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Abstract— Traditional decision tree induction algorithms are
greedy with locally-optimal decisions made at each node based
on splitting criteria like information gain or Gini index. A
reinforcement learning approach to decision tree building seems
more suitable as it aims at maximizing the long-term return
rather than optimizing a short-term goal.

In this paper, a reinforcement learning approach is used to
train a Markov Decision Process (MDP), which enables the
creation of a short and highly accurate decision tree. Moreover,
the use of reinforcement learning naturally enables additional
functionality such as learning under concept drifts, feature
importance weighting, inclusion of new features and forgetting
of obsolete ones as well as classification with incomplete data. To
deal with concept drifts, a reset operation is proposed that allows
for local re-learning of outdated parts of the tree. Preliminary
experiments show that such an approach allows for better
adaptation to concept drifts and changing feature spaces, while
still producing a short and highly accurate decision tree.

Index Terms—decision trees, reinforcement learning, stream
mining, concept drifts

I. INTRODUCTION

Decision trees (DT) are one of the most popular classifica-

tion models for machine learning due to their simplicity and

interpretability. As a result a large variety of methods have

been proposed for both batch and stream learning scenarios.

In batch learning approaches, the complete dataset is given

as input to the algorithm and can be accessed multiple times

to select the best tree among multiple alternative hypotheses.

On the contrary, in stream mining approaches, access to the

data is limited and moreover, the stream is potentially infinite;

therefore, the algorithm has to decide with limited information

on how to grow the tree. Moreover, in a data stream the

characteristics of the underlying population might evolve with

time, leading to changes in the concept to be learned, a

phenomenon known as concept-drift. To deal with concept-

drifts the learning models need to adapt to changes quickly

and accurately.

The majority of DT induction algorithms for both batch

and stream learning are greedy, i.e., when selecting a splitting

attribute, they try to maximize short-term quality measures

such as information gain or Gini-index rather than maximizing

long-term return. Reinforcement learning (RL) methods enable

a better approach when such a sequential decision making pro-

cess is involved because they try to find an optimal sequence

of actions (policy) instead of selecting the most greed action at

each time point. The RL agent finds such a policy by learning

an estimate of the value of the different states.

This work builds upon the RL-based DT induction approach

of [3]. In their work, the authors propose a formulation of the

DT induction problem via RL in an online setting which allows

updating the model with new instances from the stream, but it

does not explicitly target outdated information. To overcome

this shortcoming, we introduce a local state reset mechanism

that increases the capability of adaptation to underlying data

changes. Moreover, to increase the interpretability of the de-

rived model, we summarize the MDP policy into a simplified

human-readable decision tree. Finally, an extensive evaluation

on the effect of different data stream-related and model-related

parameters is provided.

The rest of the paper is organized as follows: Related

work is overviewed in Section II. The problem and RL-based

formulation are presented in Section III. The RL-based DT in-

duction approach is introduced in Section IV-A with discussion

on efficiency and convergence in Section IV-B. Experimental

results are presented in Section VI. Finally, Section VII with

conclusions and outlook completes this work.

II. RELATED WORK

Decision trees (DTs) are one of the most popular classifi-

cation models due to their simplicity and interpretability [5].

A decision tree can be mapped into a set a rules, each rule

corresponding to a path in the tree, and therefore it is easily

understood by the end-user. The majority of decision tree

induction algorithms follow a top-down recursive approach

starting from the root. Two key decisions for building a DT

model are the attribute split criterion for selecting the best

attribute for splitting and the termination criterion for deciding

on when to stop further tree expansion. Traditional decision

tree induction algorithms like ID3, C4.5 and CART are greedy

as they try to expand the tree at each step by selecting the

attribute with the best splitting quality such information gain or

Gini-index, following a hill-climbing local search approach in

the hypothesis space. However, due to its greedy nature, such

an approach might lead into a sub-optimal solution. Moreover,

most of the DT algorithms are batch learning algorithms, and

therefore require the complete training set as input to the

algorithm; algorithms like ID3, C4.5 and CART [5] fall in

this category.
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Decision tree models are also a popular classification

method for data streams. In contrast to the batch case, in a

stream setting the dataset is not known in advance and it is po-

tentially infinite, therefore one cannot wait to make a splitting

decision based on the complete dataset. The Hoeffding Tree

(HT) algorithm [2] overcomes this problem by using the Ho-

effding bound to decide with certainty about the best attribute

for splitting based on the thus far encountered instances from

the stream. This algorithm is incremental, meaning the model

is updated based on new instances from the stream. However,

the model does not forget and therefore outdated information

cannot be removed from the model, causing difficulties with

concept drifts. The Concept-Adapting Hoeffding Tree [4]

overcomes this problem by monitoring the performance of

the different tree nodes and re-learning the ones that are no

longer effective. The Adaptive Size Hoeffding Tree (ASHT)

[1] tackles this problem by introducing a maximum tree size

limit and resetting the tree whenever this limit is reached. This

model is used as a base learner in an ensemble of different size

trees, which therefore reset at different rates; small trees are

reset more often and therefore adapt faster to concept drifts,

in contrast to larger trees that typically survive longer before

reaching the size limit.

Most of the DT induction approaches, including both batch

and stream DT induction approaches, are greedy meaning that

they try to maximize the short term goal of selecting the next

best splitting attribute instead of maximizing the long-term

return. The latter is the subject of Reinforcement Learning

(RL) [7], where the goal of the agent is to learn a sequence of

actions (policy) that maximizes the return. Thus far, only a few

approaches exist that instead of selecting the next best splitting

attribute, try to select a policy. The RL-based DT approach

of [3], which belongs to this group, tries to learn a policy that

achieves good classification performance while making few

queries. Their formulation specifies a state space from combi-

nations of feature-value pairs to represent the paths in different

decision trees and an action space consisting of queries and

reports. A feature query action retrieves information about the

value of a particular feature and a report action predicts the

label. Query actions always incur a negative reward, thereby

encouraging a shorter tree. Report actions incur a positive or

negative reward dependent on correct or incorrect classification

respectively, thereby encouraging an accurate decision tree.

The proposed RL-based DT induction approach of this work

extends the formulation of [3] to allow handling of changing

feature spaces. In particular, it proposes a reset mechanism that

resets a state based on its Gini impurity (Section IV-C). This

reset mechanism allows for local re-learning as a reaction to

concept drifts. Moreover, a faster simplified tree is enabled by

finding the best groups of queries, removing the need to first

filter for valid queries which requires individually checking all

possible query options at a state (Section V).

III. PROBLEM DEFINITION AND FORMULATION

An evolving data stream of instances arriving over time is

assumed. At every time step, t = {1, 2, 3, ...}, an instance

�xt ∈ X with an associated label yt ∈ Y is provided to

the learner, with X being the input space and Y being the

output space. Clearly, there is no prior knowledge of the

input or output space before data instances arrive and the

dimensionality of the feature space may change with time.

For example, over the course of the stream, previously unseen

features and feature values may appear and known features

may no longer occur. Moreover, the output space is also

assumed to be dynamic, that is, new class labels might appear

as new instances arrive or existing classes might vanish over

the stream. Finally, the underlying stream population is subject

to changes over time, leading to changes in the concept to be

learned (concept-drifts).

The DT induction problem is formulated as a Markov

Decision Process (MDP), building upon the formulation of [3]:

• State (s) A combination of features and their respective

values known at that state.

• State Space (S) All possible states of the MDP.

• Query Action (F) An action possibility at each state,

which returns the value for a particular feature from the

training input �xt, and causes transition to another state.

Naturally, a state cannot query a feature that it already

contains.

• Report Action (R) An action possibility at each state,

which predicts the class label of the input instance.

• Action Space (A) All possible query and report actions.

Training occurs with the arrival of each new instance

(�xt ∈ X, yt ∈ Y ) at time step t from the stream by choosing

between two actions: a feature query action Fi and a label
report action Rj . The feature query action will introduce an

additional feature into the policy, whereas the label report

action will predict a class label y′ ∈ Y for �xt. The prediction

y′ will be compared to the true class label yt producing a

reward and ending training. A policy is created or updated by

propagating the reward from the reports through the queries.

This leads to a policy that is both highly accurate and uses

minimal information for classification [3].

Diverging from the formulation of [3], the reward system

for queries and reports is modified. In particular, the reward for

a report action Rj is based on the percentage of an observed

label at that state, and lies in the [0-1] range. A query action Fi

is only used to transfer reward between states using a discount

factor γ and feature importance wf as described below.

1) Discount Factor γ ∈ [0, 1]: The transfer rate of reward

from a state’s report reward and another state’s query. It

is usually between 0.8 and 0.99.

2) Feature Importance wf ∈ [−1, 1]: An optional weight-

ing to manually encourage (+1) or discourage (−1)
feature inclusion during model training. It can also be

used for offsetting class imbalance [3].
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IV. RL-BASED DECISION TREE LEARNING

A. The Training Process

As a new instance (�xt ∈ X, yt ∈ Y ) arrives from the stream

at time point t, the training process proceeds as follows:

1) Start with the root state, which has no features but only

query- and report-actions.

2) Identify queries with matching feature-value pairs to the

current data instance.

3) Disqualify queries with lower expected reward than the

classification label’s (report’s) expected reward.

4) If no queries have higher reward, then check the predicted

label and go to step 5. Otherwise, go to step 6.

5) Adjust the expected rewards of the state’s reports and end

training for this instance.

6) Pick best query, usually by highest expected reward.

7) Perform the query and transition to the next state. Update

the query’s reward with a portion of the reward from the

next state’s report. Return to step 2.

1) Action Decision: At a current state sn, the appropriate

query or report action must be determined. A query-action

will cause transition to a different state, whereas a report-

action will end training for that instance, which updates the

expected rewards of the reports at that state. Such a decision

requires comparing the expected reward of all known query-

and report-actions, selecting the action with the highest reward.

At any given state sn, there are likely many query actions.

A unique query at this state Fs,i exists for each combination

of feature f , feature-value fv , and classification label yj ∈ Y
as shown in (1). However, for a given training instance many

of these queries are not valid and must be filtered. Similarly,

multiple report actions Rs,j may also exist at state sn, one for

each unique classification label yj as shown in (2).

Fsn,i = F(fi, fvi , yj) (1)

Rsn,j = R(yj) (2)

Because each query and report have an associated expected

reward Q at that state sn, the expected rewards are determined

respectively using (3) and (4).

QFsn,i
= Q(Fsn,i) (3)

QRsn,j
= Q(Rsn,j) (4)

2) Query Reward Calculation: At a current state sn, upon

choosing a query Fsn,i as the best action, the feature’s value

is obtained from the current instance �xt. Using this additional

feature-value pair, the next state sn+1 is found or created. If

a new state is created, all new queries from this new state are

given optimistic rewards of +1 to encourage exploration.

The expected reward of the next state QRs+1,j
is retrieved

and used to update the expected reward of the current state’s

query Fsn,i. The query’s new expected reward is a function

of the discount factor γ, feature importance wf , and report

reward Q(Rs+1,j) as shown in (5).

QFs,i
= γ(1 + wf )QRs+1,j

(5)

If the feature’s importance is set to -1, no reward is transferred.

If the feature’s importance is set to 0, only the discount

factor is relevant. Therefore, new training data can deprecate

a feature by setting the importance near to -1 or encourage

inclusion of a feature by setting the importance near to +1.

3) Report Reward Calculation: Each report Rsn,j for a

particular class label yj at state sn is simply the percentage

pj of the thus far observed instances of the particular class

at that state and lies in the [0 − 1] range. As such, the total

reward at any state is always equal to 1.0 according to (6) but

distributed across all known classes at that state. We denote

the thus far known classes at state sn by Ysn ⊆ Y .

∑

yj∈Ysn

pj = 1.0 (6)

B. Efficiency & Convergence of the Training Process

1) Parallel Query Updates: For any given state sn, there

exists a set of super-set states that lead to the same state, if

the appropriate query is used [3]. An example of this is shown

in Table I for the mushroom data set.

TABLE I: Parallel Query Updates, Mushroom Dataset

Feature State 1 State 2 State 3 State 4 State 5
cap-color E = 0.57 w w w w

bruises t E = 0.60 t t t

odor a a E = 0.53 a a

cap-shape f f f E = 0.48 f

Reward 0.45 0.58 0.47 0.23 0.74

In Table I, State 1 will query cap-color because the expected

reward is 0.57, which is higher than the report’s reward of 0.45.

The same holds for states 2-4, for which the report rewards are

also smaller than feature query rewards. Hence, they will all

transition to State 5, retrieving the report’s reward of 0.74, and

updating the query’s reward appropriately. Therefore, these

additional queries can also be updated at each state transition,

requiring less training for convergence.

2) Parallel Report Updates: During the end condition of a

training cycle, the report actions are updated against the known

class label. It is also valid to state that all report actions of

visited states during that training cycle could also be updated

because they are all super-sets of the final state [3].

Looking again at Table I, State 5 is a guaranteed end-

scenario because there are no more features. Hence, if this

state is reached, the report action will be utilized and the

classification label’s reports will be updated. However, to get

to this state, any of States 1-4 must have been visited first.

Hence, the report’s expected rewards at States 1-4 can also be

updated, thereby again speeding up convergence.

In theory this seems appropriate, however there exists a

convergence problem by introducing reward before the end

condition. During training, the super states (States 1-4) of the

end state (State 5) may be visited more often causing expected

rewards to converge earlier. Hence, a bias is formed, and

training is unable to discover new classification labels deeper
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in the state space. This is illustrated in Fig. 1 and Fig. 2, where

the results of regular reward propagation and propagation with

parallel report updates, respectively are displayed.

In particular, Fig. 1 and Fig. 2 show four states at different

time points with the expected rewards of the queries and

reports. Each state contains a set of features s, various queries

Fi and reports Rj . For better clarity, only one report’s expected

reward QR is shown per state. Fig. 1 shows the normal

progression and convergence of the expected rewards (and

probabilities). Fig. 2 shows the progression and convergence

problem when parallel report updates are utilized. Table II

describes the process details across time.

s = w,-,-
QR = 1.0

s = w,t,-
QR = 1.00

s = w,-,a
QR = 1.00

Q(F2) = 1.00 Q(F3) = 1.00

s = w,t,a
QR = 1.00

Q(F2) = 1.00Q(F3) = 1.00

s = w,-,-
QR = 0.40

s = w,t,-
QR = 0.52

s = w,-,a
QR = 0.55

Q(F2) = 0.41 Q(F3) = 0.44

s = w,t,a
QR = 0.67

Q(F2) = 0.54Q(F3) = 0.54

s = w,-,-
QR = 0.55

s = w,t,-
QR = 0.45

s = w,-,a
QR = 0.8

Q(F2) = 0.37 Q(F3) = 0.64

s = w,t,a
QR = 0.75

Q(F2) = 0.60Q(F3) = 0.60

s = w,-,-
QR = 0.45

s = w,t,-
QR = 0.6

s = w,-,a
QR = 0.7

Q(F2) = 0.48 Q(F3) = 0.56

s = w,t,a
QR = 0.99

Q(F2) = 0.79Q(F3) = 0.79

t=1 t=25 t=50 t=100

Fig. 1: Regular report updates: states over time

s = w,-,-
QR =1.0

s = w,t,-
QR = 1.00

s = w,-,a
QR = 1.00

Q(F2) = 1.00 Q(F3) = 1.00

s = w,t,a
QR = 1.00

Q(F2) = 1.00Q(F3) = 1.00

s = w,-,-
QR = 0.41

s = w,t,-
QR = 0.53

s = w,-,a
QR = 0.65

Q(F2) = 0.42 Q(F3) = 0.52

s = w,t,a
QR = 0.67

Q(F2) = 0.54Q(F3) = 0.54

s = w,-,-
QR = 0.45

s = w,t,-
QR = 0.6

s = w,-,a
QR = 0.7

Q(F2) = 0.37 Q(F3) = 0.64

s = w,t,a
QR = 0.71

Q(F2) = 0.57Q(F3) = 0.57

s = w,-,-
QR = 0.45

s = w,t,-
QR = 0.6

s = w,-,a
QR = 0.7

Q(F2) = 0.48 Q(F3) = 0.56

s = w,t,a
QR = 0.71

Q(F2) = 0.57Q(F3) = 0.57

t=1 t=25 t=50 t=100

Fig. 2: Parallel report updates: states over time

TABLE II: Reward propagation in regular vs parallel report

update processes - description of states over time

Time
t

Regular Report Updates
(Fig. 1)

Parallel Report Updates
(Fig. 2)

1 Initial states created. Initial states created.

25 A new classification label is
encountered, sharing the re-
ward between labels.

The expected rewards are
converging faster. A new
classification label is en-
countered, sharing the re-
ward between labels.

50 Reward propagation contin-
ues from end state through
the super states.

The super states have al-
ready converged, preventing
exploration.

100 Convergence reached. No changes occur.

C. Dealing with concept drifts

The Gini impurity index shown in (7) monitors the ongoing

validity of the states, preventing the policy from guessing.

Each time the reports are updated, the state’s Gini impurity

index is also updated according to (9) and normalized using

the maximum possible Gini impurity index with (8), where nR

is the number of reports at that state. If this normalized value

exceeds a user-defined threshold such as 0.99, the state has

a nearly even probability for each classification label, hence

the reports and expected rewards are reset, allowing for local

re-learning and handling of concept drifts.

GiniIndex = 1−
∑

j

pRj

2 (7)

MaxGiniIndex = 1− (1/nR) (8)

NormGiniIndex = GiniIndex/MaxGiniIndex (9)

1) Dimensionality: A large concern of modeling the state

as a combination of features of the instance, is the potentially

large state space, and the heavy search requirements during

state transitions. A few simple calculations can show that 10

features with 2 values result in 210 = 10, 24 possible states.

Likewise 3 value-options produces 310 = 59, 049 possible

states and 4 value-options produces 410 = 1, 048, 576 possible

states. It is clear therefore that this could be problematic for

problems with hundreds of features and a larger number of

discrete values.

However, this is the exact reason why reinforcement learn-

ing is a good approach, as opposed to exhaustive techniques

like a lookup table. As shown in the baseline example results

of Fig. 3, the mushroom dataset did not need to explore all of

these combinations. It learns quickly to avoid many state space

ranges, and hence only explores a small subset. For reference,

the mushroom dataset with 22 features and more than 4

discrete values per feature (5.2 average) has 1.219E+14 state

possibilities. However, training in this example only required

1465 states, which is 1.202E-9 percent of the maximum

possible state space and still provided 99.7% accuracy.

0

500

1000

1500

2000

0
20
40
60
80

100

0 10000 20000 30000
St

at
es

To
ta

l

A
cc

ur
ac

y 
(%

)

Processed Points

Fig. 3: ID 2 - Baseline, original file

It should be noted that other issues of high dimensionality

still exist such as the potentially impractical search times. In a

standard search, the state space may involve multiple filters to

look up another state during transitions. Hence an alternative

approach for locating states is necessary. To reduce search

times of the state space, a hash code is generated from a

state’s feature-value pairs and then used as the key. In this

way, a working state can be added to the state space easily

and existing states can be located more quickly.

V. RL-BASED DECISION TREE CLASSIFICATION

There are two methods by which a new instance can be

classified. The first, using the complete MDP policy according

to Fig. 4 and Fig. 5. The second, summarizing the MDP policy
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into a simplified decision tree according to Fig. 6 and then

using standard decision tree deduction.

Each method has its advantages and disadvantages. Using

the complete MDP policy allows for large flexibility because it

compares all known features at each state, enabling it to handle

incomplete instances. Naturally, a disadvantage is that this also

requires more processing and may become slow if the feature

space grows very large. Conversely, the summarized decision

tree is fast but sacrifices handling of partial instances, because

it contains only the most important features from the MDP

and classifies within that specific feature space only.

procedure CLASSIFYBYMDP(dataV ector)
currState← policy.rootState
while (true) do

bestQuery ← GetBestQuery(currState, dataV ector)
if (bestQuery �= blank) then

currState← GetState(currState, bestQuery)
else

currLabels← currState.Labels
break loop

end if
end while
theLabel← PickLabel(currLabels)
return theLabel

end procedure

Fig. 4: Classify an instance by MDP policy

procedure GETBESTQUERY(currState, dataV ector)
for all (feature ∈ dataV ector) do

validQuery ← currState.GetQuery(feature)
valQueries.Insert(validQuery)

end for
for all (query ∈ valQueries) do

qryReward← query.Reward
lblReward← Labels.Rewards.Min
if (qryReward < lblReward) then

valQueries.Remove(query)
end if

end for
if (valQueries.Count = 0) then return blank
end if
bestQuery ← valQueries.Max

return bestQuery
end procedure

Fig. 5: Compare labels and queries to select best query

VI. EXPERIMENTS

The goal of the experiments is to explore the effects of

training order, discount factor, exploration rate and feature

space on the accuracy and created states, ideally providing

optimal parameter values. Another important impact is how

quickly the model can re-learn during concept drift. Other

decision tree induction techniques are not compared, as ac-

curacy and speed benefits are already demonstrated in [3].

In particular, the authors show that RLDT can achieve an

accuracy of 97.74%±3.01 using an average of just 1.1 queries.

Additionally they compare RLDT to StARMiner Tree (ST),

procedure POLICYTOTREE(policy)
rootState← policy.rootState
rootNode← (new)TreeNode
PolicyToTree(rootState, rootNode)

return rootNode
end procedure
procedure POLICYTOTREE(currState, parentNode)

bestGroupQueries = getQueriesMaxReward(currState)
lblReward← currState.Labels.Rewards.Min
for all (query ∈ bestGroupQueries) do

qryReward← query.Reward
if (qryReward < lblReward) then

bestGroupQueries.Remove(query)
end if

end for
featureNode← (new)TreeNode
parentNode.SubNodes.Insert(featureNode)
for all (query ∈ bestGroupQueries) do

queryNode← (new)TreeNode
parentNode.SubNodes.Insert(queryNode)
currState← getState(currState, query)
PolicyToTree(currState, queryNode)

end for
for all (label ∈ currState.Labels) do

featureNode.Leaves.Insert(label)
end for

return parentNode
end procedure

Fig. 6: Summarize the MDP policy to a decision tree

Automatic StARMiner Tree (AST), VFDT and VFDTcNB,

where it has both higher final accuracy and mean accuracy.

A. Datasets

Three different data sets were considered for evaluation but

only the Mushroom1 dataset is used for the chosen evaluation

topics because of its discrete values. Although RLDT can

produce trees for datasets such as the Wine2 and Attrition3

datasets with both discrete and continuous data types, the

resulting trees are large and complex, essentially only memo-

rizing the data. A solution would be to discretize the numeric

fields, for example by equal-width or equal-depth histograms.

However, since this was not the focus of the experiments, it is

left for future work on how to effectively deal with continuous

variables.

B. Experimental settings

Various streams of the original Mushroom dataset are

simulated for the evaluation topics. A list of these different

variations are shown in table IV. Since the original dataset has

no temporal information, different orders by class are gener-

ated. Variations with increased feature space have additional

features with 3-5 discrete values options randomly distributed

across class labels.

As this evaluation involves a parameter study across mul-

tiple factors, a set of default parameters are defined. The

1Available at https://archive.ics.uci.edu/ml/datasets/mushroom
2Available at https://archive.ics.uci.edu/ml/datasets/wine+quality
3Available at https://www.ibm.com/communities/analytics/watson-analytics-blog/hr-

employee-attrition/
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default testing values as well as the testing ranges are shown

in table III. The default discount factor was set to γ = 0.85 to

align with common discount factors in reinforcement learn-

ing [6]. The exploration rate was set to ε = 0.0 because

new queries are created optimistically. Parallel query updates

are enabled to reduce testing time and parallel report updates

are disabled because of the convergence problem discussed in

Section IV-B2.

TABLE III: Testing Parameters and Ranges

Parameter Default value Evaluation Range

Exploration Rate: 0.00 0 to 0.9

Discount Factor: 0.85 0 to 0.99

Data Order: Random Asc, Dsc, Random (by class)

Parallel Query Updates: Enabled -

Parallel Report Updates: Disabled -

TABLE IV: Derived Mushroom Data Sets

Dataset
Variation

Data Order # Instances # Features Possible
States

D1 Original 8125 22 1.219E+14

D6 Original 8125 7 45360

D7 Ascending, by class 8125 22 1.219E+14

D8 Descending, by class 8125 22 1.219E+14

D9 Random 8125 22 1.219E+14

D10 Random (classes flipped) 8125 22 1.219E+14

D11 Random 8125 145 1.10E+100

D12 Random 8125 132 1.04E+90

D13 Random 8125 117 1.03E+80

D14 Random 8125 103 1.03E+70

D15 Random 8125 88 1.08E+60

D16 Random 8125 74 1.06E+50

D17 Random 8125 59 1.06E+40

D18 Random 8125 45 1.05E+30

D19 Random 8125 31 1.09E+20

C. Experimental results

1) Effect of training order: Training is performed compar-

ing the baseline results (Fig. 3) with data read in random,

ascending, and descending order by class. In other words, all

instances for one class are fed to the learner one by one. A

summary of the results are shown in table V and Fig. 7.

The effect of training order by class significantly influences

the time needed for learning. With ascending order (Fig. 7a),

training requires many more processed instances to reach

comparable accuracy to the baseline (Fig. 3). Interestingly,

for descending order (Fig. 7b) the policy converges faster but

does not achieve the 99% accuracy.

A randomly ordered stream (Fig. 7d) is trained much faster;

high accuracy is achieved within the first half of only 1 pass. In

Fig. 7c, a different kind of randomness is introduced through

an ε = 10% exploration rate. This causes training to converge

slightly slower than the baseline (Fig. 3), but still achieves

good performance.

TABLE V: Effect of training order on accuracy and total states

Dataset Training Order Exp.
Rate (ε)

Total
Passes

Total
States

Accuracy
[%]

D1 Baseline, original file 0.0 4 1465 99.7

D7 Ascending by class 0.0 40 4279 99.6

D8 Descending by class 0.0 6 889 98.5

D9 Random by class 0.0 1 787 99.4

D7 Ascending by class 0.1 7 7682 99.4

2) Effect of discount factor: The discount factor is adjusted

between 0.1 and 0.95, to determine its effect on classification

accuracy and generated states because it can influence the path

tree lengths within the policy. Discount factors below 0.5 did

not produce a trained policy, hence they are omitted. Only the

first pass is considered, and parallel query updates are disabled

to allow slower convergence and easier to interpret results.

Fig. 8 and Fig. 9 show the discount factor is best between

0.80 to 0.95, which is expected and fits to common reinforce-

ment learning practices [6]. The region of 0.55 to 0.75 has

a reversal point, indicating there may be a local optimality,

hence this region produces inconsistent results and is not

recommended. Finally, discount factors of 0.75 to 0.95 shift

results toward higher accuracy and lower generated states.

3) Effect of exploration rate: The exploration rate is ad-

justed from 0 to 0.9, to determine its effect on the accuracy,

required states, and required queries which provide insight for

processing times and memory requirements. All processing is

observed after one pass, and both parallel query updates and

parallel report updates are disabled.

As shown in Fig. 12, even with no exploration rate, training

can still effectively occur with just one pass producing a

stable accuracy of 94.8%. However, with even just a 0.01

(1%) exploration rate, mistakes are introduced, and continued

learning is necessary to correct explorations. However, this

minor exploration rate enables greater accuracy.

As expected, utilizing an exploration rate requires more

states and queries. Fig. 13 shows the number of states increase

according to a 6th order polynomial. Fig. 14 shows the

maximum, average, and minimum number of queries, which

again increase very quickly above an exploration rate of 0.4.

4) Effect of concept drift: 2Two data sets are used, one with

the original labels (D9) and one with reversed labels (D10),

from table IV. The policy is initially trained with 1 pass of

the original labels. Next, the two data sets are alternated back

and forth to simulate full concept drift, 2 passes per turn. As

shown in Fig. 15, the switch occurs 3 times and each time

the policy quickly relearns the new DT with high accuracy

above 99%. However, more states are still created indicating

that prior knowledge is only being partly used.

5) Effect of feature space: As previously mentioned, there

is significant concern about the effect of the instance’s num-

ber of features on the processing time and state space re-

quirements. Theoretically reinforcement learning should aid

with this dimensionality problem because new paths are only

explored when the accuracy is lower than desired. It is
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Fig. 7: Effect of training order on accuracy (black) and number of created states (gray), under different exploration rates ε

expected and additionally shown in Fig. 16 that a large number

of unimportant features for classification do not drastically

increase the state space.

This is tested with mushroom dataset variation which in-

cludes 20-120 additional features with random values with 3-

5 unique values per feature. These additional features, since

random, do not affect the resulting output of the tree and the

results are still verifiable . As shown in Fig. 16, the potential

state space is increased from 1 to 1E+100. The processing

time flattens off then later begins to increase. However, the

number of created states continuously increases. Although the

created states increases, table VI shows that the percentage of

explored state space is always nearly zero.

TABLE VI: Processing Time and States vs Feature Space

Possible Feature
Combinations

Processing
Time [s]

Relative
Time

States
Created

Created
Space [%]

1.1E+100 88.228 26.52 2200 2.00E-95

1.04E+90 80.658 24.24 1924 1.85E-85

1.03E+80 75.151 22.59 1724 1.67E-75

1.03E+70 48.811 14.67 1551 1.51E-65

1.08E+60 34.630 10.41 1490 1.38E-55

1.06E+50 23.942 7.20 1538 1.45E-45

1.06E+40 16.827 5.06 1574 1.48E-35

1.05E+30 9.348 2.81 1459 1.39E-25

1.09E+20 5.638 1.69 1235 1.13E-15

1.22E+14 3.327 1.00 787 6.45E-10

VII. CONCLUSIONS AND OUTLOOK

An RL-based decision tree induction method for data

streams is proposed, which extends the work of [3] by allowing

for local relearning within tree paths that become outdated

over the course of the stream, due to concept drifts or

feature replacement in the underlying population. Preliminary

results show that an RL-based decision tree can be used to

successfully avoid the downsides of traditional decision tree

methods, which require greedy separation techniques, as well

as produces a compact and accurate decision tree.

Several improvements and extensions can be pursued as part

of future work. First, improvements with respect to the time

and space efficiency of the model are possible by removing,

for example, non-recently used or low reward states.

For classification, it may also be possible to produce a

partially simplified decision tree. Features could be flagged as

more likely to become missing and be kept in the simplified

decision tree, allowing classification in more situations with

incomplete data while retaining faster processing speeds.

Finally, an integrated extension to continuous features is

planned. Rather than discretizing the features at a prepro-

cessing step, which would require apriori knowledge about

the value ranges and would result in fixed bins, an integrated

bin generation in the learning process is planned. This way,

the value ranges will be created dynamically based on the

incoming data and learning must not be restarted.

All code within this project is available to the community

at https://github.com/chriswblake/Reinforcement-Learning-
Based-Decision-Tree for reproducibility purposes and

to further encourage the development of RL-based DT

inductions methods for data streams.
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Fig. 9: Accuracy vs training points (γ = 0.80− 0.95)
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Fig. 10: Created states vs training points (γ = 0.50− 0.75)
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Fig. 11: Created states vs training points (γ = 0.80− 0.95)
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