
Received: 14 June 2016 Revised: 17 May 2018 Accepted: 26 May 2018 Published on: 25 June 2018

DOI: 10.1002/sam.11380

R E V I E W

An evaluation of data stream clustering algorithms

Stratos Mansalis1 Eirini Ntoutsi2 Nikos Pelekis3 Yannis Theodoridis1

1Department of Informatics, University of Piraeus,

Piraeus, Greece
2L3S Research Center, Leibniz Universität

Hannover, Hannover, Germany
3Department of Statistics and Insurance Science,

University of Piraeus, Piraeus, Greece

Correspondence
Stratos Mansalis, Department of Informatics,

University of Piraeus, Piraeus, Greece.

Email: efmansalis@gmail.com

Data stream clustering is a hot research area due to the abundance of data streams

collected nowadays and the need for understanding and acting upon such sort of data.

Unsupervised learning (clustering) comprises one of the most popular data mining

tasks for gaining insights into the data. Clustering is a challenging task, while cluster-

ing over data streams involves additional challenges such as the single pass constraint

over the raw data and the need for fast response. Moreover, dealing with an infinite

and fast changing data stream implies that the clustering model extracted upon such

sort of data is also subject to evolution over time. Several stream clustering surveys

exist already in the literature; however, they focus on a theoretical presentation of the

surveyed algorithms. On the contrary, in this paper, we survey the state-of-the-art

stream clustering algorithms and we evaluate their performance in different data sets

and for different parameter settings.

KEYWORDS

data stream clustering, data streams, evaluation, experimental, survey

1 INTRODUCTION

In recent years, with the enormous growth of World Wide

Web and the advances in hardware and software technolo-

gies, we have the ability to track in real time any kind of

transactions such as customer click data, patient health data,

TCP/IP traffic, GPS data etc, in order to support real-time

decision-making. Typically, to extract useful information

out of large amounts of data, data mining techniques are

employed, like clustering, classification and frequent item

sets mining.

However, conventional data mining techniques used for

static data sets are not suitable for data stream mining. First,

in a data stream environment, we have a continuous inflow of

data objects which is potentially infinite, in contrast to con-

ventional data mining where the whole data set is known in

advance and is given as input to the mining algorithm. As a

result, there is a need for fast processing for each incoming

data object from the stream. Moreover, due to the never end-

ing nature of the streams, random accesses to the data as in

conventional data mining are not allowed, rather there is a

limitation of having only a single look at the data, upon their

arrival. Except for the challenges imposed due to the size and

arrival rate of the streams, another challenge is triggered by

the volatility of the data. Data streams are evolving in their

nature in contrast to static data sets which are assumed to be

generated by a static distribution. As a result, the correspond-

ing patterns (clustering models) extracted upon such data are

also subject to change over time.

Due to the aforementioned challenges, the stream cluster-

ing field has attracted many researchers in the recent years and

as a result, a variety of algorithms has been proposed, such

as Stream [25], CluStream [4], DenStream [17], and DStream

[19]. Some of the algorithms “transfer” the conventional clus-

tering algorithms to the stream scenario, for example, Stream

[25] comprises the k-Means version for data streams. Other

algorithms though, such as CluStream [4], provide solutions

that are tailored to data streams.

Due to the interest in the field, several surveys exist in

the related literature. An overview of the field and its chal-

lenges is presented in an early work by Guha et al. [26].

More recent surveys also exist like the ones by Aggarwal

[3] and Silva et al. [47]. Another survey by Amini et al. [8]

focuses on density- and grid-based stream clustering algo-

rithms. Finally, a more general data mining data streams

survey recently published by Nguyen et al. [39]. However,

none of the aforementioned surveys provides an experimen-

tal evaluation on the performance of the different algorithms.

Stat Anal Data Min: The ASA Data Sci Journal. 2018;11:167–187 wileyonlinelibrary.com/sam © 2018 Wiley Periodicals, Inc. 167

http://orcid.org/0000-0002-0184-207X


168 MANSALIS ET AL.

In this paper, we overview the state-of-the-art data stream

clustering algorithms and we evaluate their performance in

different data sets and for different parameter settings in the

open-source framework MOA [13,14].

We make the code, data, and experimental results publicly

available.∗ At a glance, our contributions are as follows:

1. We provide a review of the state-of-the-art stream cluster-

ing algorithms and their follow-ups.

2. We experimentally evaluate their performance in a vari-

ety of data sets and for different parameter settings and

evaluation measures.

The remainder of the paper is organized as follows: Section

2 describes the preliminaries on data streams and data stream

clustering. Section 3 surveys the existing algorithms, focusing

mainly on state-of-the-art methods but their follow-ups are

also discussed. The experimental setup, data sets, and eval-

uation measures are presented in Section 4. The evaluation

analysis is presented in Section 5. Conclusions are discussed

in Section 6, open issues and future work are discussed in

Section 7.

2 BASIC CONCEPTS AND CHALLENGES

A data stream [2] is a massive sequence of objects o1, o2, · · ·
which arrive continuously over time and at a rapid rate. Each

object oi from the stream is a multidimensional vector, oi =<
o1

i , o
2
i · · · o

d
i > where d is the dimensionality of the feature

space.

Due to the infinite nature of data streams, it is impossible

to store all these data in memory or even in disk, so we have

the constraint of a single pass over the data, typically upon

their arrival. That is, once an object has been processed, it

cannot be processed again (ie, random access is not allowed).

Finally, the system has no control over the order in which data

objects arrive. Typically, the objects are assumed to arrive

independently of each other.

We already mentioned that conventional clustering algo-

rithms [29] are not adequate for dealing with data streams,

due to the nature of the streams [22]. We overview below

the challenges for data stream clustering, which lead to the

development of new algorithms, cf, Section 2.4. The first 3

challenges are closely related to clustering whereas the last 3

hold in general for any data processing in streams.

1. Evolving nature of data streams: Data in a data stream

are not stationary, rather they evolve over time. The clus-

ters extracted upon this data, therefore, should also evolve

over time. This means that a stream clustering algorithm

should update the extracted clusters continuously in order

to capture these changes in the underlying data.

∗http://smansalis.me/EDSCpaper/

2. Number of clusters: Determining the correct number of

clusters is a challenging problem even for a static data set.

On top of that, in a stream setting, one has to configure the

number of clusters over time. Assuming that a fixed num-

ber of clusters will be able to capture a stream population

in the long run is quite restrictive.

3. Outliers: In real world, many noisy and outlier objects may

appear due to, for example, failure of sensors, bad con-

nections, etc. Clustering algorithms must be resilient to

outliers. In a stream environment, this is very challenging

as both clusters and outliers are developing over time. In

other words, it is difficult to know upon the arrival of an

object whether it is an outlier or the first member of a new

cluster.

4. Single-pass constraint: Due to the massive volume of

data, it is impossible to store the stream in memory, even

on disk. Therefore, the data need to be processed in a

single-pass way, upon their arrival and no random access

is allowed.

5. Limited processing time: Since data stream objects arrive

continuously and at a high speed, it is necessary for the

algorithms to respond fast once they receive an object from

the stream.

6. Limited memory: A common way to deal with this restric-

tion is to maintain summaries over the data instead of the

original raw data and use these summaries for clustering

or other mining tasks latter on.

To illustrate the previously discussed challenges, we pro-

vide an example of a real world problem: Suppose a weather

station, which receives and processes information about

weather conditions in 1 forest from thousands of sensors along

the forest. The weather station receives continuously and at

a high-speed information from all these sensors regarding

temperature, wind speed and direction, humidity, location of

sensor, etc. Obviously, it is impossible to do a batch process-

ing by applying some conventional clustering algorithm, as

the stream is unbounded and continuously developing. More-

over, it is impossible to store all this information in memory,

rather incremental and quick processing of the data should

be carried. Due to the exposure of the sensors in all dif-

ferent weather conditions, it is possible for a sensor to fail,

for example, low battery, no network or “strange measure-

ments” due to, for example, some fire nearby. A clustering

algorithm should be able to provide valid clusters over time

and also “highlight” the outliers as they might call for action,

for example, sensor replacement, fire extinguishing, etc.

2.1 Window models

Theoretically, a data stream is infinite. To control which

part of the stream contributes to the data mining pat-

terns, window models are employed. Several window models

have been proposed in the literature, the most popular

are landmark window, sliding window, damped window,

http://smansalis.me/EDSCpaper


MANSALIS ET AL. 169

FIGURE 1 Window models illustrations: (A) landmark, (B) sliding, (C) damped

and tilted window models, described in more details

hereafter.

• Landmark window model: In this model, clustering is

applied from a starting time point, called landmark, to the

current time point. The landmark window can be defined

in terms of the number of objects observed since a new

landmark is set (eg, every 1000 objects) or in terms of

time (eg, weekly, monthly). When a new window period

starts, all objects kept in from the previous landmark are

removed. A special case of the landmark window is when

startpoint= 1. In this case, we are interested over the

entire history of the stream. One of the limitations of this

window model is that it is difficult to define the proper

landmarks. Also, all points in the window are treated as

equally important.

• Sliding window model: In this model, there is a window of

fixed size w from the current time point t. As time goes by,

starting from the current time t, the window keeps its size w
and slides. Thus, each window consists only of the objects

that lie in the interval [t − w + 1, t], while older objects

are discarded. The window can be defined in terms of time

points (eg, the last 100 time points) or in terms of objects

(eg, the last 1000 objects); in the latter case, the data are

equidistant. This model is suitable for applications where

we are interested only in the most recent objects. Obvi-

ously, depending on the window size, one can consider

more or less data from the past. Moreover, all instances

within the active sliding window are considered of equal

importance.

• Damped window model: In this model, each object is asso-

ciated with a weight which depends on its arrival time.

When a new object arrives, it is assigned the highest possi-

ble weight; this weight decreases exponentially over time

according to some aging function. A typically used aging

function for the damped window model is the exponential

fading function, cf, Equation (1).

f (t) = 2−𝜆(tc−to) (1)

The weight decrease rate is controlled by the fading factor

𝜆; tc is the current timepoint and to is the creation time. In con-

trast to the previous models, the damped window model does

not discard objects completely, rather older objects contribute

less as they are assigned lower weights. The interpretation

of this model is more difficult as (potentially all) objects are

“active” but with a weight that depends on their age.

• Tilted window model: Time is registered at different lev-

els of granularity using bounded space in a particular

kind of windowing system that keep summaries over the

whole window period. There are several kinds of tilted

window techniques, one of them is the progressive log-

arithmic tilted time window model [4] which allows an

efficient temporal dimension organization taking different

snapshots that describe the system where each snapshot is

represented by its time-stamp and the snapshots are stored

at different levels of granularity in a pyramid structure. As

a result, the most recent objects are kept at the finest gran-

ularity, whereas the old ones are registered at a coarser

granularity. The intuition is that the recent objects are the

most interesting and should be fully modeled, whereas for

older objects a coarser representation is enough. As in the

damped window model, the tilted window model focuses

more on the recent data, without completely discarding old

data as, for example, the sliding window model does.

Figure 1 shows an illustration of how landmark, slid-

ing, and damped window models control the part of the

stream that contributes to the data mining model over time.

As illustrated, the landmark window model controls the

whole stream history (or, starting from some landmark),

in contrast to the sliding window model which steadily

slides its window focusing solely on the most recent, within

the window, observations, and the damped window model

that exponentially decreases the significance of the past

objects.



170 MANSALIS ET AL.

2.2 Data processing models

Processing of data for clustering purposes follows typically

one of the following directions:

1. Online clustering: The initial proposed methods [25,41]

view the stream clustering problem as a single-pass clus-

tering challenge and adopt a general adaptive strategy to

maintain the clusters. A single clustering model is main-

tained over the stream and it is updated as new data objects

arrive from the stream. Such an approach though does not

allow for investigation of the cluster structure at different

time intervals.

2. Online-offline clustering: To overcome the limitations of

the online approach, Aggarwal et al. [4] introduced the

online-offline clustering approach. The 2-phase clustering

consists of an online phase that maintains statistics over

the stream in an online fashion and of an offline phase that

performs the actual clustering upon these statistics based

on user-defined temporal predicates. Such an approach

provides more flexibility in data stream exploration, as

multiple clusterings can be extracted from the stream by

selecting different time windows from the summaries.

2.3 Data summaries

Clusters already offer an abstraction over the original raw

data, and even in conventional batch clustering, clusters are

usually described by some summary description, for example,

the cluster centroid. In the case of streams, summarization

is a necessity since, as we already mentioned, we have the

requirements for a single pass over the data and fast response.

We overview the most commonly used summaries for stream

clustering hereafter.

1. Cluster feature(CF): The CF feature concept was first

introduced in the BIRCH algorithm [49]. A CF for a set of N
d-dimensional data objects is defined as the triple:

𝐶𝐹 = (
−−−→
𝐶𝐹1

d
,
−−−→
𝐶𝐹2

d
,N) (2)

where N is the number of data objects,
−−−→
𝐶𝐹1

d
is the linear sum

of the data objects, and
−−−→
𝐶𝐹2

d
is the squared sum of the data

objects—both
−−−→
𝐶𝐹1

d
and

−−−→
𝐶𝐹2

d
are d-dimensional arrays. CF

allows for computing basic cluster measures like cluster cen-

troid (cf, Equation (3)), radius (cf, Equation (4)) and diameter

(cf, Equation (5)).

centroid =
−−−→
𝐶𝐹1

d

N
(3)

radius =

√√√√√−−−→
𝐶𝐹2

d

N
−

(−−−→
𝐶𝐹1

d

N

)2

(4)

diameter =

√√√√2N∗−−−→𝐶𝐹2
d
− 2∗(

−−−→
𝐶𝐹1

d
)2

N(N − 1))
(5)

The CF summary is a very appealing summary structure

for streams as it can be easily maintained online, thanks to

the incremental property (cf, Equation (6)). According to this

property, a new object x can be easily incorporated into the

summary.

−−−→
𝐶𝐹1

d
←

−−−→
𝐶𝐹1

d
+ x,

−−−→
𝐶𝐹2

d
←

−−−→
𝐶𝐹2

d
+ (x)2,

N ← N + 1 (6)

Similarly, 2 summaries can be easily merged, thanks to the

additivity property (cf, Equation (7)); the merged summary is

just a summation of the corresponding summaries.

−−−−→
𝐶𝐹1l

d
←

−−−−→
𝐶𝐹1k

d
+
−−−−→
𝐶𝐹1m

d
,

−−−−→
𝐶𝐹2l

d
←

−−−−→
𝐶𝐹2k

d
+
−−−−→
𝐶𝐹2m

d
,

Nl ← Nk + Nm (7)

Many CF-based summaries for stream clustering have been

proposed, the most known one is the microcluster summary

structure. We present it below along with other summaries.

2. Micro-clusters: As already mentioned, CFs were initially

introduced for static data in BIRCH [49]. Their adaptation

to data streams was done by Aggarwal et al. [4], where they

extend the summaries with temporal information reflecting

their recency.

The new summaries are called micro-clusters and are

defined as follows:

𝑀𝐶 = (
−−−→
𝐶𝐹1

d
,
−−−→
𝐶𝐹2

d
, 𝐶𝐹1t, 𝐶𝐹2t,N) (8)

The new definition keeps the basic CF components and

extends the summary by adding 2 more components, the

sum of the timestamps CF1t and the sum of the squares of

the timestamps CF2t; these additions allow for the compu-

tation of the temporal cluster measures. Micro-clusters are

employed by CLuStream [4] and FlockStream [21].

3. Core-micro-clusters: In Cao et al. [17] the micro-cluster

definition is extended for density-based clustering. In par-

ticular, 3 micro-cluster variations have been proposed,

core-micro-clusters, potential-core-micro-clusters, and

outlier-micro-clusters

A core-micro-cluster at time t, for a group of data objects

o1, · · ·, on is defined as a triple:

𝐶𝑀𝐶 = (w, c, r) (9)

where w denotes the weight of this core micro-cluster (CMC),

r is the radius, and c is the center of the micro-cluster. The

weight of the core-micro-cluster w at time t is computed as:

wt =
n∑

j=1

f (t − Tj) (10)

where T1, · · ·, Tn are the arrival times of the corresponding

objects o1, · · ·, on.

Note that the importance of each data object oi decreases

exponentially with time via the function f (t)= 2−𝜆𝛿t, where



MANSALIS ET AL. 171

𝜆 > 0 is a user-specified parameter, so the importance of each

summary decreases similarly and 𝛿t is the interval from the

current timepoint to the creation timepoint of the object.

The center of the micro-cluster is computed as follows:

c =
∑n

j=1 f (t − T𝑖𝑗)p𝑖𝑗

w
(11)

and the radius as:

r =
∑n

j=1 f (t − T𝑖𝑗)dist(p𝑖𝑗 , c)
w

(12)

where dist(pij) denotes the Euclidean distance between point

pij and the center c.

The weight of a core-micro-cluster must be above or equal

to a threshold 𝜇, where 𝜇 is a user-defined parameter and

the radius must be below or equal to a user defined bound-

ary 𝜀. The core-micro-cluster summary has been employed

by DenStream [17], rDenStream [37], C-DenStream [46],

HDDStream [40], MuDi-Stream [7], HDenStream [36], and

PreDeConStream [28].

4. Temporal CF: A temporal CF for a set of d-dimensional

records o1, o2, ..., on with timestamps t1, t2, ..., tn is defined as

𝐶𝐹𝑇 = (
−−−→
𝐶𝐹1

x
,
−−−→
𝐶𝐹2

x
,N,T) (13)

It is a temporal extension of CF which keeps its basic com-

ponents (cf, Equation (2)) but also adds the timestamp T of

its most recent objects. Such a summary has been employed

by SWClustering [50] and SDStream [43].

5. Prototype array: It is an array of the prototypes derived

from k-median clustering. Because the first algorithms which

were proposed simply view the stream clustering as a

single-pass problem, the goal of these algorithms is to handle

the infinite size of streams summarizing the stream history

by dividing the stream into batches of predefined size m, in

which each batch returns the k-representatives in the array.

When the size of the representative array reaches the max-

imum boundary m these algorithms perform clustering in

these k-representatives making the next level of representa-

tives. Such a summary has been employed by Stream [25] and

Stream LSearch [41] methods.

6. Grids: A grid also constitutes a summary as from the

raw data one abstracts to the grid cells. The summary depends

on the grid parameters, like the cell size. Another parameter

regarding cell density is usually employed, which distinguish

between enough populated cells and empty or low-populated

cells. Each grid cell is represented by a summary, which

can be seen as a virtual point, that summarizes the data

points within the cell. Such a summary has been employed by

D-Stream [19], DDStream [30], MR-Stream [34], DENGRIS

[6], and PKS-Stream [44].

7. Coreset Tree: Coreset tree T is a binary tree in which for

a point set P, starting from the root that contains the whole

point set P as a single cluster, divides the current cluster into

2 subclusters until the number of clusters corresponds to the

predefined k number of clusters. Each node of T contains: (1)

a point set Pi, (2) a representative point qi, (3) the total number

of objects of this node Ni, and (4) the sum of the squared dis-

tances of the objects of all points in Pi to qi cost(i). Such a

summary has been employed by StreamKM++ [1].

2.4 Clustering approaches

Following the conventional clustering algorithms taxonomy,

stream clustering algorithms can be categorized into par-

titioning methods, density-based, grid-, and model-based

methods.

1. Partitioning algorithms partition the data into k clusters,

where k is specified by the user. The partitioning is based

on some criterion optimization like Sum of Square Errors.

In general, these algorithms produce spherical clusters and

do not handle outliers. Related data stream clustering algo-

rithms are Stream Framework algorithms [25], Clustream

[4], SWClustering [50] and StreamKM++ [1].

2. Density-based algorithms consider clusters as

high-density regions which are well separated by

low-density regions. They can discover clusters of arbi-

trary shapes and identify outliers. The number of clusters

is not required as input, the input parameters concern

the definition of the object’s neighborhood and its

density. Related data stream clustering algorithms are

DenStream [17], rDenStream [37], C-DenStream [46],

SDStream [43], HDDStream [40], MuDi-Stream [7], and

HDenStream [36].

3. Grid-based algorithms are a special category of

density-based algorithms, where the regions consist of

the grid cells. In particular, the data space is partitioned

into a finite number of cells that form a grid structure

on which clustering is performed. Related data stream

clustering algorithms are D-Stream [19], DDStream [30],

MR-Stream [34], DENGRIS [6] and PKS-Stream [44].

4. Model-based algorithms try to fit a model to the data,

assuming that data are generated from k probability dis-

tributions (typically Gaussian). In this category belongs

SWEM [20].

3 STREAM CLUSTERING ALGORITHMS

In this section, we review the state-of-the-art stream cluster-

ing algorithms and their follow-ups. The main characteristics

of these algorithms are summarized in Table 1. A detailed pre-

sentation is provided below, following the traditional classifi-

cation of stream clustering algorithms into partitioning-based,

density-based, grid-based and model-based approaches.

3.1 Partitioning-based stream clustering

For static data, partitioning-based clustering aims at partition-

ing the data into k clusters by optimizing some optimization

criterion. For data streams, the challenge is how to update



172 MANSALIS ET AL.

TABLE 1 Stream clustering algorithms reviewed in this paper

Algorithm Year Approach Window Summary Underlying method Processing

Stream [25] 2000 Partitioning Landmark Representatives k-median Single-Pass

Stream LSearch [41] 2002 Partitioning Landmark Representatives k-median Single-pass

CluStream [4] 2003 Partitioning Tilted Micro-cluster k-means Online-offline

DUCstream [23] 2005 Grid-based Landmark Grid/graph Dense-units Single-pass

DenStream [17] 2006 Density-based Damped Core-micro-cluster DBSCAN Online-offline

D-Stream [19] 2007 Grid-based Damped Grid/hash-table Dense regions Online-offline

SWClustering [50] 2008 Partitioning Sliding EHCF k-means Online-offline

DDStream [30] 2008 Grid-based Damped Grid/hash-table DCQ-means Online-offline

SDStream [43] 2009 Density-based Sliding EHCF DBSCAN Online-offline

HDenStream [36] 2009 Density-based Damped Core-micro-cluster DBSCAN Online-offline

FlockStream [21] 2009 Density-based Damped Micro-cluster Swarms Single-pass

rDenStream [37] 2009 Density-based Damped Core-micro-cluster DBSCAN Online-offline

C-DenStream [46] 2009 Density-based Damped Core-micro-cluster C-DBSCAN Online-offine

SWEM [20] 2009 Model-based Sliding Micro-components EM algorithm Online-offline

MR-Stream [34] 2009 Grid-based Damped Grid/tree Dense regions Online-offline

PKS-Stream [44] 2011 Grid-based Damped Grid/PKS-tree Dense regions Online-offline

ClusTree [32] 2011 Any time Damped Micro-clusters/tree k-means Self-adaptive

StreamKM++ [1] 2012 Partitioning Landmark Coreset tree k-means++ Merge-reduce

PreDeConStream [28] 2012 Density-based Damped Core-micro-cluster DBSCAN Online-offline

DENGRIS [6] 2012 Grid-based Sliding Grid Dense regions Single-pass

HDDStream [40] 2012 Density-based Damped Core-micro-cluster DBSCAN Online-offline

MuDi-Stream [7] 2014 Density-based Damped Core-micro-cluster DBSCAN Online-offine

TS-Stream [42] 2015 Hierarchical Sliding tree Decision tree Single-pass

pcStream [38] 2015 Model-based Damped PCA SIMCA Single-pass

StreamXM [9] 2015 Partitioning Landmark Coreset X-means Merge-reduce

SNCStrean [11] 2015 sn-model Damped Micro-cluster Network Online

SNCStream+ [12] 2016 sn-model Damped Micro-cluster Network Online

EDDS [5] 2017 Density-based Damped Micro-cluster DBSCAN Online-Offine

WCDS [18] 2017 Neural network Sliding Micro-cluster Agglomerative Online-offline

such a partitioning as the stream progresses. In this cate-

gory, we discuss 3 methods: Stream [25], CluStream [4], and

CluStree [32].

The Stream framework by Guha et al. [25] is one of the

earliest methods for stream clustering. The method is based

on k-median clustering and the core idea is to break the stream

into batches B1, B2, · · ·, Bi, · · · of fixed size m. At each batch

Bi, the k-median clustering algorithm is applied optimizing

the sum of squared error SSE. After processing i batches, a

total of i ⋅ k medians will have been stored in the prototype

array, k per batch. Whenever the number of stored medians

exceeds a threshold m, the k-median algorithm is applied over

these stored medians, generating the new set of medians.

Although this algorithm manages to handle the mem-

ory limitation and the single-pass constraint of unbounded

streams, it does not deal with noise and data aging. Rather, old

data are considered equally important to the new data. More-

over, a single model is maintained over the stream, which is

not adequate to describe the whole evolution of the stream.

In O’Callaghan et al. [41], the framework was extended

in order to get a more improved solution using an effective

subroutine for k-median (LSearch) based on facility location.

Aggarwal et al. propose CluStream [4], a 2-phase clustering

algorithm that allows for clustering at different time hori-

zons. CluStream consists of: (1) a fast online phase which

summarizes the stream into summaries (microclusters) and

(2) an offline phase which runs on user-demand and per-

forms a k-means clustering over the summaries located in

a user-specified time horizon. The clusters over the micro-

cluster summaries are called macroclusters. CluStream also

introduced the use of the tilted window model in stream

clustering; the microclusters are stored as snapshots in time.

In the initialization phase, the first q microclusters are built

after a certain number of objects arrives from the stream. In

the online phase, CluStream maintains, through the micro-

clusters, statistical summary information about the incoming

objects from the stream. There are 2 options for incorporating

a new object into a microcluster: if the new object o is close

enough to the centroid of an existing micro-cluster 𝜇i and

falls within its maximum boundary as captured by its radius,

o it is assigned into 𝜇i. Otherwise, a new microcluster is cre-

ated with o as its first object-member. Due to the fact that

the numbers of microclusters are fixed and in order to accom-

modate the newly created microcluster, the old microclusters



MANSALIS ET AL. 173

have to be reduced by 1; this is achieved either by merg-

ing 2 old microclusters or by deleting the oldest microcluster.

In the offline phase, the algorithm uses the summaries lying

within the user specified time-horizon h and performs a mod-

ification of k-means over the summaries to derive the final k
macroclusters; k is a user-defined parameter. The assumption

behind the selection of q, k is that the number of microclus-

ters (q) should be considerably smaller than the number of

raw objects seen thus far and much larger than the number of

final macroclusters (k).

Although CluStream is designed to cluster streams over

different time horizons in order to capture changes and pat-

terns in evolving data streams which is crucial for stream

clustering, there are still limitations in the method. Firstly,

the number of microclusters is fixed over the course of the

stream, which is nonrealistic in an evolving data stream. Also,

CluStream produces convex-shaped clusters, as it adopts the

k-means clustering paradigm, but real clusters are arbitrarily

shaped. Finally, CluStream does not deal with outliers and

noise, which is “risky” in a stream environment and might

lead to the destruction of existing valid microclusters in order

to accommodate noisy and/or outlier objects. ClusTree [32]

is a parameter free self-adaptive anytime stream clustering
algorithm that automatically adapts to the speed of the data

stream without any assumption of the model and relies on a

compact hierarchical index structure from the R-tree family to

efficient organize the data for maintaining stream summaries.

The algorithm makes best use of the time available under the

current constraints to provide a clustering of the objects which

have arrived and it incorporates the age of the objects in order

to give more importance to recent arriving objects.

ClusTree uses micro-clusters as a compact representa-

tion of the data. The basic idea is to build a hierarchy of

micro-clusters at different levels of granularity in a balanced

multidimensional tree-based indexing structure, where each

inner node contains between m and M entries and stores a

CF of the objects it summarizes, a CF of the objects in the

buffer and a pointer to its child node. Each leaf node contains

between l and L entries and stores a CF of the object it repre-

sents, the path from the root to any leaf node has always the

same length.

The algorithm is based on 2 operations: (1) handling the

incoming objects and (2) maintaining the tree. The mainte-

nance is executed only when there are no incoming objects

from the stream. It is possible that an object does not have

enough time to reach its closest leaf node in the tree because

of the interruptions for arriving new objects. In such a case,

ClusTree has an important property that reflects its anytime

capability, it uses aggregates and saves these objects tem-

porarily in a local aggregate in the local subtree and whenever

the object insertion process in a lead node starts again the

object insertion continues.

Another characteristic of ClusTree algorithm is its ability to

adapt to data streams with different speeds. In fast streams, it

is possible that insertion stops at the top levels and thus a lot of

objects might remain at buffers will become difficult to reach

the leaf nodes. In such a case, the algorithm creates several

aggregates for dissimilar objects in order to summarize sim-

ilar objects in the same aggregate using a non user-specified

parameter maxradius. This is the maximum distance of objects

in an aggregate to the mean of the closest aggregate, so for

very fast streams the algorithm stores interrupted objects in

their closest aggregate, if maxradius is exceeded a new aggre-

gate is created. In slow streams, when the insertion process

reaches the leaf level and additional time is available, the leaf

is split so automatically adapted to the stream speed and the

algorithm tries to optimize the insertion method and decreases

the memory consumed.

The user has to define only 2 parameters that control the

size of the tree, namely the capacity (number of entries) of

internal nodes and the capacity of leaf nodes. The cluster-

ing result is a set of CFs which are stored at the leaf level.

Based on this set of CFs any known clustering method such

as k-means, DBSCAN, etc. can be applied taking the means

of the CFs as representatives.

StreamKM++ [1] is an extension for clustering data

streams of the k-means++ [10] algorithm, which is a seed-

ing procedure of k-means algorithm that guarantees a solution

with certain quality and gives good experimental results. A

coreset Ci is a subset of an input set Pi where we can get a

good approximation with small error solving the optimization

problem directly on Ci instead of working on Pi and with-

out even reading the original input. Coreset construction is a

nonuniform sampling process in which a small weighted sam-

ple is computed from the whole input, coresets are easy to

implement and the running time has low dependency on the

dimensionality of the data. StreamKM++ uses coreset tree as

data structure in order to speed up the time for the nonuniform

sampling during coreset construction. The algorithm main-

tains a fixed number of L buffers, B0, · · ·BL − 1, with maximal

capacity m points. Each buffer Bi can be empty or contain m
points except B0 which can store any number between 0 and

m. When new points arrive, initially they are stored in B0. If

B0 is full, all points are moved to B1. If B1 already contains

m points, B0 and B1 are merged and out of their 2 * m points

in total a new coreset of size m is created in reduce step, of

course if B2 is full, this process is repeated until a buffer Bi is

empty. Similarly, StreamXM [9] is a novel stream clustering

technique that does not require an arbitrary selection of num-

ber of clusters and it uses the X-stream algorithm to find the

clusters.

SWClustering [50] is capable, except for the clustering, of

also analyzing the evolution of the individual clusters. Zhou

et al. [50] introduced a new data structure called Exponential

Histogram of Cluster Feature (EHCF) which is a combi-

nation of Exponential Histogram used to handle in cluster

evolution with Temporal Cluster Feature (TCF) that repre-

sents the changes of the cluster distribution in order to record

the evolution of each cluster and to capture the distribution

of recent records. SWClustering consist of 2 phases. In the



174 MANSALIS ET AL.

online phase, the algorithm maintains the incoming objects

and stores them as synopses in the EHCF structure, which

consists of TCFs, each denoted by hi. In the offline phase, the

algorithm clusters these collections of synopses using a vari-

ation of k-means in which the center of each hi is treated as

a pseudopoint with a weight mi, where mi is the number of

records contained in hi.

3.2 Density-based stream clustering

Similarly to CluStream [4], DenStream [17] follows the

online-offline rationale but it adopts a density-based clus-

ter model based on the DBSCAN paradigm. For the

online summarization, the micro-cluster summaries are

adopted; however, the authors propose 3 different types of

micro-clusters: CMC, potential micro-clusters (PMC), and

outliers micro-clusters (OMC). The reason for this differen-

tiation is to distinguish between actual micro-clusters and

noise. All micro-clusters should have the same extent around

their center c which is modeled by the radius parameter r and

should be above a certain limit, that is, r ≤ 𝜀. The different

types of micro-clusters differ with respect to how many points

they summarize, which is modeled by the weight parameter

w. In particular, a CMC should contain more than 𝜇 points,

that is, w≥𝜇, a potential CMC should contain more than

a user-defined fraction 𝛽 of the data, that is, w≥ 𝛽 ⋅ 𝜇 and

an OMC should contain w<𝛽 ⋅ 𝜇 points. OMCs are anno-

tated with a timestamp t0 denoting their creation time. The

creation time is used to determine their life span, based on

which nonpromising outliers are pruned. For discarding of old

points, DenStream adopts the damped window model with an

exponential aging function.

In the initialization phase, DBSCAN is applied upon the

first objects from the stream and the initial PMCs are created.

In the online phase, 2 lists of micro-clusters are maintained:

PMCs and the OMCs. When a new object o arrives from the

stream, the algorithm first tries to accommodate it in some

existing PMC. To this end, the closest micro-cluster pmc ∈
PMC is located. The assignment is possible only if p falls in

the extend of pmc, which is defined by its center and radius.

If this is the case, p is assigned to pmc and its statistics are

updated. If there is no PMC where p fits, a similar attempt is

made for the OMCs. In particular the closest omc ∈ OMC is

found and is tested whether it can accommodate p. If this is

possible the statistics of omc are updated. Then it is checked

whether omc has turned into a PMC due to the addition of p.

If the assignment is not possible, a new OMC is created with

p. Moreover, as part of the online phase a periodical bookeep-

ing of the micro-clusters takes place to ensure that aging is

applied also to micro-clusters that do not receive any new

points. As a result of this procedure some PMCs might turn

into OMCs.

The offline phase runs on demand and takes place over the

micro-cluster summaries instead of the raw data. In particular,

each micro-cluster is treated as a virtual point located at its

center and a variant of DBSCAN is applied upon these virtual

points. The resulting density-based macro-clusters, consist of

such virtual points, that is, micro-clusters.

DenStream seems ideal for streams as it does not

require a constant number of clusters over time, nei-

ther spherical-shaped clusters. Moreover, the differentiation

between the different summary types, allows the algorithm to

adapt to the underlying data distribution, that is, in times of

drifts in the stream many new OMC might be created, whereas

in times of stability the existing PMC might still be suitable to

accommodate new data. On the other side, the density param-

eters 𝜇 and 𝜀 remain constant over the stream although in

reality the stream density might change over time or there

might be clusters of different densities in the stream.

Ren and Ma [43] have developed a density-based stream

clustering algorithm named SDStream which is a variant of

DenStream for sliding windows. Like SWClustering [50],

SDStream stores the CMCs in the form of Exponential His-

togram. Although it satisfies many of the stream clustering

challenges, by using sliding window model, the algorithm

ignores parts of stream history entirely.

Ruiz et al. [46] developed a density-based stream cluster-

ing algorithm named C-DenStream which is a combination

of DenStream algorithm and C-DBSCAN [45] for cluster-

ing data streams. The algorithm uses background knowledge

about instaces that must belong to the same cluster and

instances that must belong to different clusters; in the offline

phase it uses C-DBSCAN to perform clustering.

Li-xiong et al. [37] proposed a variant of DenStream

algorithm named rDenStream which extends the 2-phase

framework of DenStream adding an extra phase called “ret-

rospect”. In the third retrospect step of the algorithm, the

discarded objects are placed in an outlier buffer and have a

new chance to be added in the clustering in order to improve

the clustering accuracy.

A significantly different method called FlockStream pro-

posed in the study of Forestiero et al. [21]. FlockStream is a

biologically inspired model [31] for simulating the animation

of a flock in the stream scenario. Each data object is assigned

to an agent which moves for a fixed time independently from

the others onto a 2 dimensional space, in predefined range.

When a new object arrives it compared only with the agents

lie into its range. Although Flockstream needs fewer calcula-

tions in contrast with DenStream it is not clear how it handles

outliers and fast processing.

Because some of the data streams produce

high-dimensional data, many high-dimensional data streams

clustering algorithms have been proposed in the literature.

One of them is HDDStream [36] which is an extension

of DenStream for clustering high-dimensional data. The

algorithm in the online phase keeps information about the

dimensions of the data stream and in the offline phase gener-

ates the final clusters using a projected clustering algorithm

called PreDeCon [16]. Similarly, PreDeConStream [28]

handles high-dimensional data. Amini et al. [7] proposed



MANSALIS ET AL. 175

another high-dimensional stream clustering algorithm named

MuDi-Stream. The algorithm has 2 phases, an online which

consists of 3 components for keeping and maintaining the

incoming objects in core mini-clusters and an offline for

generating the final clusters. Gong et al. [24] developed an

effective and efficient method for clustering data stream

algorithms called EDMStream. This method can track the

evolution of data stream data by monitoring the density

mountain as well as to capture the response cluster update in

real time by using a structure called DP-Tree and a number

of filtering schemes. Similarly, enhanced density-based data

stream algorithm [5] is a new incremental algorithm known

as an Enhanced Density-Based Method for Clustering Data

Streams (EDDS) that developed to overcome limitations

with the existing solutions. The algorithm detects clusters

and outliers in an incoming data chunk, merges new clus-

ters from the chunk with the existing clusters, and filters out

new outliers for the next round. It modified the traditional

DBSCAN algorithm to summarize each cluster in terms of a

set of surface-core points.

3.3 Grid-based stream clustering

D-stream [19] follows the online-offline rationale of CluS-

tream but it adopts a grid-based clustering model. The data

space is partitioned through a grid and the incoming objects

are mapped to grid cells. Intuitively, a grid cluster is a con-

nected group of grid cells which has higher density than the

surrounding grid cells. The density of a cell is defined as the

number of points falling into the cell. Data objects are sub-

ject to aging, based on the exponential aging function. Grid

cells act as summaries and their statistics are maintained

online, whereas the final clustering over the grid cells takes

place offline. The grid partitioning is fixed through the whole

stream lifespan; however, the number of points resulting in

each grid cell, that is, its density, might vary as the stream

evolves. As cells are gradually populated from the stream and

in order to distinguish between outliers and potential dense

cells, the authors propose a categorization/labeling of grid

cells into dense, transitional, or sparse depending on their

density.

Each grid cell g stores information about its objects in the

form of a characteristic vector: tuple=< tg, tm, D, label, status
>, where tg is the last update time for g, tm is the last time when

g was categorized as sporadic, D is the last updated density of

the grid and label is the class label of g, that is, one of dense,

transitional, or sparse, depending on grid density. When an

object arrives, it is mapped into its corresponding grid cell

and the grid cell statistics are updated accordingly. Due to

the coming of new data from the stream and the data aging,

the statistics of the grid cells change over time, dense cells

might not only degrade into transitional or sparse cells but

also sparse or transitional cells might upgrade to transitional

and dense cells, respectively.

The final clusters are dynamically adjusted in the offline

phase every gap steps. The parameter gap is the minimum

value among 2 alternatives: (1) the minimum time interval

needed for a dense grid to degenerate to a sparse grid and

(2) the minimum time needed for a sparse grid to become a

dense grid. This periodical check (instead of checking at each

timepoint) results in efficiency gain. Not all grid cells are

considered in the offline phase, rather those with a low den-

sity, the so-called sporadic cells, are ignored. Sporadic cells

include sparse cells with a low overall density in their lifes-

pan. Note that sparse cells due to the natural aging of the data

are kept. The removal of the sporadic cells also increases the

efficiency as the number of grid cells against which new data

are compared for assignment is decreasing.

As a density-based approach, D-stream is flexible in detect-

ing nonspherical clusters. However, the grid partitioning

remains constant over time, although the underlying stream

might evolve in different ways. The online approach allows for

a fast summarization of the data in the grid; the assignment

of a point is really trivial due to the known cell coordinates.

The offline component runs periodically but also exploits the

latest clustering. This is in contrast to CluStream and Den-

Stream that perform the offline clustering from scratch over

the valid summaries.

DENGRIS [6] is similar to D-Stream but adopts a sliding

window model, thus focusing exclusively on the most recent

(within the active window) data. Similarly, DD-Stream [30]

follows the D-stream rationale, however, in the offline phase

uses an algorithm called DCQ-means to detect the border

points of the grids which usually considered as sporadic

grids and add these points in the clustering analysis in order

to improve clustering quality. Gao et al. [23] proposed DUC-
streama grid-based method for stream clustering. DUCstream

is an incremental single-pass clustering algorithm which

breaks the stream history in chunks each of which fit in mem-

ory, it partitions the data space in units and map the incoming

objects in these units. The basic idea of the algorithm is

initially to find the local dense units. Each unit has a local

dense which is the number of mapped objects on it and a

local relative density which is the proportion of the objects

which mapped to the unit to the total number of objects in

this chunk, in order to use these dense units later and perform

clustering. PKS-Stream [44] is grid-based algorithm for clus-

tering high-dimensional data streams, it uses a PKS-tree for

storing the nonempty grids in the online phase and based on

the PKS-tree, PKS-Stream performs clustering in the offline

phase.

3.4 Model-based algorithms

SWEM [20] is a model-based stream clustering algorithm

which is based on the EM technique using the sliding window

model. In each window period, the algorithm tries to find the

k clusters each of which corresponds to a model that follows

a multivariate normal distribution and it is characterized by a



176 MANSALIS ET AL.

parameter Φh = {𝛼h, 𝜇h, Σh}, where 𝛼h is the cluster weight,

𝜇h is its vector mean and Σh is its covariance matrix. The

goal of the algorithm is to find the set ΦG = {Φ1, ...., Φk} that

optimal fit the data objects for each window period in the k
clusters.

In order to find the clusters the algorithm has 2 stages.

In the first stage, SWEM computes m distributions which

are also called micro components. Each data object belongs

to all these components with different probability P(Φl|x)

and the log-likelihood measure is used to evaluate the selec-

tion of micro-components, so the algorithm applies the EM

technique to maximize the log-likelihood form Q(Φ). In the

second stage, SWEM decides when to split or merge the

micro-components based on the variance between 2 con-

secutive time periods. Finally, the algorithm uses a fading

function to discard the oldest data objects from the current

window period.

SNCStream [11] is an online clustering algorithm capa-

ble of finding non-hyper-spherical clusters. SNCStream, in

contrast to other data stream clustering algorithms, uses

only 1-step processing to find clusters by using a social

network generation and evolution model, which is based

on homophily, it uses a scale-free-like homophily proce-

dure to track the evolution of clusters during data streams.

SNCStream+ [12] is another high-quality real-time data

stream clustering algorithm and an extension of SNCStream

[11] algorithm. SNCStream+ adapts the characteristics of

the SNCStream algorithm and this method is more efficient

as it executes in decreased complexity in the average case.

pcStream [38] is a novel data stream clustering algorithm

for dynamically detecting and managing sequential temporal

contexts, it takes into account the properties of sensor-fused

data streams in order to accurately infer the present con-

cept, and dynamically detect new contexts as they occur. The

algorithm is capable of detecting point anomalies and can

operate with high-velocity data streams, it is applicable to

any data stream with sequential temporal clusters that have

unique correlated distributions. Another novel stream cluster-

ing method is the two-phase weightless neural system for data

stream clustering (WCDS) [18]; this algorithm presents novel

features where a mechanism based on the WiSARD artificial

neural network model is applied.

4 COMPLEXITY ANALYSIS

In this section, we review the computational time complexity

of the stream clustering algorithms which have been proposed

in the literature and summarize the results in Table 2. Stream

[25] is a single-pass algorithm which breaks the stream his-

tory into i batches of predefined size m in order to find the

k medians of each batch combining a heuristic version of

k-median algorithm and the Facility location algorithm. The

algorithm starts by clustering each batch and then at a second

level, the algorithm clusters the above points, this process is

repeated till the algorithm find the final k medians which takes

O(i ⋅ n ⋅ k) to execute, where n is the number of the iterations

of the k-median algorithm for the i batches. Similarly, Stream

LSearch [41] breaks the stream history into i batches of pre-

defined size m; however, the algorithm uses the LSearch, a

more complicated subroutine for the k-median algorithm in

order to get an improved solution which starts with an initial

solution with k’ clusters, where k’ < k that takes O(i ⋅ n ⋅ k’)

and overall the algorithm takes O(i ⋅ n ⋅ k ⋅ logk).

CluStream [4] algorithm consists of a fast online phase

which summarizes the stream and an offline phase which

performs the clustering analysis. In the initialization phase,

the first q microclusters are built after a certain number of

N objects arrives from the stream, this process takes O(q ⋅
Ninit ⋅ n ⋅ i), where q is the number of microclusters, Ninit
is the initial number of objects used for the creation of the

first microclusters and i is the number of k-means iterations.

In the online phase, through the microclusters, the algorithm

maintains statistical summary information about the incom-

ing objects, if the incoming object o is close enough to the

centroid of an existing microcluster 𝜇i and falls within its

maximum boundary, o it is assigned into 𝜇i, this process takes

O(q ⋅ n). Because the numbers of microclusters is fixed and in

order to accommodate the newly created microcluster, the old

microclusters have to be reduced by 1; the process of merging

2 old microclusters takes O(q2 ⋅ n) and the process of dis-

carding old microclusters takes O(q). In the offline phase, the

algorithm uses the summaries and performs a modification of

k-means algorithm, this process takes O(q ⋅ n ⋅ k ⋅ i). Similarly,

SWClustering [50] algorithm consists of 2 phases and uses a

novel data structure called EHCF which captures the cluster

evolution. The cost of inserting a new object into the nearest

EHCF is O(hn ⋅ n), where hn is the total number of EHCFs.

In the offline phase, the algorithm uses the EHCFs and per-

forms a modification of k-means algorithm, this process takes

O(hn ⋅ n ⋅ k ⋅ i), where i is the number of the iterations of the

k-means algorithm.

StreamKM++ [1] is a partitioning-based stream clustering

algorithm in which the data objects are stored in buffers, each

with a maximum capacity of m points. The algorithm uses

a coreset tree that stores the data in a binary tree and using

a merge-and-reduce technique maintains the L buffers in the

tree. The cost of merging is O(m2 ⋅ n), where m is the maxi-

mum number of data points each buffer can contain. In order

to construct a coreset tree for the union of all L buffers of

size m the merge-and-reduce technique of all buffers is exe-

cuted in O(m2 ⋅ n) and in order to find the final k clusters,

k-means++ algorithm is used which takes O(m ⋅ k ⋅ n ⋅ i),
where i is the number of the iterations of the k-means++
algorithm. ClusTree [32] algorithm uses micro-clusters as a

compact representation of the data and upon them builds a

hierarchy in a balanced multidimensional tree indexing struc-

ture. The process of inserting an incoming object in the tree

takes O(logq) where q is the number of CFs, the total num-

ber of entries in a leaf node. The clustering result is a set



MANSALIS ET AL. 177

TABLE 2 Time complexity of data stream clustering algorithms

Algorithm Initialization Insert/update Merge Discard Clustering result

Stream [25] — — — — O(i ⋅ n ⋅ k)

Stream LSearch [41] O(i ⋅ n ⋅ k’) - - - O(i ⋅ n ⋅ k ⋅ logk)

CluStream [4] O(q ⋅ Ninit ⋅ n ⋅ i) O(q ⋅ n) O(q2 ⋅ n) O(q) O(q ⋅ n ⋅ k ⋅ i)

DUCStream [23] — — — — O(b)

DenStream [17] O(Ninit ⋅ logNinit) O(q ⋅ n) O(q ⋅ n) O(q ⋅ n) O(q ⋅ logq)

D-Stream [19] — — — — O(p ⋅ n)

SWClustering [50] — O(hn ⋅ n) O(h2
n ⋅ n) O(hn) O(hn ⋅ n ⋅ k ⋅ v)

DDStream [30] — — — — O(p2)

SDStream [43] — — — — O(d ⋅ p)

HDenStream [36] — — — — O(d ⋅ p)

FlockStream [21] — — — — O(d)+ O(p)

rDenStream [37] O(Ninit ⋅ logNinit) O(q ⋅ n) O(q ⋅ n) O(q ⋅ n) O(q ⋅ logq + qb)

C-DenStream [46] O(Ninit ⋅ logNinit) O(q ⋅ n) O(q ⋅ n) O(q ⋅ n) O(q ⋅ logq ⋅ qc)

SWEM [20] — — — — —

MR-Stream [34] — — — — O(2g ⋅ 𝜆)+ O(g ⋅ logN)

PKS-Stream [44] — — — — O(d ⋅ p)

ClusTree [32] — O(logq) O(m2) — —

StreamKM++ [1] — O(m2 ⋅ n) (m2 ⋅ n ⋅ N) — O(m ⋅ k ⋅ n ⋅ i)

PreDeConStream [28] — — — — O(d ⋅ p)

DENGRIS [6] — — — — O(p ⋅ n)

HDDStream [40] — — — — O(d ⋅ p)

MuDi-Stream [7] — O(rmc) O(loglogN) - O(rmc) O(logN) O(rmc)+ O(mc)+ O(loglogN)+ O(logN)

TS-Stream [42] — — — — —

pcStream [38] — — O(m) — O(n)

StreamXM [9] — — — — O(d ⋅ n)

SNCStrean [11] — — — — —

SNCStream+ [12] — — — — —

EDDS [5] — — — — O(q ⋅ logq)

WCDS [18] — — — — O(𝛽 ⋅ 𝛿 ⋅ d)

of CFs which are stored at the leaf level. Based on this

set of CFs any known clustering method such as k-means,

DBSCAN, etc. can be applied taking the means of the CFs as

representatives.

DenStream [17] algorithm follows the online-offline ratio-

nale, initial DBSCAN algorithm is applied to the first

N objects from the stream in order to create the first q
core-micro-clusters, this process takes O(Ninit ⋅ logNinit). In

the online phase of the algorithm, when a new object oi arrives

from the stream, the algorithm tries to accommodate it in a

existing PMC which takes O(q ⋅ n). Also, periodically for each

p-micro-cluster the algorithm checks if the p-micro-cluster

is a potential o-micro-cluster which takes O(q ⋅ n) or if an

o-micro-cluster is a potential p-micro-cluster which also takes

O(q ⋅ n). In the offline phase each micro-cluster is treated as a

virtual point and a variant of DBSCAN algorithm is applied

upon these virtual points, this process takes O(q ⋅ logq).

C-DenStream [46] is an extension of DenStream

algorithm for clustering with constraints for data streams.

In C-DenStream, instance-level constraints are used also

as PMCs and the clusters are generated based on these

PMCs using the C-DBSCAN algorithm, the time complexity

is similar to DenStream algorithm; however, for the final

clusters in contrast with DenStream, C-DenStream takes

O(q ⋅ logq ⋅ qc), where qc are the instance-level constraints as

PMCs. Another variant of DenStream algorithm is the rDen-

Stream [37] algorithm, which extends DenStream adding an

extra phase called retrospect where the discarded objects are

placed in a outlier buffer and have a new chance to be added

in the clustering result.

D-Stream [19] is a grid-based stream clustering algorithm

that uses a 2-phase framework which consists of an online

phase that processes data objects from the stream and maps

each input data object into a grid and an offline phase which

computes the grid density and clusters the grids based on the

density. The time-complexity of D-Stream [19] is O(p ⋅ n) and

is based exclusively on the number of partitions of the grid,

at each iteration of the algorithm there are pn grid cells where

p is the number of partitions in each dimension. Similarly,

DD-Stream [30] follows the D-stream rationale; however, in

the offline phase uses an algorithm called DCQ-means to

detect the border points of the grids and add them in the clus-

tering analysis in order to improve clustering quality, the time

complexity of the algorithm is O(p2), where p is the number



178 MANSALIS ET AL.

of partitions of the grid. DENGRIS [6] is another grid-based

stream clustering algorithm which is similar to D-Stream but

adopts a sliding window model for focusing on the most recent

data objects, the time complexity of DENGRIS is O(p ⋅ n),

where p is the number of partitions.

DUCStream [23] is an incremental single-pass clustering

algorithm which breaks the stream history in chunks each

with its data points. The algorithm partitions the data space

into units each with its density, the density of each unit is the

number of points on it. If the density of a unit is higher than a

user-specified threshold, it is considered as a dense unit and

based on these dense units the algorithm performs clustering.

The algorithm keeps the clustering results in clustering bits

which are strings that keep the number of dense units, due to

the bit clustering model the time complexity of DUCStream

is O(b), where b is the clustering bits.

MuDi-Stream [7] is an online-offline framework with

4 main components that combines CMCs with a hybrid

method which uses a density-based method to generate the

final clusters and a grid-based method to handle outliers.

In the online phase, the algorithm keeps summary infor-

mation about the evolving multidensity data stream in the

form of CMCs and based on these CMCs in the offline

phase the algorithm generates the final clusters, also the

algorithm maintains a grid list in the form of tree with

the grids that are under consideration for clustering. When

a new data object arrives it can be merged to an existing

core-micro-cluster, which takes O(rmc), where mc is the num-

ber of core-micro-clusters or it can be mapped to the grid list

which takes O(loglogN), where N is the height of the tree.

The cost of discarding a CMC is O(mc) and the cost of dis-

carding a grid from the grid list is O(logN). The overall time

complexity of MuDi-Stream is O(rmc)+O(mc)+O(loglogN)

+O(logN).

HDDStream [36] is a density-based stream clustering

algorithm for high-dimensional data. The algorithm in the

online phase keeps information about the dimensions of the

stream in the form of CMCs and in the offline phase generates

the final clusters using a projected clustering algorithm called

PreDeCon [16], the time complexity of HDDStream [36] is

O(d ⋅ p). Similarly, PreDeConStream [28] algorithm, is based

on the 2-phase model of stream clustering algorithms and gen-

erates the final clusters using the PreDeCon [16], the time

complexity of PreDeConStream [28] is O(d ⋅ p). HDenStream

[36] is another density-based stream clustering algorithm for

high-dimensional data, the time complexity of the algorithm

is O(d ⋅ p).

5 EXPERIMENTAL SETUP

5.1 Evaluation measures

In this section, we describe the measures used in our evalua-

tion of the stream clustering algorithms.

5.1.1 Sum of squared distance
The most commonly used criterion to evaluate the similarity

within a cluster in partitioning based algorithms is the sum of

squared (SSQ):

SSQ =
k∑

k=1

∑
xi𝜀Dk

‖xi − 𝜇k‖2

Dk is the set of objects in cluster k and 𝜇k is its centroid. It

measures how far the objects of each cluster are from the cen-

ter of its cluster, small SSQ means better compactness of each

cluster.

5.1.2 Purity
Purity is the most commonly used external criterion for clus-

tering evaluation.

Purity(Ω,C) = 1

N

𝜅∑
j=1

m𝑎𝑥j|𝜔k ∩ cj|
To compute purity initially for all k clusters, each cluster

cj is assigned to the class 𝜔k that has the max count in this

cluster and measure the correctly assigned objects of this class

in each cluster, then dividing this total by N which denotes

the total number of objects.

5.1.3 Clustering mapping measure
Data Streams are evolving in their nature, thus, the corre-

sponding patterns extracted upon such data evolve over time.

This characteristic leads to new kind of errors and thus to new

kind of faults which may occur in stream clustering evalua-

tion in contrast to the evaluation of conventional static data

sets such as (1) misplaced objects, (2) missed objects, and

(3) noisy objects. The well-known evaluation measures devel-

oped for evaluation static data sets, either interior or exterior,

cannot handle these kinds of faults. In order to evaluate the

stream clustering algorithms properly, new evaluation mea-

sures which must take into account the above faults must be

developed. A novel evaluation measure for stream cluster-

ing called Cluster Mapping Measure (CMM) [33] deals with

these faults. CMM is a normalized sum of the penalties that

occur because of the above faults and it is defined as:

CMM(C, 𝐶𝐿) = 1 −
∑

o𝜀Fw(o) ⋅ 𝑝𝑒𝑛(o,C)∑
o𝜀Fw(o) ⋅ 𝑐𝑜𝑛(o, 𝐶𝑙(o))

If no fault occurs CMM is equal to 1. In order to compute

CMM 2 important properties have to be computed initially,

the connectivity “how well the point is connected to the clus-
ter” and the cluster mapping “how well the point is assigned
to the clusters given truth classes”. The connectivity of a point

p to a cluster Ci is defined as:

𝑐𝑜𝑛(p, 𝐶𝑖) =
⎧⎪⎨⎪⎩

1, KnhDist(p, 𝐶𝑖) < KnhDist(𝐶𝑖)
0, 𝐶𝑖 = ∅

KnhDist(𝐶𝑖)
KnhDist(p,𝐶𝑖)

, else



MANSALIS ET AL. 179

TABLE 3 Relation of density-based algorithms

Algorithm Added characteristic

DenStream [17] —

SDStream [43] DenStream + sliding window

HDenStream [36] DenStream + categorical data

FlockStream [21] DenStream + bioinspired model

rDenStream [37] DenStream + retrospect phase

C-DenStream [46] DenStream + constraints

PreDenConS [28] DenStream + high-dim. Data

HDDStream [40] DenStream + high-dim. Data

MuDiStream [7] DenStream + hybrid grid model

TABLE 4 Relation of grid-based algorithms

Algorithm Added characteristic

DUCstream [23] Single-pass chunk-based model

D-Stream [19] —

DDStream [30] D-Stream + boundary detection

MR-Stream [34] D-Stream + improved offline

PKS-Stream [44] D-Stream + high-dim. Data

DENGRIS [6] D-Stream + sliding window

where 0 means no connectivity and 1 indicates a strong con-

nectivity. To decide whether a data object is misplaced a

mapping from the clusters returned by a stream algorithm to

ground truth classes is used to penalized the faults and to

compute an overall penalty.

5.2 Algorithms

In our experimental evaluation we use CluStream [4], Den-

Stream [17], and ClusTree [32] algorithms for 2 reasons. First,

all algorithms which have been proposed in the literature

afterward are variations or extensions of these algorithms.

Also, we wanted to focus on general purpose algorithms that

satisfy the aforementioned challenges and to show the advan-

tages and disadvantages of each category. For example, all

density-based algorithms, except DUCStream [23] which is

a single-pass density-based algorithm with many limitations,

are based on DenStream [17] algorithm and extend it for

a particular application. For instance, C-DenStream [46] is

a extension of DenStream [17] algorithm in clustering with

constraints, and it is a proper algorithm in clustering geo-

graphic information system (GIS) data streams because it

takes the constraints a map can have into account (Tables 3

and 4 show the relation between density- and grid-based

algorithms, respectively). Similarly, Clustream [4], which

introduced the online-offline rationale and the micro-clusters,

technique was selected because it is a partitioning-based gen-

eral purpose algorithm in clustering data streams and satisfies

many of the challenges in contrast with Stream framework

[25,41] which is a single-pass partitioning-based algorithm

with many limitations. (Table 5 shows the relation between

TABLE 5 Relation of partitioning-based algorithms

Algorithm Added characteristic

Stream [25] Single-pass batch algorithm

Stream LSearch [41] Single-pass batch algorithm

Clustream [4] Micro-clusters

SWclustering [50] Exponential Histogram

StreamKM++ [1] Coresets

TABLE 6 Overview of the data sets

Dataset Instances Attrib. Num. Classes

Covertype 581.012 54 10 7

Poker-Hand 829.201 10 5 10

Electricity 45.312 8 7 2

Adult-Census 32.541 14 6 2

partitioning-based algorithms). Finally, we added the Clus-

Tree [32] algorithm in the experimental evaluation because

it is the only anytime stream clustering algorithm and we

wanted to show where this method outperforms the others.

5.3 Data sets

We experimented with 4 real-world data sets namely Fore-

cast Cover Type, Poker Hand, Electricity, and Adult data set

(Table 6) from different domains in order to avoid domain

bias. We chose real-world multidimensional data sets which

depict temporal evolution and therefore call for stream cluster-

ing solutions. We selected data sets from different domains to

evaluate the performance of the algorithms on different prob-

lems that also contain the true class labels which are needed

for the evaluation of the algorithms.

5.3.1 Forecast
The study of Blackard and Dean [15] contains 581.012 obser-

vations and 54 variables out of which 10 are numeric, from

4 areas located in Roosevelt National Forest of northern Col-

orado. The challenge of this data set is to predict the cover type

using only cartographic variables, these areas are a result of

ecological process and not a from human-caused. The actual

type was determined from US Forest Service and the others

variables form a US Geological survey. We used a normalized

version of this data set.

5.3.2 Poker-Hand
The study of Lichman [35] consists of over of 800.000

instances and 10 attributes out of which 5 are numeric. Each

record of the Poker-Hand data set is an example of a hand

consisting of 5 playing cards drawn from a standard deck of

52. Each card is described using 2 attributes (suit and rank),

for a total of 10 predictive attributes. There is 1 class attribute

that describes the “Poker Hand”.



180 MANSALIS ET AL.

5.3.3 Electricity
The study of Lichman [35] contains 45.312 observations from

Australian New South Wales Electricity Market. The electric-

ity price in this market is not fixed and is affected by demand

and supply of the market, the class label identifies the change

of the price relative to a moving average of the last 24 h, which

can be moved up or down. We used a normalized version of

this data set.

5.3.4 Adult
This data set is a part of the well-known census data set [35]. It

consists of over of 32.000 instances out of which 6 is numeric,

it has 2 classes which determine whether a person makes over

50 K a year or not.

5.4 More experimental settings

We implemented all the evaluated algorithms in MOA

[13,14], an open-source benchmarking software for evolv-

ing data streams that is built on the work of WEKA. It is

a java-based software package that contains state-of-the-art

algorithms and evaluations measures for running experi-

ments. Recently, an R package called Steam [27] published

that allows to perform clustering experiments, the main

advantage of stream is that it seamlessly integrates with the

large existing infrastructure provided by R.

Also, in order to clear any ambiguity between the terms

window size w and horizon H, window size w defines the

number of data objects which arrive in each time period and

horizon means the number of windows in which the cluster-

ing analysis is evaluated; we have set for the entire evaluation

analysis that horizon. H = 1.

6 EXPERIMENTAL RESULTS

We selected the 3 most representative algorithms to exper-

imentally evaluate, these algorithms are the general stream

clustering algorithms and all algorithms which have proposed

afterward are variations or extensions of these algorithms. All

the data sets and the experimental results of our evaluation are

available at http://smansalis.me/EDSCpaper/

6.1 Sensitivity analysis

The goal of sensitivity analysis is to find the values or the

range of values for the parameters of the algorithms where

they achieve the best quality of clustering and have good

performance.

6.1.1 Clustream
One important decision about setting Clustream algorithm

parameters is the selection of the proper number of

FIGURE 2 Clustream: Effect of the number of micro-clusters in accuracy

micro-clusters. In Section 2.3 where we present Clustream,

we mention that the number of micro-clusters should be larger

than the number of macro-clusters (actual clusters); however,

a very large number of micro-clusters is time and memory

consuming. In order to make a right decision about the num-

ber of micro-clusters as in Aggarwal et al. [4] we also set

micro-ratio, as the number of micro-clusters divided by the

number of macro-clusters (natural clusters).

Then, using 3 real-world data sets examine the cluster-

ing quality with sum of square distance (SSQ) as criterion.

We set, window size w= 1000 for the covertype data set, for

the pokerhand data set w= 1000 and for electricity data set

w= 500; we also set micro-rations values to 1, 5, 10, 20, 30,

and 40; this means that when the micro-ratio is about 10 for

the covertype data set the actual number of micro-clusters is

70, for pokerhand data set 100 and 20 for the electricity data

set, respectively. Figure 2 shows our experimental results; we

can see that if micro-ratio is equal to 1, which means that

the number of micro-clusters is equal to the number of nat-

ural clusters, the clustering quality is poor, also using very

small number of micro-clusters we do not utilize the real pur-

pose of micro-clusters to keep synopsis information. When

the micro-ratio increases the average SSQ reduces until it

becomes stable, the average SSQ for each of the 3 real-world

data sets becomes stable when the micro-ratio is about 15;

notice in pokerhand data set if we keep increasing the micro-

ratio the average SSQ start increasing which is also time- and

memory consuming. This means to achieve high-quality clus-

tering and keep the amount of memory small in order to avoid

memory consuming the micro-ratio must not be too small nei-

ther too large, a good choice is about 15 to 20 micro-cluster

per actual cluster.

6.1.2 Denstream
Two important user-specified parameters of DenStream

algorithm are the outlier threshold 𝛽 and the decay factor 𝜆

which controls the importance of historical objects. We test

http://smansalis.me/EDSCpaper


MANSALIS ET AL. 181

FIGURE 3 Denstream: Clustering quality vs decay factor 𝜆

FIGURE 4 Denstream: Clustering quality vs outlier threshold 𝛽

the clustering quality for both parameters by varying them

using covertype and electricity datasets; for both of the exper-

iments we set w= 1000 for the Covertype data set and w= 500

for Electricity data set. Also, we set Initial Points= 1000

and 500 for Covertype and Electricity data set, respectively.

Finally, we set 𝜇= 1, 𝜀= 0.02 and the processing speed at 100

for DenStream execution.

Figure 3 shows the average clustering quality of DenStream

when 𝜆 varies from 0.0625 to 1. The higher the value of 𝜆 the

lower the importance of the historical objects. When 𝜆 is rel-

ative small (𝜆= 0.25) the algorithm for both data sets reaches

the best average clustering purity, although it discards the old

objects sooner and only a small amount of the total objects

is included in the clustering result than when 𝜆= 1 where the

amount of the total objects which is included in the result is

bigger. Similarly, Figure 4 shows the average clustering qual-

ity of DenStream when 𝛽 varies from 0.2 to 0.8. When 𝛽 is

about 0.2 for both data sets the average purity is very good,

as 𝛽 increases the average purity slightly decreases; also note

that very high value of 𝛽 (ie, 𝛽 = 1) means faster pruning of

the PMC.

In summary, among the 3 state-of-the-art algorithms that

were evaluated, CluStream achieves good clustering quality

FIGURE 5 Clustering quality using Pokerhand data set

for a number of micro-clusters about 20 times the number of

final clusters, for DenStrram algorithm as the decay factor 𝜆

and the outlier threshold 𝛽 increases, the clustering quality

decreases.

For the rest of the entire experimental evaluation we set the

parameters of DenStream as follows: decay factor 𝜆= 0.25,

𝜇= 1, 𝜀= 0.02, processing speed equal to 1000 and 𝛽 = 0.2;

6.2 Cluster quality

6.2.1 Purity
In this section, we evaluate the accuracy of the 3

state-of-the-art stream clustering algorithms using all data

sets in order to answer the crucial question: which is the

algorithm that has the best clustering results.

We begin by evaluating the algorithms using Pokerhand

data set; Figure 5 shows the comparison of the algorithms for

the whole period of stream execution. It can be seen that Den-

Stream clearly outperforms both Clustream and ClusTree and

the purity of DenStream is always above 0.9 and reaches 1.0

(100%) while that of ClusTree and Clustream ranges in the

interval [0.7,0.9].

In order to better understand what this means in conjunction

with Pokerhand data set, in Figure 6 we illustrate the purity

that each algorithm has in contrast with the number of classes

in each clustering result. It is clear that Clustream and Clus-

Tree algorithm are affected by the number of classes; the more

classes are included in clustering result: the less the purity for

these algorithm while DenStream is hardly affected.

Next, we compare the algorithms on Covertype data set.

Figure 7 shows the comparison of the algorithms for the

whole period of stream execution; like with Pokerhand data

set DenStream algorithm reaches better clustering purity in

contrast with Clustream and ClusTree. However, this time

there are clustering results where Clustream and ClusTree

reach DenStream purity. Similarly, in Figure 8 we display

what this means in conjunction with Covertype data set, in

this data set ClusTree is slightly affected by the number of



182 MANSALIS ET AL.

FIGURE 6 Clustering quality vs number of classes using Pokerhand

data set

FIGURE 7 Clustering quality using covertype data set

classes while Clustream is much less affected and DenStream

is hardly affected.

We continue by evaluating the algorithms using Electricity

data set. Figure 9 shows the comparison of the algorithms for

the whole period of stream execution. Clearly DenStream has

better purity than Clustream and ClusTree, which have sim-

ilar purity. In order to better understand what this means in

conjunction with Electricity data set, we show in Figure 10

the instances from stream execution aligned with clustering

results, (as we have already described Electricity data set con-

sist of 2 classes). Figure 10 shows from which of the 2 classes

the instances in each window come from. In the whole exe-

cution the majority of instances come from “Down” class;

however, notice when the number of 2 class becomes similar

(about in 20th window) Clustream and ClusTree reach their

worst purity.

Lastly, we evaluate the algorithms using Adult data set.

Figure 11 shows the comparison of the algorithms for

the whole period of stream execution. As in previous

experiments, DenStream clearly outperforms Clustream and

ClusTree, the purity of DenStream is always above Clustream

and ClusTree and sometimes reaches 1.0 (100%).

FIGURE 8 Clustering quality vs number of classes using covertype data set

FIGURE 9 Clustering quality using electricity data set

FIGURE 10 Instances from stream execution using electricity data set

Like before, in order to understand what this means in

conjunction with Adult data set in Figure 12 we display

the instances from stream execution aligned with clustering

results. Adult data set consists of 2 classes, however, for the

entire execution the number of instances came from each class

for each window is about similar, so we cannot make assump-

tions about how much and when the purity is affected by the

stream execution.



MANSALIS ET AL. 183

FIGURE 11 Clustering quality using adult data set

FIGURE 12 Instances from stream execution using adult data set

Another important factor from stream clustering execution

is the selection of the proper size of window, which defines

the number of data objects which arrive in each time period. A

large size of window may be memory consuming but provides

the flexibility to analyze bigger parts of the stream history in

contrast with a small window, also with a large size of window

we need fewer data mining models.

We examine in Figures 13 and 14, using Covertype and Pok-

erhand data sets, respectively, how much the average quality is

affected by varying the window size from w= 200 to w= 3000

for horizon H = 1. Figure 13 shows that for Clustream and

ClusTree algorithm the clustering quality is affected at all

slightly while DenStream algorithm is not affected. Similarly,

Figure 14 shows that for Clustream and ClusTree algorithm

the clustering quality is affected slightly, in particular for

Clustream algorithm the bigger the size of window it is, the

better the clustering purity while for ClusTree the smaller the

size of window it is, the better the clustering purity, as in pre-

vious data set DenStream algorithm is not affected by varying

window size.

6.2.2 CMM
We have also evaluated the algorithms using CMM [33]

evaluation measure. In Figure 15, we display the result for

FIGURE 13 Clustering quality for different window sizes using covertype

data set

FIGURE 14 Clustering quality for different window sizes using Pokerhand

data set

Pokerhand data set where the average CMM score for both

Clustream and ClusTree is better than the average CMM score

for DenStream algorithm, we can see that the total amount

of error caused by missed points, as CMMmissed shows. Simi-

larly, for Covertype data set in Figure 16, for Electricity data

set in Figure 17 and for Adult data set in Figure 18 the average

CMM for both Clustream and ClusTree is better than the aver-

age CMM for DenStream and the primary effect of decreasing

the CMM is from CMMmissed.

6.3 Summary of findings

In this paper, we conducted an extensive survey of the the

stream clustering algorithms which have been proposed in

the literature and an extensive experimental evaluation of

the state-of-the-art stream clustering algorithms. Our exper-

iments are conducted on 4 real-world data sets, the findings

can be summarized as follows:

1. Regarding the window model, damped, and tilted windows

models turned out to be better for stream clustering algo-

rithms due to the fact that they provide the flexibility to



184 MANSALIS ET AL.

FIGURE 15 CMM evaluation using Pokerhand data set

FIGURE 16 CMM evaluation using covertype data set

FIGURE 17 CMM evaluation using electicity data set

give more importance to recent objects and do not discard

the old ones entirely. Also, titled window model ensures

that the total amount of data which is saved is relative

small.

2. Regarding data processing, the 2-phase algorithms are

by far better than single-pass algorithms because they

can capture the evolution of streams which is crucial for

clustering data streams.

FIGURE 18 CMM evaluation using adult data set

3. Regarding the clustering paradigm, density- and

grid-based algorithms turn out to be the best choices for

stream clustering, because they do not need require the

number of clusters as input and also because they can

handle the outliers.

4. Regarding the summary structure, CF-based sum-

maries for stream clustering like microclusters and

core-micro-clusters are the most efficient choice since

they provide some important properties such as the addi-

tive property in which 2 CMCs can be combined together,

the incremental property in which once a new object

arrived simple can be added to an existing CMCs, and the

ability to handle outliers.

The characteristics of each algorithm are summarized in

Table 7. Among the state-of-the-art algorithms that were

evaluated, CluStream achieves good clustering quality for a

number of micro-ratio of 20. For DenStream as the decay

factor 𝜆 and the outlier threshold 𝛽 increase, the clustering

quality decreases. DenStream achieves better clustering qual-

ity comparing to Clustream and ClusTree for every window

size and during the whole stream execution. The number of

classes of the data set (which indirectly reflects the number of

clusters) affects Clustream and ClusTree—the more diverse in

terms of classes a data set is, the worse the achieved clustering

quality, whereas DenStream is more robust. Clustream and

ClusTree appear to have better CMM compared to DenStream

and the total amount of error caused by missed points.

7 CONCLUSIONS, OPEN ISSUES, AND
RESEARCH DIRECTIONS

Clustering is one of the most important tasks in data mining,

used both as a stand-alone tool to get insights into the data

distribution and as a preprocessing step for other algorithms.

Clustering is a challenging task even in the batch scenario

where all instances are available and multiple passes over the

data are allowed. Clustering over streams is much more chal-

lenging as the underlying data distribution might evolve over



MANSALIS ET AL. 185

TABLE 7 The challenges that satisfy each surveyed algorithm

Clustering Handling No assumption Limited Limited Handling Handling
Algorithm Evolving data Number of clusters Memory Time Outliers High dim.

Stream [25] — — ✓ ✓ — —

Stream LSearch [41] — — ✓ ✓ — —

CluStream [4] ✓ — ✓ ✓ — —

DUCstream [23] — ✓ ✓ ✓ — —

DenStream [17] ✓ ✓ ✓ ✓ ✓ —

DStream [19] ✓ ✓ ✓ — ✓ —

SWClustering [50] ✓ — ✓ ✓ — —

DDStream [30] ✓ ✓ — — ✓ —

SDStream [43] ✓ ✓ ✓ ✓ ✓ —

HDenStream [36] ✓ ✓ ✓ ✓ ✓ ✓

FlockStream [21] — ✓ ✓ ✓ ✓ —

rDenStream [37] ✓ ✓ — — ✓ —

C-DenStream [46] ✓ ✓ — — ✓ —

SWEM [20] ✓ — ✓ ✓ ✓ —

MR-Stream [34] ✓ ✓ — — ✓ —

PKS-Stream [44] ✓ ✓ ✓ ✓ ✓ ✓

ClusTree [32] ✓ — ✓ ✓ — —

StreamKM++ [1] — — ✓ ✓ — —

PreDeConStream [28] ✓ ✓ ✓ ✓ ✓ ✓

DENGRIS [6] ✓ ✓ — — ✓ —

HDDStream [40] ✓ ✓ ✓ ✓ ✓ ✓

MuDi-Stream [7] ✓ ✓ ✓ ✓ ✓ ✓

TS-Stream [42] ✓ ✓ ✓ ✓ ✓ —

pcStream [38] ✓ ✓ ✓ ✓ ✓ —

StreamXM [9] ✓ ✓ ✓ ✓ ✓ —

SNCStrean [11] ✓ ✓ ✓ ✓ — —

SNCStream+ [12] ✓ ✓ ✓ ✓ — —

EDDS [5] ✓ ✓ ✓ ✓ ✓ —

WCDS [18] ✓ ✓ ✓ ✓ ✓ —

time and therefore the number of clusters in the stream might

vary and their generative distributions might be subject to

drifts and shifts over time.

Comparing to batch clustering, the amount of work in

stream clustering is much less. This is because of the difficulty

of the task and also because of the recent attention on data

streams. Although the first clustering algorithms showed up

in the beginning of 2000, only recently with the big data dis-

cussion the community (both academia and research) realized

the need for dealing with data streams.

There are a lot of directions for future work in the stream

clustering area. First, exploiting the recent developments with

MapReduce and distributed computing: this would allow to

speed up the algorithms, but also to deal with the bounded

memory issue. In particular, since storage is cheap nowadays

we could allow for the storage of representative objects (like

centroids or summaries) over time. Storing these intermedi-

ate results will allow the end user to focus on specific time

periods and further analyze the summarized data through, for

example, macroclustering or by applying other data mining

tasks.

Another important direction is that of effective summa-

rization over the stream. Thus far, microclusters and their

variations are the most common summaries for stream clus-

tering. However, as already mentioned, microclusters create

convex-shaped clusters and in reality the clusters might come

at any shape. For batch clustering, there are more elabo-

rated structures like data-bubbles, but their “adaptation” to

the data stream scenario is not that straightforward. Finally,

mining data series has a tremendous growth of interest in

today’s world, thus, clustering data streams series is becom-

ing a hot research area due to the huge volume of data series

that are produced daily from diverse domains (finance, sci-

entific, biology, etc.,). Several data series streams clustering

algorithms like Ts-stream [42] have been proposed in the

literature.

Evaluation is another important direction. Typically clus-

tering algorithms are evaluated through external evaluation

measures like class-labeled data; however, clustering is dif-

ferent from classification and a mapping between classes and

clusters is not always feasible. Internal evaluation measures

like SSQ are also available, however, they are not appropriate



186 MANSALIS ET AL.

for all cluster types. For example, SSQ is appropriate for

spherical clusters like those produced by k-means but not for

arbitrary-shaped clusters like those produced by DBSCAN.

Dealing with noise and outliers is another direction for

future research. The models thus far follow a blind-adaptation

approach by incorporating each new instance to the existing

model without verifying whether it is an outlier or noise. This

results in destroying valid cluster structures, which might be

recreated later on; however, an always changing clustering

structure is not the best for the end user as it requires a lot of

effort for understanding and reacting/taking actions.

In a similar direction, understandability of clustering results

is an important aspect, especially in a stream environment

where data flow in and out of the system at a high rate and

clustering structures are frequently updated. Toward this goal,

one could exploit the evolution of the individual clusters and

relations between clusters (eg, merge, absorption etc) [48].

ORCID

Stratos Mansalis http://orcid.org/0000-0002-0184-207X

REFERENCES
1. Marcel R. Ackermann et al., Streamkm++: A clustering algorithm for data

streams, ACM J. Exp. Algorithmics 17 (2012), no. 4, 2.4:2.1–2.4:2.30.

2. Charu C. Aggarwal, Data Streams: Models and Algorithms (Advances in
Database Systems), Springer-Verlag, New York, 2006.

3. Charu C. Aggarwal, A survey of stream clustering algorithms, in Data Clus-
tering: Algorithms and Applications, C. Aggarwal and C. Reddy, Eds., CRC

Press, Siena, Italy, 2013, 361–366.

4. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, A framework for clustering
evolving data streams, Proc. of the 29th Int. Conf. on Very Large Data Bases,

VLDB ‘03, vol. 29, 2003.

5. A. Al Abd Alazeez, S. Jassim, and H. Du, Edds: An enhanced density-based
method for clustering data streams, 2017 46th Int. Conf. on Parallel Process.,

Bristol, UK, 2017.

6. A. Amini and T. Y. Wah, A density-grid based clustering algorithm for evolv-
ing data streams over sliding window, Int. Conf. Data Mining Comput. Eng.,

Las Vegas, Nevada, USA, 2012.

7. A. Amini, H. Saboohi, T. Herawan, and T. Y. Wah, Mudi-stream: A multi
density clustering algorithm for evolving data stream, 2013 IEEE 13th Int.

Conf. on Data Mining Workshops (ICDMW), Shenzhen, China, 2014a.

8. Amineh Amini, Ying Wah Teh, and Hadi Saboohi, On density-based data

streams clustering algorithms: A survey, J. Comput. Sci. Technol. 29

(2014b), no. 1, 116–141.

9. R. Anderson and Y. S. Koh, StreamXM: An adaptive partitional cluster-
ing solution for evolving data streams. Big Data Analytics and Knowledge

Discovery, Valencia, Spain, 2015, pp. 270-282.

10. D. Arthur and S. Vassilvitskii, K-means++: The advantages of careful seed-
ing, Proc. Eighteenth Annu. ACM-SIAM Symp. Discrete Algorithms, New

Orleans, Luisiana, 2007.

11. J. P. Barddal, H. M. Gomes, and F. Enembreck, Sncstream: A social
network-based data stream clustering algorithm, Proc. 30th Annu. ACM

Sympos. Appl. Comput., SAC ‘15, New York, NY, USA, 2015, 935-940.

12. Jean Paul Barddal et al., Sncstream+, Inf. Syst. 62 (2016), no. C, 60–73.

13. Albert Bifet et al., Moa: Massive online analysis, J. Mach. Learn. Res. 11

(2010), no. 8, 617–620.

14. A. Bifet, G. Holmes, B. Pfahringer, J. Read, P. Kranen, Hardy Kremer,

T. Jansen, and T. Seidl. Moa: A real-time analytics open source frame-
work, Proc. 2011 Eur. Conf. Mach. Learn. Knowl. Discov. Databases, ECML

PKDD’11, Athens, Greece, vol. Part III, 2011.

15. J. A. Blackard and D. J. Dean, Comparative accuracies of artificial neu-

ral networks and discriminant analysis in predicting forest cover types from

cartographic variables, Comput. Electron. Agric. 24 (1999), 131–151.

16. C. Bohm, K. Kailing, H.-P. Kriegel, and P. Kroger, Density connected clus-
tering with local subspace preferences, Proc. Fourth IEEE Int. Conf. Data

Mining, Washington, DC, 2004, 27-34.

17. F. Cao, M. Ester, W. Qian, and A. Zhou, Density-based clustering over an
evolving data stream with noise, Proc. Sixth SIAM Conf. Data Mining, 2006.

18. Douglas O. Cardoso, Felipe M. G. França, and João Gama, Wcds: A

two-phase weightless neural system for data stream clustering, New Gener

Comput 35, San Diego, CA, USA, (2017), no. 4, 391–416.

19. Y. Chen and Li Tu. Density-based clustering for real-time stream data. Proc.

13th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, San Jose, CA,

2007, 133-142.

20. X. H. Dang, V. Lee, W. K. Ng, A. Ciptadi, and K. L. Ong, An EM-based
algorithm for clustering data streams in sliding windows, Proc. 14th Int.

Conf. Database Syst. Adv. Appl., 2012.

21. A. Forestiero, C. Pizzuti, and G. Spezzano. Flockstream: A bio-inspired
algorithm for clustering evolving data streams, Proc. 21st IEEE Int. Conf.

Tools Artif. Intell., Newark, New Jersey, USA, 2009.

22. J. Gama and M. Gaber, Eds., Learning from Data Streams, Springer, 2007.

23. J. Gao, J. Li, Z. Zhang, and P.-N. Tan, An incremental data stream clustering
algorithm based on dense units detection, Proc. 9th Pacific-Asia Conf. Adv.

Knowl. Discov. Data Mining, Hanoi, Vietnam, 2005.

24. S. Gong, Y. Zhang, and G. Yu, Clustering stream data by exploring the
evolution of density mountain. ArXiv, 2017.

25. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, Clustering data
streams, Proc. 41st Annu. Symp. Foundations Comput. Sci., IEEE Computer

Society, CA, USA, 2000.

26. Sudipto Guha et al., Clustering data streams: Theory and practice, IEEE

Trans. Knowl. Data Eng. 15 (2009), no. 3, 515–528.

27. Michael Hahsler, Matthew Bolaos, and John Forrest, Introduction to stream

: An extensible framework for data stream clustering research with R, J. Stat.

Softw. 76 (2017), 1–28.

28. M. Hassani, P. Spaus, M. M. Gaber, and T. Seidl, Density-based projected
clustering of data streams, Proc. 6th Int. Conf. Scalable Uncertainty Manage.,

Marburg, Germany, 2012.

29. A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: A review, ACM

Comput. Surv. 31 (1999), no. 3, 264–323.

30. C. Jia, C. Tan, and A. Yong, A grid and density-based clustering algorithm
for processing data stream, Conf. Genet. Evol, Comput., 2008.

31. James Kennedy and Russell C. Eberhart, Swarm Intelligence, Morgan Kauf-

mann Publishers Inc, 2001.

32. Philipp Kranen et al., The clustree: Indexing micro-clusters for anytime

stream mining, Knowl. Inf. Syst. 29 (2011), no. 2, 249–272.

33. H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes, and B.

Pfahringer, An effective evaluation measure for clustering on evolving data
streams, Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,

San Diego, CA, USA, 2011.

34. Wan Li et al., Density-based clustering of data streams at multiple resolu-

tions, ACM Trans. Knowl. Discov. Data 3 (2009), no. 3, 1–28.

35. M. Lichman, UCI Machine Learning Repository, Univ. of California, Irvine,

CA, 2013.

36. J. Lin and H. Lin, A density-based clustering over evolving heterogeneous
data stream, ISECS Int. Colloquium on Comput. Commun. Control Manage.

2009, CCCM 2009, 2009.

37. L. Li-xiong, H. Hai, G. Yun-fei, and C. Fu-Cai, rDenstream, a clustering
algorithm over an evolving data stream, Proc. Int. Conf. Inf. Eng. Comput.

Sci., ICIECS, Wuhan, China, 2009.

38. Y. Mirsky, B. Shapira, L. Rokach, and Y. Elovici, pcstream: A stream clus-
tering algorithm for dynamically detecting and managing temporal contexts,

Adv. Knowl. Discov. Data Mining, Auckland, New Zealand, 2015.

39. Hai-Long Nguyen, Yew-Kwong Woon, and Wee Keong Ng, A survey on data

stream clustering and classification, Knowl. Inf. Sys. 45 (2014), 535–569.

40. I. Ntoutsi, A. Zimek, T. Palpanas, P. Kröger, and H.-P. Kriegel, Density-based
projected clustering over high dimensional data streams, Proc. 12th SIAM

Int. Conf. Data Mining, Anaheim, CA, USA, 2012.

41. L. O’Callaghan, N. Mishra, A. Meyreson, S. Guha, and R. Motwani,

Streaming-data algorithms for high-quality clustering, Proc. 18th Int. Conf.

Data Eng., 2002.

42. C. M. M. Pereira and R. F. de Mello, Ts-stream: Clustering time series on

data streams, J. Intell. Inf. Syst. 42 (2014), no. 3, 531–566.

http://orcid.org/0000-0002-0184-207X
http://orcid.org/0000-0002-0184-207X


MANSALIS ET AL. 187

43. J. Ren and R. Ma, Density-based data streams clustering over sliding win-
dows, Proc. Sixth Int. Conf. Fuzzy Syst. Knowl. Discov., Tianjin, China,

2009.

44. Jiadong Ren, Binlei Cai, and Changzhen Hu, Clustering over data streams

based on grid density and index tree, J. Converg. Inf. Technol. 6 (2011), no. 1,

1–8.

45. C. Ruiz, M. Spiliopoulou, and E. Menasalvas, C-dbscan: Density-based clus-
tering with constraints, Proc. 11th Int. Conf. Rough Sets, Fuzzy Sets, Data

Mining and Granular Computing, Toronto, Canada, 2007.

46. C. Ruiz, E. Menasalvas, and M. Spiliopoulou, C-denstream: Using domain
knowledge on a data stream, Proc. Int. Conf. Inf. Eng. Comput. Sci., ICIECS,

Wuhan, China, 2009.

47. Jonathan A. Silva et al., Data stream clustering: A survey, ACM Comput.

Surv. 46 (2013), no. 1, 1–31.

48. M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult, Monic: model-
ing and monitoring cluster transitions, Proc. 12th ACM SIGKDD Int. Conf.

Knowl. Discov. Data Mining, ACM, 2006, 706–711.

49. T. Zhang, R. Ramakrishnan, and M. Livny, Birch: An efficient data clustering
method for very large databases, Proc. ACM SIGMOD Int. Conf. Manage.

Data, 1996.

50. Aoying Zhou et al., Tracking clusters in evolving data streams over sliding

windows, Knowl. Inf. Sys. 15 (2008), no. 2, 181–214.

How to cite this article: Mansalis S, Ntoutsi E,

Pelekis N, Theodoridis Y. An evaluation of data

stream clustering algorithms. Stat Anal Data Min:
The ASA Data Sci Journal. 2018;11:167–187.

https://doi.org/10.1002/sam.11380




