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ABSTRACT

Huge amounts of textual streams are generated nowadays, espe-

cially in social networks like Twitter and Facebook. As the discus-

sion topics and user opinions on those topics change drastically

with time, those streams undergo changes in data distribution, lead-

ing to changes in the concept to be learned, a phenomenon called

concept drift. One particular type of drift, that has not yet attracted

a lot of attention is feature drift, i.e., changes in the features that

are relevant for the learning task at hand. In this work, we propose

an approach for handling feature drifts in textual streams. Our ap-

proach integrates i) an ensemble-based mechanism to accurately

predict the feature/word values for the next time-point by taking

into account the different features might be subject to different

temporal trends and ii) a sketch-based feature space maintenance

mechanism that allows for a memory-bounded maintenance of the

feature space over the stream. Experiments with textual streams

from the sentiment analysis, email preference and spam detection

demonstrate that our approach achieves significantly better or com-

petitive performance compared to baselines.
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1 INTRODUCTION

Huge amounts of textual streams are generated nowadays, espe-

cially in social networks like Twitter and Facebook. A key charac-

teristic of those streams is velocity, i.e., the content of the stream

changes over time as new topics arise, old topics disappear and

even for persistent topics, changes might occur. Such changes in

the underlying data generation process might cause changes in the

learned hypothesis, a phenomenon known as concept-drift [11].

Concept drift introduces new challenges for stream learners with

the most important being the ability of the models to adapt to

the underlying population changes. One particular type of change,

that has not yet attracted a lot of interest [2] is feature drifts, i.e.,

changes in the features that are relevant for the learning task. The

recent publication of [23] discusses such streams referring to them

as feature-evolving streams, where new features may arrive over

time and existing features may update their value.

Such changes are especially frequent in textual streams as the

feature space is high-dimensional (e.g., when considering words as

features) and sparse (i.e., words are not observed in all documents

and over the whole course of the stream). To deal with the new

incoming features, one has to maintain a valid feature space over

time that reflects the (temporal) importance of the features for the

learning task. We mostly interested in the second property of such

streams, the update of value of features. We are especially interested

in temporal feature drifts, i.e., changes in the importance of features

for the different classes over time, we refer to this as trends, hereafter.
For the sentiment analysis task, we show an example of words with

temporal trends in 1.
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Figure 1: Sentiment Ratio (
num. positives+1
num. negatives+1

) for four words,

where the red line indicates the threshold for change of sign.

By the figure we observe that exist words which are always

associated with the same class like the word “love” (positive). On
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the other hand, there are words like “summer” that display a sea-

sonal trend and are probably negative out of season. Or words, like

“weather” that display an autocorrelated trend depending on the

weather conditions of the last days. Finally, there are sudden words

such as “followFriday” that display short peaks in a class. Such sort

of temporal drifts might also occur at the class level, more positive

tweets in weekends as shown by [31]. Such temporal trends are

existing also in other textual streams such as in prediction of email

preference or spam detection. For example an user may change her

interest on a subject turning not interesting email to interesting

ones as time evolves.

In this work, we propose an approach for handling feature drifts

that discovers trends in the association of features with the different

classes and uses those trends to predict the feature values for the

next timepoint. As already shown via the aforementioned examples,

there is a large variety of such trends from regular to seasonal

and sudden occurrences; to capture this variety we propose an

ensemble that takes into account different feature periodicities. The

ensemble’s prediction are seamlessly integrated in a Multinomial

Naive Bayes (MNB) classifier whose model naturally depend on the

class conditional feature probabilities. Although there are already

approaches for adaptive MNB classifiers over streams, e.g., [29]

and [32], our work is the first to explicitly tackle the feature drift

problem. Our experimental findings show that such an explicit

handling of feature drifts, result in improved performance compared

to existing adaptive approaches.

The remainder of the paper is organized as follows: related work

is discussed in Section 2. Basic concepts are discussed in Section 3,

together with the problem definition. Our approach for handling

feature drifts in textual streams by exploiting different feature/class

trends is presented in Section 4. Experimental results are discussed

in Section 5. Finally, we conclude in Section 6.

2 RELATEDWORK

Data streams are generated from non-stationary distributions and

therefore, the learned hypotheses might change over the stream, a

phenomenon known as concept drifts [11]. A particular type of drifts,

not adequately addressed thus far by the related work, is feature
drifts referring to changes in the relation between a feature and the

target class over time. The authors in [27] argue that concept drifts

might lead into feature drifts and propose online feature selection

to maintain a representative feature space over the stream, upon

which a heterogeneous ensemble, of MNB and SVM experts, is

trained. Our approach also maintains a representative feature space

over the stream, however differently from online feature selection

methods our goal is to use feature history over the stream and

different feature trend detectors in order to predict future feature

values that comprise the input to an final MNB model.

Feature drifts are frequent in textual streams; we focus hereafter

on approaches based on Naive Bayes (NB) classifiers. In [17], the

authors couple NBs with incremental feature selection based on

information gain, for the email spam detection task. In [20], a local

likelihood method was presented that extends NBs by considering

feature/word information from a particular time-spanning window.

In [29], the authors employ exponential weighted moving average

to improve NBs in the presence of sudden words. In [32], a temporal

extension of NBs is proposed that decays the likelihood of a fea-

ture/word for a class and also the class priors based on the recency

of their occurrence in the stream. In contrast to the aforementioned

methods, in our approach we explicitly model feature drifts and

moreover, we consider four different types of feature drifts.

Regarding the application domain, feature drifts for textual streams

have been investigated in the context of sentiment analysis e.g., [32]

and spam detection, e.g., [21]. Besides, time series prediction meth-

ods have been employed for analyzing sentiment in the Twitter

stream. For example, in [12], such methods are used to investi-

gate particular sentiment characteristics like sentiment velocity

for a given entity, whereas in [28] the goal is to predict the over-

all sentiment in Twitter stream. Finally in [24], authors improved

lexicon-based sentiment analysis using the predicted sentiment

of words based on simple time series methods. In our approach,

we also rely on time-series prediction methods for predicting dif-

ferent trends for the features/words, however those predictions

are integrated in an MNB model for predicting sentiment at the

tweet level. Most similar to our work, is the taxi-demand prediction

method of [26] which consists of an ensemble of three experts, each

capturing different trends, namely, regular, seasonal and autocor-

related. In our approach, we moreover allow for the detection of

sudden events and we average out the predictions of the experts

assuring that the ensemble will predict as good as the best single

expert or the best combination of experts in hindsight. Moreover,

the application domain is completely different.

3 BASIC CONCEPTS AND PROBLEM

STATEMENT

We observe a textual stream D of documents arriving at distinct

time-points t1, · · · , ti with ti being the current time-point. Depend-

ing on the application, at each time-point ti , a batch of documents

instead of a single document might arrive. A document d ∈ D
is represented by the bag-of-words model as d = {v1,v2, · · ·vk }.
Given a predefined set of classes C , the goal of a stream classifier

is to maintain a valid classification model over the stream. With-

out loss of generality, we assume the classification problem is a

binary classification problem, i.e., C = {+,−}. Our learning setting

is fully supervised, that is, class labels are available for all docu-

ments. However, the label of a document d is available shortly after

its arrival. Therefore, the goal is to make a prediction for d using

the current classifier and then, upon the arrival of its label to use

the labeled instance (d, c ), c ∈ C , for training. This setup is known

as first-test-then-train or prequential evaluation [10].

Assuming a (hidden) probability distribution P generating the

instances of D, the characteristics of P might change with time, i.e.,

for two time-points ti , tj it might hold that Pi , Pj , a phenomenon

called concept drift [11]. There are different reasons for concept
drifts in a stream environment, which can be explained based on the

Bayes theorem [14]. In particular, according to the Bayes theorem,

the classification of a new document d from the stream depends on

the class priors, i.e., P (c ), c ∈ C , and the likelihood of observing d
under the different classes, i.e., P (d |c ):

P (c |d ) =
P (d |c )P (c )

P (d )
(1)
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We assume that the document probability P (d ) is the same for

all documents d ∈ D. Consequently, concept drift Pi , Pj between
two different time-points ti , tj might occur due to changes in the

following variables of Equation 1:

[C1] changes in the class priors, i.e., Pi (c ) , Pj (c ).
[C2] changes in the likelihood of a document for a class c ∈ C ,

i.e., Pi (d |c ) , Pj (d |c ).
[C3] changes in the posterior of a document for a class c ∈ C , i.e.,

Pi (c |d ) , Pj (c |d ).

A specific type of drifts, not directly captured by the C1 − C3
types above, is feature drifts [2]. A feature drift occurs when there

are changes in the relevance of the features for the learning task

over time. We distinguish between two types of feature drifts that

might occur between two different time-points ti , tj , namely:

[F1] the likelihood of a feature v for a class c may change with

time, i.e., Pi (v |c ) , Pj (v |c ). For example, for the sentiment

classification task the feature “summer” displays a seasonal

trend being positive in-season and negative off-season.

[F2] the feature space might change, i.e., Fi , Fj , where Fi (Fj )
is the feature space for time-point ti (tj , respectively). In
literature this is referred as dynamic feature space, e.g., [27].

Our goal is to build a classification model over the stream that

besides dealing with concept drifts (typesC1−C3), it also explicitly
targets feature drifts (types F1 and F2). An MNB classifier com-

prises a natural model choice for dealing with feature drifts as it

decomposes the problem of estimating the likelihood of a document

for a class to the problem of estimating the likelihood of observing

the features/words of the document under that class (the so-called

class-conditional feature independence assumption). In particular,

according to a MNB classifier, the class of a document d is the class

that maximizes the posterior, namely:

ĉd = argmax

c ∈C
P (c )P (d |c ) = argmax

c ∈C
P (c )

∏
v ∈d

P (v |c )
(2)

Based on this formula, MNB captures F1 type drifts (variable P (v |c ))
andC2 type drifts (by combining F1 type drifts as: P (d |c ) =

∏
v ∈d P (v |c )).

Moreover, the classifier explicitly models the class priors, so it tack-

les C1 type drifts. Finally, it tackles F2 type drifts by maintaining

a feature space of the top most frequent features over the stream

(c.f. Section 4.2). Since, C3 type drift is the result of C1 and C2 type
drifts, we show how to integrate C1 −C3 and F1 type drifts to an

MNB classifier in Section 4.3. The seamless integration of feature

drifts in the model is not the only reason for choosing MNB as the

learning model. The MNB classifier has proven to performmodestly

over streams [7] and in particular, over high dimensional streams

like textual streams [30]. Moreover, such models can be efficiently

maintained over streams as they rely on simple statistics.

4 LEARNING UNDER FEATURE DRIFTS

WITH MNB CLASSIFIERS

We propose an MNB classifier that deals with concept drifts and

feature drifts. Our approach is based on the observation that dif-

ferent features/words follow different trends with respect to their

association to the class attribute. That is, in a sentiment classifi-

cation task the word “love” has a regular trend in positive class,

the word “summer” has a seasonal trend, the word “weather” may

exhibit autocorrelated trend based on the atmospheric conditions of

previous days and sudden words, in a Twitter stream, such as “fol-

lowFriday” may exhibit short (sudden) peak trends. Therefore, our

idea is to learn those trends for each feature/word independently

and combine their predictions via an MNB classifier. An overview

of our framework is shown in Figure 2. As shown in this figure,
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Figure 2: Overview of our approach.

our approach combines three components:

• a feature prediction component that uses an ensemble of ex-

perts each capturing distinct feature/word trends to tackle

the C1 −C3 and F1 type drifts (Section 4.1),

• a feature space maintenance component that maintains a valid

fixed size feature space over the stream to fulfill the memory-

bounded requirement of streams but also to tackle F2 type
drifts (Section 4.2), and

• a feature-drift enabled MNB model that utilizes the aforemen-

tioned components for document classification (Section 4.3).

Consequently, the proposed the feature-drift enabled MNB model

can accommodate all types of drift C1,C2,C3, F1, and F2.

4.1 An ensemble for learning different feature

trends

The goal of the ensemble is to predict for each feature/word its

value at the next time-point. To this end, we rely on a feature’s

history from the stream. In particular, let us assume the textual

stream D arriving over time and let T = {t1, .., ti } be the ordered
set of observed time-points up to point ti . We observe feature

occurrences over the stream and in particular, class priors and word

class-conditional counts. For simplicity, hereafter we refer to words,

however we follow the same methodology for class priors.

We denote nv,c the conditional count of a wordv in a class c ∈ C .
Assuming an aggregation period of P time units, the sampling

values form a discrete univariate time series, defined as follows:

Nv,c = {nv,c (P ), . . . ,nv,c (lP )} (3)

where nv,c (lP ) is the observed conditional count of v in class c
at the l-th aggregation period. We will refer to the history of the

whole time series as word history, Hv . Each of the following models

will use the whole or a sliding window of Hv , which is referred to

model history, hereafter.
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In order to solve the problem statement, we will present an

ensemble of experts each modeling a distinct trend. We present

each expert in Section 4.1.1 and the aggregation of their prediction

by the ensemble in Section 4.1.2.

4.1.1 Feature prediction by experts. Thus far we discuss four
distinct trends, regular, seasonal regular, autocorrelated and sudden.
In this section we present four models, each to capture one of these

distinct trends.

Poisson Model: We employ a Poisson model to capture regu-
lar trends. This model uses the Poisson distribution to relate the

probability of having n as nv,c ((l + 1)P ), (P (nv,c ((l + 1)P ) = n))
defined by the following equation:

P (n; λ) =
e−λλn

n!
(4)

where λ is the average number of nv,c (P ) over the model history.
The goal is to learn regular trends over the whole history of the

word, therefore the Poisson model utilizes the whole word history.
That is HPoisson ≡ Hv .

Seasonal Poisson Model: This model can capture time se-

ries with a seasonal regular trend. Using the exponential smoothing

algorithm [15], the expert will find the average over each group of

aggregation periods and then it will aggregate all averages using

weighted average with fading weights αs based on the recency of

the group. For example if the aggregation period is P = 1 hour and

the model group these periods in weeks, storing the last γs weeks,
it will keep 7 · 24 aggregation periods for each group (week). Then

it will aggregate the average of each week using the exponential

smoothing algorithm. These weights increase as we move from the

current week to the previous ones. By this, the averages observed

two weeks before are less relevant to the average observed in this
week. We calculate the weights setω using the exponential smooth-

ing algorithm [15]. Thus we can compute the weighted average

over the weeks of the history.

Thus we define ωs as follows:

ωs = αs · {1, (1 − αs ), (1 − αs )
2, . . . , (1 − αs )

γs−1},γs ∈ N (5)

where γs is the number of groups of aggregation periods which

the model considers and 0 < as < 1 is the smoothing factor. Both

variables are user-defined. Having computed the average for each

group, λk ,k = {1, . . . ,γs }, we can now define the weighted average

µs as follows:

µs =

γs∑
k=1

λk · ωsk
Ωs

,Ωs =

γs∑
k=1

ωsk (6)

Then substituting the smoothed average, µs , into 4 we get the

seasonal Poisson model. The expert keeps the newest γs groups

containing д aggregation periods (P ), consequently its history is

sliding and equals to |H
Seasonal

| = γs д P and it holds H
Seasonal

⊂

Hv .
Autoregressive IntegratedMoving AverageModel:

To model autocorrelated trends, we use the AutoRegressive Inte-

grated Moving Average technique (ARIMA) [8]. The model is de-

fined by three parameters ARIMA(p,d,q), where p and q are the

order of the autoregressive and moving average submodels, re-

spectively and d is the lag of the series. The model stores a sliding
window of size γa aggregation periods (P ). We denote the model’s

history by HARIMA ⊂ Hv and it holds |HARIMA | = γa P . A detailed

description of ARIMA model can be found at [9] (Chapter 4 and 5).

Exponential Weighted Moving Average Model: The

last model intends to capture regularity only on the short-term

history and it is inspired by [29]. The model aggregates the ob-

servations in the history HEWMA ⊂ Hv using the exponential

moving average with fading weights αe reflecting the recency of

the observations. More formally, we use the exponential smooth-

ing [15] to weight each observed value (Nv,c (jP )) of the short

history, containing the last γe aggregation periods P of the series

(HEWMA ⊂ Hv ). The model keeps a sliding window over the last γe
P , |HEWMA | = γe P . Then predicts the future value as the weighted

average of the values inHEWMA, using the same logic as the second

model. We define the set of weights we for each observed value

inside the sliding window of size γe :

ωe = αe · {1, (1 − αe ), (1 − αe )
2, . . . , (1 − αe )

γe−1},γe ∈ N (7)

We combine the predictions using the ωe of 7 as their weighted

average µe as follows:

µe =

γe∑
k=1

Xi,tk · ωek
Ωe

,Ωe =

γe∑
k=1

ωek (8)

4.1.2 Averaging predictions of experts. Our assumption is that

the trend of each word can be modeled in the best way by one

expert or by a (weighted) combination of them. More formally,

given the time series Nv,c up to aggregation period l − 1, the

M experts will predict for the next aggregation period l and in-

put their values to the ensemble, which will aggregate their pre-

diction to result in the final prediction. In this work, we have

four experts (M = 4). For them we denote their predictions as

n̂v,c (l )
Poisson, n̂v,c (l )

Seasonal, n̂v,c (l )
ARIMA, n̂v,c (l )

EWMA
and of the

ensemble as n̂v,c (l )
Ensemble

. Let nv,c (l ) be the observed value of

the conditional count of v in c , at the next aggregation period l . We

assume each of the predicted values and the observed one are in the

range of [0,B], where B ∈ N is the upper limit of the conditional

count of such word in the total stream and it is user-defined.

To measure the performance of the ensemble we use a loss func-
tion L which outputs a non-negative quantity L(nv,c (l ), n̂v,c (l ))
indicating the difference between the observed (true) outcome and

the predicted one. Assuming an expert that can best model the

input then we can measure the difference of the ensemble perfor-

mance compared to this learner using the regret measure, r , which
is defined as:

r =
∑
l

L(nv,c (l ), n̂v,c (l )
Ensemble )− min

e=Poisson,Seasonal,
ARIMA,EWMA

∑
l

L(nv,c (l ), n̂v,c (l )
e )

(9)

In order to predict with guaranteed regret we follow the results

of [19]. To this end we use the weighted average algorithm, WAA,

as formulated in [19]. We show the whole method in algorithm

1, which follows the prequential process. We use the square loss

function, L(nv,c , n̂v,c ) = (nv,c − n̂v,c )
2
. By the equation 8 in [19],

for nv,c ∈ [0,B] we compute the c̃L equal to 2B2. This weighting
scheme gives us constant upper bound on the regret of the ensemble

predictions, as stated by the following theorem:

Theorem 4.1. [Kivinen & Warmuth [19]] Let L be a monotone
convex twice differentiable loss function the WAA as in algorithm 1
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with uniform initial weights, wl=1,i = 1 and with c ≥ c̃L . Then for
any sequence of Nv,c = {nv,c (P ), . . . ,nv,c (lP )} we have

LossWAA (Nv,c ) ≤ (mineLosse (Nv,c )) + clnM . (10)

As stated in [19], having a bound for the regret compared to the

combination of learners that models best the input is better than

regrets compared to the best single model (4.1). Using the same

setting, we can state the following theorem that bounds the regret

compared to the best combination as follows:

Theorem 4.2. [Kivinen & Warmuth [19]] Let L be a monotone
convex twice differentiable loss function in WAA as in algorithm 1 us-
ing arbitrary initial weights, ql=1 and parameter c = c̃L . Then for any
sequence of Nv,c = {nv,c (P ), . . . ,nv,c (lP )} and for all probability
vectors p we have

LossWAA (S ) ≤ Loss
avg
p + c̃Ldre (p, q). (11)

Where qt is the weight vector to combine each expert. As the

weight vector is normalized and sums up to 1 is also a probability

vector. Letp be such a probability vector, being the best combination

of averaging the experts. To measure the difference of the two

probability vectors, we use the relative entropy defined asdre (p, q) =∑n
b=1 pi ln(pi/qi ).

4.2 A sketch-based approach for feature space

maintenance

To fulfill the bounded memory requirement of data streams [7], we

maintain a fixed-size feature space over the course of the stream.We

have used three versions of the algorithm. The baselineSketch uses
the original algorithm by [25]. In our setting the sketch saves pairs

of (word, occurence count). To account for the importance of fre-

quent words we use the fadingSketch version. The last version is

the adwinSketch which uses the ADWIN algorithm [4] as change

detector to remove a saved word when it is significantly not used

anymore in the stream. All different sketches allow us to main-

tain a fixed size feature space over the stream. Depending on the

sketch type though, the update of the feature space varies. That is

the sketch decides to remove not frequent words to accommodate

new words coming from the stream. We devote Section 5.2 on the

experiments to evaluate the impact of the sketch.

4.3 Incorporating feature drifts in MNB

This last section combines the previous two components, sketch

and ensemble, to introduce a MNB classifier that can tackle the

stated problem. We refer to this model as temporalMNB . As shown

we present by its algorithm 1, for each arriving document di , firstly
its words are saved in the sketch. Then assuming the l − 1 as

the current index of periods for the priors of each class c and

the conditional counts of each word v . The ensemble predicts the

n̂c (lP ) and n̂v,c (lP ), for the l-th (next) aggregation period using

the weighted average of the experts’ prediction (EnsemblePredict()).

Then we define P
temporal

(c ) as the predicted class prior probabil-

ity and P
temporal

(wi |c ) as the respective predicted likelihood for

the word. The temporalMNB model predicts using the following

equation:

Algorithm 1 Temporal MNB

diffTime, t previous, l ← {0c , 01, . . . , 0|V | }
xprevious, xperiod ← {[0, 0]c , [0, 0]1, . . . , [0, 0]|V | }
V ← {}

W ← {

[
1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

]

c
,

[
1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

]

1

, ..,

[
1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

]

|V |
}

N ← {{{}, { } }c , { { }, { } }1, . . . , { { }, { } }|V | }

function ensembleTrain(xv ,Wv , x̂v , t )
diffTime[v]← diffTime[v] + (t − t previous[v])
if diffTime[v] ≤ P then ▷ Aggregate for P time units

for all c j ∈ C do

xprevious[v][c]← xprevious[v][c] + xv [c j ]
Nv [c j ][l [v]]← xprevious[v][c j ]

end for

else ▷ New aggregation period

for all c j ∈ C do

xperiod[v][c j ]← xprevious[v][c j ] ▷ Observe real value

Nv [c j ][l [v]]← xperiod[v][c j ]
for e = 1 to 4 do ▷ Update experts’ weights

W l [v ]+1
v [c j , e]←

Wl [v ]

v [cj ,e]exp (−(xperiod[v ][cj ]−x̂v [cj ])
2/c )∑

4

e=1W
l [v ]

v [cj ,e]exp (−(xperiod[v ][cj ]−x̂v [cj ])2/c )

end for

end for

k[v]← l [v] + 1, diffTime[v]← 0, t previous[v]← t ▷ Reset aggregation

for all c j ∈ C do

xprevious[v][c j ]← xprevious[v][c j ] + xv [c j ]
end for

end if

returnW k [v ]

v
end function

function ensemblePredict(Xv ,Wv , c j , t )
x̂experts ← [0, 0, 0, 0], x̂ensemble ← 0

for e = 1 to 4 do ▷ Experts predict

x̂experts[e]← Experte .predict (Xv [c j ],Wv [c j ], t )
end for

x̂ensemble ←Wv [c j ] · x̂experts ▷ Ensemble predicts

return x̂ensemble

end function

function main( )

for all (di , ti ) ∈ D do

Vdi ← features(di )
V ← sketch(Vdi , V )
for all c j ∈ C do ▷ Predict for priors and likelihoods

N̂c [c j ]← ensemblePredict(Nc ,Wc , c j , ti )
for all vdi ∈ Vdi do

N̂vdi
[c j ]← ensemblePredict(Nvdi

,Wvdi
, c j , ti )

end for

end for

▷ Predict for document by eq.12

ĉd = argmaxcj ∈C
Ptemporal (c j )

∏
i Ptemporal (vi |c j )

freq
d
vi

▷ Train for prios and likelihoods

Observe nc for both classes at ti
Wc ← ensembleTrain(nc ,Wc , N̂c , ti )
for all vdi ∈ Vdi do

Observe nvdi
for both classes at ti

Wvdi
← ensembleTrain(nvdi

,Wvdi
, N̂vdi

, ti )
end for

end for

end function

ĉdi = argmax

c ∈C
P
temporal

(c |d ′)

= argmax

c ∈C
P
temporal

(c )
∏

v ∈Vdi

P
temporal

(v |c )
(12)

Finally, the true class of the di is observed. We aggregate the ob-

served values. When a new aggregation period (lP ) is reached the
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ensemble observes the real outcome nc (lP ), nv,c (lP ), it incurs loss
and updates its weights as shown in EnsembleTrain().

5 EXPERIMENTAL EVALUATION

We evaluated our approach on a real dataset from Twitter, which

is related to sentiment classification (Section 5.1). The role of the

sketch in feature space selection is investigated in Section 5.2. The

prediction accuracy is evaluated in Section 5.3, where we compare

our approach to several baselines, listed below:

• accumulativeMNB [3], the original MNB for streams where

the word-class and class counts are accumulated over the

stream. This is an incremental approach, however it does

not deal with drifts [30].

• fadingMNB [32], adapts accumulativeMNB for concept drifts
by introducing a fading function that decays (the accumu-

lated over the stream) class counts and conditionals counts

based on the recency of their observation. The fading func-

tion depends on the decay factor λ which controls how fast

the observations age and on the aggregation period (e.g.,

daily vs weekly).

• aggressivefadingMNB [32], is a variation of fadingMNB that
stores the decayed counts and applies ageing over them, thus

leading to faster adaptation. The aggressivefadingMNB de-

pends on the same parameters as fadingMNB.

We implemented our approach in MOA, Version 2017.06 [5]. For

the sketch, we used its publicly available implementation from the

MOA-tweetreader package [6]. For ARIMA, we used the available

Java library
1
. Our implementation is available at a public reposi-

tory
2
.

We employed prequential evaluation over a sliding window of

1,000 instances over each day of the dataset. As evaluation mea-

sures, we use accuracy and kappa [3]. Accuracy is the percentage

of correctly predicted instances over all instances of the sliding

window. However, accuracy cannot indicate if the model achieved

a high value by overfitting on the current data distribution. To

this end, the kappa statistic is also employed that normalizes the

model performance by that of a chance classifier. We report on both

average and standard deviation of those measures for each sliding

window of each day.

5.1 Datasets

TSentiment [13] consists of 1.6M tweets collected over a period

of three months (April 6 - June 25, 2009) annotated as positive or

negative through distant supervision using emoticons as proxies for

the class labels. We preprocessed the data set following the typical

preprocessing steps for sentiment analysis [[16], [1]]. Firstly, we

treated negations spliting them into two words for example we

substitute “can’t” with “can not”. Then, we removed hashtags, men-

tions and URLs and converted all remaining words to lowercase.

We replaced each positive emoticon with the word “EMO_POS” and

each negative with the word “EMO_NEG”. We substituted a word

with repetitions of letters with the normal writing of the word for

example “cooool” to “cool”. We expanded acronyms using the dic-

tionary of [1]. We removed punctuation, numbers and whitespaces.

1Java TimeSeries Library: https://github.com/signaflo/java-timeseries.

2
GitHub Repository:https://github.com/damianosmel/temporalMNB

Also we used stemming, keeping the common base form of each

word. Finally, we removed stop words using the list in [22].

The dataset is in overall balanced (50% positive, 50% negative

tweets) but the empirical class distribution changes with time as

shown in Figure 3 where the tweets are aggregated on a daily basis.

As we can see, at the end of the monitoring period only the negative

class is observed. This is an example of concept drift. No feature

drifts are known for this data set.
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Figure 3: TSentiment: Class distribution over the stream

(daily aggregation).

Email data [18] consists of 1,500 emails of 913 attributes. The

task is to predict if an email is interesting or not for a given user. The

authors know the trends of drift for some words, namely “medicine”,

“baseball” and “space”.

Spam data [18] consists of 9,324 emails of 500 attributes. The

task is to predict if an email is spam or ham. The authors use this

data set as a complementary to Email data set to experiment with

a data set where the features evolve smoother compared to the

Email data set. For both of these data sets, we preprocessed the

data set using the same techniques as before. As these two data

sets are small we did not use the sketch component but we kept

all found words. The goal using this data set is to verify that our

proposed ensemble can capture such already known trends.

5.2 Sketch evaluation

The sketch (c.f., Section 4.2) allows us to adapt to feature drifts in

a memory-efficient way, by controlling the number of maintained

words (parameter nf ). The adaptation rate of the sketch and conse-

quently of the feature space depends on the selected sketch type

(baselineSketch, fadingSketch, adwinSketch). In this section

we evaluate the effect of nf (sketch size) and of the different sketch

types (sketch adaptation type).

5.2.1 Sketch size. We experimented with three different sketch

sizes nf : 3,000, 5,000 and 10,000 distinct words. We fixed the type

of sketch to baselineSketch that has the lowest ability to adapt

to changes. We evaluate the impact of nf on stream classification

using the accumulativeMNB classifier.

As shown in Figure 4, the performance has two phases, before

and after the point of the class drift. Before class drift, the larger

sketch size results to the best performance, after change the smallest

sketch size performs better. This is reasonable, as during stable

https://github.com/signaflo/java-timeseries.
https://github.com/damianosmel/temporalMNB
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phases the larger the sketch the more frequent words are kept thus

improving the performance of the learner. However, when a change

occurs, a smaller sketch will faster forget the old words and will

start maintaining more recent words. A trade-off is nf = 5, 000,

which performs decently in terms of both accuracy and memory

usage. So, for the rest of the experiments we fixed nf to 5,000

distinct words.
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Figure 4: TSentiment: Effect of sketch size (daily ag-

gregated stream, 1,000 instances evaluation window,

accumulativeMNB classifier, baselineSketch adaptation

type).

5.2.2 Sketch adaptation type. We evaluate the performance of

the different sketch types, baselineSketch, fadingSketch and

adwinSketch, using a fixed sketch size of nf = 5, 000 words. Again,

we use accumulativeMNB as the learning model.

From the results, in Figure 5, we can see that the performance

has again two phases separated by the point of class drift. Before

the drift, the fadingSketch performs better closely followed by

the baselineSketch. After drift, adwinSketch performs better,

followed again by baselineSketch. The difference in the behav-

ior of fadingSketch and adwinSketch before and after the drift

point is due to their update rate. The adwinSketch adapts faster

to changes as it replaces words which display significant drop in

their usage. On the other hand, fadingSketch downgrades words

based on their recency without counting for changes in their us-

age frequency. Since we are interested in a sketch that performs

decently in both times of stability and times of change, we chose

baselineSketch that was consistently the second best performing

sketch for the experiments hereafter.

5.2.3 Sketch variability. Thus far, we have evaluated the effect

of sketch size and sketch adaptation type on the performance of a

stream classifier. In this section, we evaluate the sketch variability,

i.e., how the words in the sketch are replaced over the stream. Recall

that due to the memory constraint, only a fixed number of nf words

can be maintained over the stream.

To this end, we plot i) the existence of change as the percentage
of instances introducing new words over the total number of in-

stances of the day. Moreover, we are interested in the degree of

such changes. To this end, we also plot ii) the degree of change as
the percentage of new introduced words in the documents with
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Figure 5: TSentiment: Effect of sketch adaptation type

(daily aggregated stream, 1,000 instances evaluationwindow,

accumulativeMNB classifier, nf = 5, 000 words).

new words normalized with the length of the document and aver-

aged over all documents with new words. The results are shown in

Figure 6 (blue for (i) and red for (ii)).

We can observe that approximately half of the tweets introduce

new words (blue axis) over all the course of the stream. However,

the percentage of change for each such tweet is roughly 20%, i.e

one new word is found in every five words of a document (red axis).

We observe a large variability in the sketch in the beginning of the

stream (from 6/4 to 15/4), which is probably due to the instable

initialization of the sketch on 6/4. The variability scores are lower

after the class drift point (Figure 3). A large drop is also observed

on 23/5 where we observe the smallest number of documents intro-

ducing new words. However, the actual number of such documents

is small as we can see from Figure 3.

Consequently, we can state that the baselineSketch produces

a feature space that does not drastically change. Thus the resulted

space can be employed by the learning component.
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Figure 6: TSentiment: Variability of sketch, left y axis (blue):

% of tweets introducing new words per day, right y axis
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baselineSketch with nf = 5, 000 words).
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5.3 Performance evaluation

5.3.1 Parameter setting. Before comparing our approach to the

baselines, we tuned their parameters. That is, for the fadingMNB and
the aggressivefadingMNB we tested for λ = {0.1, 1, 2} and aggre-

gation of second and hour based on the results of [32]. The best

values for these two baselines is hourly aggregation and λ = 0.1.

This means halving the conditional count after 10 hours of observ-

ing the word.

For the ensemble, we set the aggregation period P based on two

facts. First, we intend to use value of P such that the ensemble can

follow potential drifts of the class or the word feature. Secondly,

the series for the class has very short interval as it comes by each

instance but the respective series for a word has a wider interval.

Thus, we tuned the parameters to capture distinct trends using

aggregation period of P = 1 second for the class prior and P = 1

minute for the conditional counts of each word. For the first model,

Poisson, we do not need to tune parameters as it is parameter-

free. For the seasonal model, we set the sliding window history

to γs = 1 week, i.e H
Seasonal

= 2 week, capturing seasonal events

during two weeks period. As the first two models capture long term

dependencies we will select parameters for the last two to capture

short term dependencies. Thus, for the ARIMA model, we use (p =
1,d = 1,q = 1) to capture non-stationary time dependencies, over

the last 50 periods, HARIMA = 50P . Following the same intuition,

with the EWMA model that captures short time-dependencies we

used a sliding window of size γe = 22 periods, HEWMA = 22 P .
We set the values for fading factors of Seasonal and EWMA equal

to αs = 0.9 and αe = 0.1 respectively, using the corresponding

equations from [15]. Experimentally, running the first three days

of the stream and observing the maximum value for the class prior

and the conditional count of a word we set B = 30, consequently

c̃L = 1800.

5.3.2 Performance. In Figure 7, the accuracy of the different ap-

proaches over the TSentiment dataset is depicted. We can observe

that our approach performs always better than the baselines except

for two days 23/05 and 25/05. After manual observing the distribu-

tion of timestamps in these two days we found that on both days

we had only 169 instances having a time span of 2 minutes, on 23/05

there are instances from 18:04:32 to 18:06:34 and on 25/05 are from

10:42:48 to 10:44:22. Given our parameter selection, the ensemble

samples every second for the class prior and every hour for the

likelihood of each word, all changed words found in these days can-

not be used for learning and consequently for their prediction the

Laplace correction is used. From Figure 6, we can observe that the

percentage of documents with changed words is close to 50% and

56% and the average number of changed words in these documents

is close to 2 out of 10. Thus, in addition having words with short life

span, the half of the documents introduce new words which again

span a short period of time not allowing the ensemble to be used

for prediction. On the contrary, a method that the update of the

model for a word is per instance, and not per aggregation period,

should not show this drop in accuracy. This is true for the other

two competitive baselines, the accumulativeMNB and fadingMNB.
We also plot the kappa measure in Figure 8 that normalizes the

accuracy of the classifier with that of a chance predictor. Again, our

approach outperforms the rest of the approaches over the stream,
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Figure 7: TSentiment: Accuracy over the stream for the

different methods.(daily aggregated stream, 1,000 instances

evaluation window, baselineSketch, nf = 5, 000 words)

with the only exception of one day (25/05). This is caused because

the time span of instances is shorter than the sampling rate of

the ensemble as previously explained. To check the statistical
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Figure 8: TSentiment: Kappa over the stream for the differ-

ent methods.(daily aggregated stream, 1,000 instances eval-

uation window, baselineSketch, nf = 5, 000 words)

significance of our findings, we performed the McNemar’s test
3
.

We found that temporalMNB makes different predictions compared

to the best baseline, accumulativeMNB, significantly withp < .001.

5.4 Efficiency

The running times for the different methods are presented in Table 1.

Our approach is 713 times slower for total learning per instance

comparing to the accumulativeMNB baseline; this is due to the

employment of four different predictors for the ensemble. However,

our approach can still perform at modest speed with an average

of 2.53 · 10−2 seconds per instance for the total learning process.

Finally, the needed main memory to run this algorithm for the

TSentiment is maximum 20 GB.

5.5 Ensemble Validity

5.5.1 Parameter setting. Compared to the previous data set we

note that this data set does not have time stamps so we assume

3
McNemar’s test: https://en.wikipedia.org/wiki/McNemar’s_test.

https://en.wikipedia.org/wiki/McNemar's_test


Learning under Feature Drifts in Textual Streams CIKM ’18, October 22–26, 2018, Torino, Italy

Method Training Testing Total

accumulativeMNB 4.85 · 10−5 (1) 1.67 · 10−5 (1) 6.53 · 10−5 (1)
fadingMNB 7.14 · 10−6 (0.1) 2.31 · 10−5 (1.3) 3.03 · 10−5 (0.5)

aggressivefadingMNB 9.66 · 10−6 (0.2) 2.04 · 10−5 (1.2) 3.01 · 10−5 (0.5)
temporalMNB 8.34 · 10−5 (1.72) 2.52 · 10−2 (1, 508.9) 2.53 · 10−2 (387.4)

Table 1: Execution times per instance in seconds and relative times compared to the accumulativeMNB in parenthesis.

periods over number of instances. Then, we tuned the parameters

of the baselines. For the fadingMNB and aggressivefadingMNB,
we found λ = 2.0 and λ = 0.1 over a period of 50 instances for

the Email and Spam data sets respectively. We also tuned the

parameters for temporalMNB . We found the same parameters for

both data sets. For both the class prior and the conditional counts

of words we use P = 2 instances. The Poisson model is parameter-

free. For the seasonal model, we set the sliding window history

to γs = 2 instance groups, i.e H
Seasonal

= 2 groups, where an

instance group is 25P instances. For the ARIMA model, we used

(p = 1,d = 1,q = 1) to capture non-stationary time dependencies,

over the last 150 periods, HARIMA = 150 P . For the EWMA model,

we used a sliding window of size γe = 22 periods, HEWMA = 22 P .
We set the values for fading factors of Seasonal and EWMA equal

to αs = 0.9 and αe = 0.1 respectively, using the corresponding

equations from [15]. Experimentally, running the first instances

of the stream and we observed the maximum value for the class

prior and the conditional count of a word we set B = 2 and B = 6,

consequently c̃L = 8 and c̃L = 72 for prior and the conditional

count respectively.

5.5.2 Performance. We plot the accuracy and kappa measure

every 50 instances in order to be compared to the evaluation of the

original research work of [18]. The accuracy plots are shown in

Figure 9. We can observe that the ensemble achieves competitive re-

sults for both data sets. For theEmail data set the temporalMNB can-
not achieve the best results as it uses experts of sliding windows

and this data set contains abrupt class changes. However, after

an abrupt class change, for example at the batch of 350 instances,

the ensemble recovers to its normal accuracy after two batches of

instances. For the Spam data set which has a more gradual class

change the temporalMNB achieved better performance competitive

to fadingMNB.

5.5.3 Validity. As for the Email data set the authors know the

trends of three words, “medicine”, “space” and “baseball”, we aim

to validated the first stated theorem 4.1. To this end, we plotted the

observed value and the predicted values of the best single expert

(ARIMA) and of the ensemble for “medicine” and “space” as shown

in the Figure 11. From this figure, we observe that truly the ensemble

follows the best single expert, and the observed value, in an optimal

way much lower than the given upper clnM = 99.8.

6 CONCLUSION

Wehave proposed amethod to tackle concept and feature drift using

two components. The first component is a sketch to maintain an

updated feature space over the stream. The second is an ensemble to
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Figure 9: Email: Accuracy of batches of 50 instances over the

stream.
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Figure 10: Spam: Accuracy of batches of 50 instances over

the stream.

average out potential different trends of a feature. For the average

out mechanism, we can guarantee that we can find the best single

or probabilistic combination of trends representing the drift of each

feature. Our experiments on textual streams demonstrated that our

approach achieves competitive results compared to baselines.
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Figure 11: Email: Observed and predicted conditional counts for the words “medicine” and “space” by the best single expert
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