-
local findings as well as the places of origin for the latter. To be
useful to domain scientists, a visualization of the isotopic map,
i.e., of a multi-dimensional fingerprint, is planned that allows

for some insights without the full complexity of the underlying
model. Finally, the resulting isotopic map must be extendable
to surrounding regions like other alpine passages in Austria,
Switzerland, and France as well to other archaeological strata.

In this study, we have demonstrated that datascience tech-
niques like the one presented in this paper can generate new
insights, inputs, and impulses for domain sciences.
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