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Abstract. Opinionated data streams are very popular data paradigms
nowadays as more and more users share their opinions online about al-
most everything from products to persons, brands and ideas. One of
the key challenges for opinionated stream mining is dealing with con-
cept drifts in the underlying stream population by building learners that
adapt to such concept changes. Ageing is a typical way of adapting to
change in a stream environment as it potentially allows us to discard
outdated information from the learning models and focus on the most
recent information. Most of the existing approaches follow a fixed ageing
strategy which remains the same over the whole stream; for example,
a fixed window size in the sliding window model or a fixed ageing fac-
tor in the damped window model. This implies that we forget at the
same rate over the whole course of the stream, which is counterintuitive
given the volatile nature of the stream. What is more intuitive is to for-
get faster in times of change so as to adapt to new data and to forget
slower, or in other words, to remember more, in times of stability. In this
work, we propose an informative-adaptation-to-change approach where
we first detect changes in the underlying data stream and then we tune
the ageing factor of the ageing-based Multinomial Naive Bayes (MNB)
classifier based on the detected change. Except for the up-to-date classi-
fier our method also outputs the points of change in the stream, therefore
offering more insights to the final users.

1 Introduction

A huge amount of opinions is available nowadays, as a result of the widespread
usage of the social media and the Web. Opinions are valuable for consumers,
who benefit from the experiences of others, in order to make better buying
decisions [13] but also for vendors, who can get insights on what customers like
or dislike [16]. Such sort of data are freely available, however due to their amount
and complexity a proper analysis is required in order to gain insights.

Opinions are accumulated over time, building what we call opinionated streams,
i.e., streams of documents which convey sentiment. The accumulating opinion-
ated documents are subject to different forms of drift: the topics discussed in
the stream change, the attitude of people towards certain topics might change,
words used to describe topics or sentiment might change and so on and so forth.



In this work, we address the issue of polarity learning over opinionated
streams. That is, we want to build classifiers that can cope with the volatile
nature of the stream. There are two different directions for adaptation in a
stream environment [5]: blind adaptation methods that update the underlying
models constantly over the stream and informed adaptation methods that adapt
the model only if change has been detected. The later are computationally more
expensive methods as except for the adaptation step they typically include a
change detection step that looks explicitly for changes in the stream. Those
methods though are more informative as except for the up-to-date classification
model they provide additional information on the points of change, which com-
prises important knowledge for the end user and it allows the user to react to
changes. We propose informed adaptation over ageing-based Multinomial Naive
Bayes classifiers, which incorporate ageing through the damped window model,
and in particular, an approach for the online tuning of the ageing factor lambda
of the dumped window model based on the dynamics of the underlying stream.

The rest of the paper is organized as follows: Related work is discussed in
Section 2. The basic concepts and motivation are presented in Section 3. Our
informed adaptation approach is presented in Section 4. Experimental results
are shown in Section 5. Conclusions and open issues are discussed in Section 6.

2 Related work

Change is a key concept in data streams and refers to the fact that the distri-
bution that generates the stream is non-stationary, rather it changes with time,
causing the so-called concept drifts [18]. The ability to adapt to changes is a key
property of data stream mining algorithms. There are two ways of adaptation:
i) by including new instances from the stream and updating accordingly the
learning model and ii) by discarding outdated information from the model, also
known as forgetting. The forgetting mechanisms can be categorized into: abrupt
forgetting and gradual forgetting. The former ones take into consideration only
recent instances within a sliding window, whereas the latter ones assume that
all instances can potentially contribute to the model but with a weight that
is regulated by their age. The concept of drift adaptation and state-of-the-art
techniques and algorithms for dealing with drift in data stream mining is nicely
covered in [6], whereas forgetting has been the subject of many research works,
e.g., [4, 9–12,15,17,22] just to mention a few.

Multinomial Naive Bayes (MNB) [14] is a popular classifier due to its sim-
plicity and good performance in practice, despite its naive assumption on the
class-conditional independence of the features [3,20]. Its simplicity and efficient
online maintenance makes it particularly suitable for streams. Bermingham et al.
[1] compared the performance of Support Vector Machines (SVM) and MNB clas-
sifiers on microblog data and reviews (not streams) and showed that MNB per-
forms well on short-length, opinion-rich microblog messages (rather than on long
texts). In [8], popular classification algorithms were studied such as MNBs, Ran-
dom Forest, Bayesian Logistic Regression and SVMs using sequential minimal
optimization for the classification in Twitter streams while building classifiers at
different samples. Across tested classifiers, MNBs showed the best performance
for all applied data sets. In [2], MNB has been compared to Stochastic Gradient



Descend (SGD) and Hoeffding Trees for polarity classification on streams. MNB
approach which was used in this study is incremental, i.e., it accumulates in-
formation on class appearances and word-in-class appearances over the stream,
however, it does not forget anything. Their experiments showed that MNB had
the largest difficulty in dealing with drifts in the stream population, although its
performance in times of stability was very good. Regarding runtime, MNB was
the fastest model due to its simplicity in predictions but also due to the easy
incorporation of new instances in the model. The poor performance of MNB [2]
motivated the ageing-based MNB approach [21] which also considers the recency
of the class and words-in-classes observations and uses this information to reg-
ulate the class priors and class-conditional word probabilities. Their approach
though is a blind adaptation approach, i.e., the model is constantly tuned based
on a fixed ageing factor λ without explicitly counting for change. In this work,
we follow an informed adaptation approach by tuning λ upon (data) change.

3 Basic concepts

Before we proceed we introduce some notation:

– S: the (accumulated) stream up to current timepoint.
– V : the vocabulary of S.
– Ssl: the current sliding window of the most recent w instances.
– Vsl: the vocabulary of Ssl

We observe a stream S of opinionated documents arriving at distinct timepoints
t0, . . ., ti, . . .. An opinionated document d in S is a document associated with a
polarity label c ∈ C, where C is the class attribute for the polarity. In the sim-
plest case, the polarity class has two values, positive and negative. The document
d is represented through the bag-of-words model as a set of words, d = {wi} .

Our goal is to build a polarity classifier for the prediction of the polarity of
new arriving documents. Our base model is the ageing-based Multinomial Naive
Bayes (ageingMNB) classifier [21], an MNB classifier that forgets based on the
damped window model with a constant ageing factor λ. Our goal is to tune the
ageing factor λ according to the dynamics of the underlying stream. That is, in
times of change, the ageing should be more drastic to allow for fast adaptation
to the new content received from the stream, whereas in times of stability the
ageing should be kept low in order to exploit the so far learned model.

MNB is one of the most popular classifiers due to its efficiency and modest
performance. The original MNB classifier works in a static setting (staticMNB),
where the whole dataset is provided as input to the algorithm. The MNB model
consists of a set of class priors and class conditional word probabilities, which
are estimated from the training set. The straightforward extension of the static
MNB to streams is by extending the definition of the training set to the (theoret-
ically) never-ending stream case. In particular, the training set keeps growing by
including new documents that continuously arrive from the stream. Due to its
simplicity it is easy to maintain the MNB model in a stream setting; the prob-
abilities of classes and word-class combinations are updated based on the new
documents and their class labels. We refer to this model as accumulativeMNB [2].



The accumulativeMNB model includes new observations but does not forget.
Therefore, it is difficult to adapt to changes in the stream, a fact which has been
already observed in previous works [2], [21]. The reason for poor adaptation is
that the historical data dominate the decisions of the classifier. To overcome this
issue, the ageingMNB model that forgets was proposed in [21].

The ageingMNB classifier extends the accumulativeMNB by including infor-
mation on the recency of the observations (classes and words-in-classes observa-
tions). The recency information is derived from the original documents, which
are associated with timestamps. Each class and word-class combination in the
model is associated with a timestamp, the most recent timestamp where the
specific class or word-class entity was observed in the stream. The recency en-
tries are used during classification of new instances from the stream in order to
downgrade the contribution of outdated observations in the model, so as more
recent observations contribute more and incur model adaptation.

The (temporal) class prior for class c ∈ C at timepoint t is [21]:

P̂ t(c) =
N t
c ∗ e−λ·(t−t

c
lo)

|St|
(1)

where N t
c is the number of documents in the stream up to timepoint t be-

longing to class c and |St| is the total number of document in the stream up to
t. The tclo is the most recent observation of class c in the stream and (t − tclo)
denotes the time lag between the last occurrence of the class label c in the stream
and the current timepoint t.

The (temporal) class conditional word probability for a word wi ∈ d at t is
given by [21]:

P̂ t(wi|c) =
N t
ic ∗ e−λ·(t−t

(wi,c)

lo )

|V t|∑
j=1

N t
jc ∗ e−λ·(t−t
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lo )
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Again, the word-class counts Nic are weighted by the recency of the obser-
vations of the specific word wi in documents of class c. Old observations will be
downgraded so their effect during classification is limited.

The ageingMNB approach is a blind adaptation method [6] as it applies
a constant ageing factor λ in the MNB model over the whole course of the
stream without considering whether there is an actual change or not. In the next
section, we propose an adaptive ageing MNB model that tunes the ageing factor
λ and therefore, the MNB model, online based on changes in the underlying
stream population. There are two advantages of such an approach over the blind
adaptation approach of ageingMNB [21]: first, it allows for ageing at different
rates, which as already mentioned is more intuitive in a stream setting and
second, except for the classification model, it provides additional information on
the points of change, which is valuable for decision making and allows the end
user to react to changes. For example, if a negative sentiment starts developing
for a brand as a result of bad customer experiences, the brand can quickly address
customer concerns and classify misconceptions thus transforming the negative
sentiment into a winning customer experience.



4 Informed Adaptation of Multinomial Naive Bayes
Classifiers over Data Streams

Our solution consists of two steps: (i) a change detection step that detects
changes in the underlying stream population (Section 4.1), and (ii) a tuning
step that adjusts the ageing factor λ, and therefore the classifier, upon detection
of change (Section 4.2).

4.1 Detecting change

There are several approaches for change detection, which are presented in detail
in [5]. Since our focus in this work is on the adaptation of the ageing factor λ
and due to lack of space, we present here the detector we used in our exper-
iments, which showed the best performance among several methods we tried.
Our detector falls into the category of monitoring the distributions in two dif-
ferent time-windows: such detectors compare the decision model built upon a
reference window of past data to the decision model built over a current window
of the most recent data points. In this work, we monitor the distance between
the vocabularies of the most recent window Ssl and the reference window S, i.e.,
Vsl vs V , for both the negative and the positive class. For the comparison, we
employ precision, which equals to the fraction of the reference vocabulary words
that also appear in the current vocabulary.

precision =
Vsl ∩ V
|V |

(3)

A high precision means that the current vocabulary comprises a large part
of the reference vocabulary. Intuitively, this implies that the reference model,
built over the reference vocabulary, could still be valid. Otherwise, the reference
model is not well reflecting the current developments in the stream.

Change points are detected by comparing current precision to the moving
average precision plus/minus α times the standard deviation, as follows:

precision < µ− α ∗ σ
precision > µ+ α ∗ σ

(4)

where σ is the standard deviation, µ is the average precision and α is a user
defined threshold that controls the trade-off between earlier detecting true alarms
by allowing some false alarms. Low values of α allow faster detection, at the cost
of increasing the number of false alarms.

Except for the final change points, often is also useful to detect warning
points when the monitored difference between the current precision and moving
average prediction exceeds some threshold β×σ, with β < α. Warning points are
more frequent comparing to change points. Moreover, once a warning is detected
a buffer of instances is maintained for model rebuild once the warning turns into
an actual change point. Otherwise, the buffer is emptied.



4.2 Adapting to change

Once a change is detected, the classifier should be updated to reflect the chang-
ing population. The most abrupt way of reacting to change is by building a new
classifier over the recent data and demolishing the old one. Following a more con-
ventional approach, one can affect the statistics of the model over the stream by
tuning appropriately the ageing factor λ. We present hereafter different strategies
for model adaptation to change.

Let λ0 be an initial value of λ, set at the beginning of the stream. In the
simplest case, λ0 = 0, i.e., there is no-ageing. If λ0 > 0, there is a constant
ageing over the stream.

– SlowIncreaseUpToALimit - Gradually increase λ by a constant value c
up to a limit λmax:
When a change is detected, λ is increased by a constant value c, i.e., it
is set to λi + c, where λi is the value of λ before change. If there is still
change, lambda will be further increased by c. Increasing λ after change is
beneficial as the model will focus on more recent instances and the effect of
old instances will be downgraded. However, the constant increase of λ might
lead to high values and the total discard of historical data. To prevent this,
we set an upper limit λmax for the highest value of λ. If limit is reached, λmax
ageing is applied for the rest of the stream. Note that for efficiency issues
we check for change not after each instance but after a certain number of
instances, denoted by w. This implies that each λ value has an effect for at
least w instances.

– SlowIncreaseFastReset - Gradually increase λ by a constant value c and
reset to λ0 after λmax is reached:
The constant increase of λ in the previous strategy implies more and more
data forgetting as more changes are detected in the stream. Typically though
in a stream periods of change are followed by periods of stability, therefore
such a forgetting is very harsh. To count for this effect, we reset λ to its initial
value λ0 when the max value λmax is reached and after a certain period at
this ageing level; this period is implemented in terms of a fixed number of
instances w (one could use timepoints alternatively).

– FastSetFastReset - Fast set to λmax upon change and fast reset to initial
λ0 after a certain period:
When a change is detected, λ is instantly increased to an upper bound λmax,
i.e., λ = λmax. The λ is reset to its initial value λ0 after a certain period of
w instances. The intuition is to forget fast (with λmax) in times of change
and slow (with λ0) in times of “stability”.

– FastSetSlowDecrease - Fast set to λmax upon change and slow reset to
initial λ0 by δλ% decrease at each step:
When a change is detected, λ is instantly set λmax, i.e., λ = λmax. The λ is
reset to its initial value λ0 gradually with a δλ% step. That is, at each step,
lambda is decreased by δλ% until it reaches λ0. The duration of each step
is w instances. This offers a more gradual adaptation of λ comparing to the
previous strategy.



The above strategies aim at tuning the ageing factor λ and indirectly the MNB
classifier. There are other ways to affect the classifier, which do not involve direct
λ tuning though. We overview them below.

– Rebuild - Constant λ0 and model rebuild upon change:
A constant λ, λ = λ0, is applied over the whole stream but once a change
is detected the classifier is rebuilt upon the most recent w instances. The
constant ageing over the whole stream should, in times of relative stabil-
ity, reduce the effect of noise and in case of drastic changes, the rebuilding
implies an abrupt forgetting of old, outdated information. Rebuilding in-
curs the fastest adaptation to change, however it completely ignores any old
knowledge.

Depending on the value of λ0 we can, for all the above strategies, distinguish two
cases: i) λ0 > 0 and ii) λ0 = 0. The former applies a constant ageing λ0 in the
stream, whereas the later does not consider ageing. Moreover, we also include
the following strategies as baselines.

– fadingMNB - Constant ageing, no change detection: This is the blind adap-
tation approach (fadingMNB) [21]. There is a constant ageing, λ = λ0 > 0,
over the stream, but there is no change detection.

– accumulativeMNB - No-ageing, no change detection: This is the accumu-
lative MNB approach [2], discussed in Section 3. It does not forget, neither
invokes some change detection mechanism. The model is accumulative as it
considers all instances from the beginning of the stream.

5 Experiments

5.1 Dataset

We use the TwitterSentiment dataset [19], introduced in [7]. The dataset was
collected by querying the Twitter API for tweets between April 6, 2009 and June
25, 2009. The sentiment labels were derived by a Maximum Entropy classifier
that was trained on emoticons [7]. The final stream consists of 1,600,000 opin-
ionated tweets, 50% of which are positive and 50% negative. We aggregate the
tweets hourly, the class distribution is shown in Figure 1(a). The class distribu-
tion is quite stable in the beginning of the stream with the positive class slightly
dominating the stream. The class distribution changes drastically towards the
end of the stream as only instances of the negative class are present. The change
point is instance number 1,326,000. We refer to this dataset as DS1.

To experiment with a more volatile stream setting, we introduced some more
changes to the original stream by removing certain fractions of instances. The
new dataset, denoted as DS2, is depicted in Figure 1(b). The dataset is no
longer balanced: it contains 1,073,065 tweets with 378,288 positive and 694,777
negative instances.

For the evaluation, we used prequential evaluation, where each instance of
the stream is first used for testing and then for training the model. As quality
measures we used accuracy over an evaluation window, evalW . For the detection
of the change points, we used α = 1.8. We used β = 0.334 for the detection of
warning points.



(a) DS1 (b) DS2

Fig. 1. Hourly aggregated class distribution for streams DS1, DS2.

5.2 Classifiers performance

We report here on the performance of the different adaptation techniques listed
in Section 4, for both DS1 and DS23.

Overall performance The overall results for DS1 are depicted in Figure 5.2 (left).
The accumulativeMNB that does not forget achieves the worse performance,
whereas SlowIncreaseUpToALimit with Init−λ 4 achieves the best performance,
followed by SlowIncreaseFastReset with Init−λ. Also, for all different strategies,
a constant ageing over the stream (i.e., the Init− λ strategies where λ0 > 0), is
better than no-ageing (i.e., the Zero− λ strategies with λ0 = 0).

The overall results for DS2 are depicted in Figure 5.2 (right). Similarly to
DS1, accumulativeMNBachieves the worse performance, whereas Rebuild with
Init-λ achieves the best performance, followed by FastSetFastReset with Init-λ,
FastSetSlowDecreasewith Init-λ and SlowIncreaseFastReset with Init-λ. Again,
having an init λ (i.e., λ0 > 0 is better than no-ageing (i.e., λ0 = 0), for all cases.

We should note that DS2 is a very volatile stream; this might explain why
rebuild ranks first for DS2.

Overtime performance In Figures 3(a), 3(b) we show the performance over time,
for the different strategies for DS1,DS2, respectively.

Table 1. Best parameter setting per strategy.

Strategies
λ0 instances w (*1,000) λmax decrease λ ratio (δλ%) increase λ value (c)

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2
fadingMNB 0.2 0.3 - - - - - - - -

Rebuild-Zero-λ - - - - - - - - - -
Rebuild-Init-λ 0.2 0.25 - - - - - - - -

FastSetFastReset-Zero-λ - - 100 100 0.5 0.4 - - - -
FastSetFastReset-Init-λ 0.1 0.15 24 22 0.5 0.5 - - - -

FastSetSlowDecrease-Zero-λ - - 100 100 0.5 0.4 5% 5% - -
FastSetSlowDecrease-Init-λ 0.1 0.15 24 22 0.5 0.5 5% 5% - -

SlowIncreaseUpToALimit-Zero-λ - - - - - - - - 0.6 0.1
SlowIncreaseUpToALimit-Init-λ 0.2 0.2 - - - - - - 0.1 0.1
SlowIncreaseFastReset-Zero-λ - - - - - - - - 0.4 0.2
SlowIncreaseFastReset-Init-λ 0.2 0.2 - - - - - - 0.4 0.2

As expected, the different strategies have an effect only after change. Before
change, we can comment on the difference between approaches with an Init−λ,
i.e., with ageing, and approaches with Zero−λ, i.e., no-ageing. fadingMNB and

3 Parameters for DS1, DS2 are listed in Table 1.
4 Init− λ is the case of λ0 > 0.



Fig. 2. Overall accuracy of different strategies DS1 (left), DS2 (right) (Init − λ cor-
responds to λ0).

(a) DS1 (b) DS2

Fig. 3. Accuracy over time for the different strategies for DS1 and DS2

all the strategies with λ0 > 0 perform better than accumulativeMNB, during the
“stable” period. Upon change, the differences between the different methods are
better manifested: The accumulativeMNB has the lowest performance for both
datasets as it does not manage to recover after change. Methods that reset reach
the poor performance of accumulativeMNB after a while, i.e., when they reset
to initial lambda. Again, the init− λ approaches perform better; this is clearly
depicted from the performance of the rebuild method after change (see zoom-in
figures) for both datasets (red for λ0 > 0 vs black for λ0 = 0).

5.3 Qualitative evaluation

To qualitatively evaluate the change detector and the interplay with the classifier
adaptation, we also experimented with a third focused dataset, collected from
Twitter’s public streaming API 5 for two specific entities, namely “Obama” and
“Adele”, during 2015. Our intention was to use very different entities, which will
probably generate different words. “Obama”’s vocabulary, for example, will be
related to politics, whereas “Adele”’ vocabulary will be related to music with no

5 https://dev.twitter.com/streaming/overview



much overlap between them. Out of the total 71,124 tweets, the majority (66,012)
refers to “Obama” and the remaining (5,112) to “Adele”. Figure 4 depicts the
class distribution for both entities.

In the beginning of the stream, only “Obama” is present, “Adele” is intro-
duced on instance 28,000 and remains up to instance 43,000, after that only
“Obama” is present again. The vocabulary-based change detector is sensing a
change at point 28,321 (recall “Adele” was introduced on instance 28,000) and
raises an alarm. At point 30,000 a real change is detected and the classifier adap-
tation strategies take effect. The change detector starts sensing a new change at
point 46,778 (recall “Adele” is removed after instance 43,000) and detects the ac-
tual change on instance 48,000. The alarms, detected changes and performance
of the classifier are depicted in Figure 5. In both cases, the change detector

Fig. 4. Class distribution for both entities

managed to detect the changes in the underlying stream, though with delay.
The delay is due to the detector itself as even for different entities like “Adele”
and “Obama” coming from different areas, the vocabulary is not completely
disjoint rather common words are used in both cases.

What is interesting is that the performance of the classifier started dropping
before the first actual change point. A possible explanation is that even within
a single topic, like “Obama” there might be changes which affect the classifier
and therefore, we observe the drop. Those changes could not be detected by
our vocabulary-based detector, because for example the alarm threshold α was
too high or because the change itself cannot be captured by a vocabulary-based
detector. The same behavior is observed after the second change point. What
these incidents might indicate is that a single change detector type might not be
adequate to deal with all different types of change that can occur in a stream.
In practice, change might be due to different reasons like change in the class
distribution, different topics discussed in the stream, internal changes within a
topic etc. This calls for different types of change detectors that can be activated
under different conditions. We plan to undertake this challenge of building a
change detection framework of different detectors in our future work.

6 Conclusions and Outlook

We presented an informed adaptation approach for ageing-based Multinomial
Naive Bayes classifiers in order to allow adaptation at different rates over the
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stream based on the dynamics of the underlying stream population. Our motiva-
tion is that in times of change, ageing should be more harsh to allow for a faster
adaptation of the model, however in times of stability the ageing factor should
be lowered to allow for model exploitation. We proposed several adaptation tech-
niques for the ageing factor λ. The experimental results showed that different
strategies perform similarly but all of them outperform techniques that use no
ageing. The same holds for harsh forgetting techniques, like model rebuild. In
our experiments informed adaptation performed similarly to blind adaptation
approaches. However, we should stress that the informed adaptation methods,
expect for the adapted classification model, also provide the user with the points
of change, which is valuable for decision making and reactions to change.

Thus far, we tune the model indirectly through the ageing factor λ. In our
future work, we will also discard outdated parts of the model, i.e., outdated class
priors and class conditional word probabilities to allow for faster adaptation
to change and re-learning of outdated parts of the model. Moreover, as our
qualitative experiment revealed, a change detector can detect a single type of
change, although in practice, change might occur due to different reasons. We
plan to investigate the possibility of a framework of different detectors that can
be activated under different conditions and might call for different model update
strategies.
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