
Fairness-Enhancing Interventions
in Stream Classification

Vasileios Iosifidis1,2(B), Thi Ngoc Han Tran1, and Eirini Ntoutsi1,2

1 Leibniz University, Hannover, Germany
tranthingochan.03@gmail.com

2 L3S Research Center, Hannover, Germany
{iosifidis,ntoutsi}@L3S.de

Abstract. The wide spread usage of automated data-driven decision
support systems has raised a lot of concerns regarding accountability and
fairness of the employed models in the absence of human supervision.
Existing fairness-aware approaches tackle fairness as a batch learning
problem and aim at learning a fair model which can then be applied
to future instances of the problem. In many applications, however, the
data comes sequentially and its characteristics might evolve with time.
In such a setting, it is counter-intuitive to “fix” a (fair) model over the
data stream as changes in the data might incur changes in the underlying
model therefore, affecting its fairness. In this work, we propose fairness-
enhancing interventions that modify the input data so that the outcome
of any stream classifier applied to that data will be fair. Experiments on
real and synthetic data show that our approach achieves good predictive
performance and low discrimination scores over the course of the stream.

Keywords: Data mining · Fairness-aware learning ·
Stream classification

1 Introduction

Despite the wide spread belief that data-driven decision making is objective in
contrast to human-based decision making that is subject to biases and prejudices,
several cases have been documented, e.g., [9,13], in which data-driven decision
making incurs discrimination. As a recent example, a Bloomberg report has sug-
gested signs of racial discrimination in Amazon’s same-day delivery service [13].
The sensitive attribute race was not employed as a predictive attribute in Ama-
zon’s model(s), however the location of the users might have acted as a proxy for
race. As a result, predominantly black ZIP codes were excluded from services and
amenities. Therefore, the wide spread usage of automated data-driven decision
support systems has raised a lot of concerns regarding accountability and fair-
ness of the employed models in the absence of human supervision [1,24,28]. Such
issues result in societal and legal implications, therefore, recently the domain of
discrimination-aware data mining [23] has attracted a lot of attention and several
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methods have been proposed ranging from discrimination discovery to discrimi-
nation elimination and explanation of model decisions.

Most of these methods, however, tackle fairness as a batch learning prob-
lem aiming at learning a “fair” model which can be then used for predicting
future instances of the population. In many modern applications, however, data
is generated sequentially and its characteristics might change with time, i.e., the
data is non-stationary. Such dynamic environments (or, data streams) call for
model adaptation [12]. As an example, in the EU, the non-native population
has significantly changed in the last years due to European refugee crisis and
internal EU migration with a potential effect on the racial discrimination in
the labor market. In such non-stationary environments, the main challenge for
supervised learning is the so-called concept drifts, i.e., changes in the underlying
data distribution which affect the learning model as the relationships between
input and class variables might evolve with time [26]. Existing solutions from the
data stream mining domain tackle this issue by adapting the learning models
online. However, as the decision boundary of the classifier changes as a result of
model adaptation, the fairness of the model might get hurt.

An example of an evolving stream with discrimination is shown in Fig. 1; one
can see the deprived and favored communities (w.r.t. some sensitive attribute)
over time as well as their class assignments. The favored community domi-
nates the stream. The decision boundary of the classifier (solid line) changes in
response to changes in the underlying data. As a result, the associated fairness
of the model also changes, calling for “fairness-enhancing interventions” (dashed
line). It is important, therefore, model adaptation to also consider fairness‘ to
ensure that a valid fairness-aware classifier is maintained over the stream. In
this work, we propose fairness-enhancing interventions that modify the input
data before updating the classifier. Our method belongs to the category of pre-
processing approaches to fairness, investigated that far only in the context of
static learning [5,6,14–17]. Our contributions are: (a) we introduce the fairness-
aware classification problem for streams (b) we propose pre-processing fairness-
enhancing interventions for streams (c) we propose a synthetic generator for
simulating different drift and fairness behaviors in a stream and (d) we present
an extensive experimental evaluation with different stream learners and on dif-
ferent datasets.

The rest of the paper is as follows: In Sect. 2, we overview the related work.
Our approach is presented in Sect. 3. Experimental results are discussed in
Sect. 4. Finally, conclusions and outlook are presented in Sect. 5.

2 Related Work

Although more than twenty different notions of fairness have been proposed in
the last few years [25,29], still there is no agreement on which measure to apply
in each situation. The most popular is that of statistical parity [29] that checks
whether the favored and deprived communities have equal probability of being
assigned to the positive class. This is the measure we also adopt in this work.
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Fig. 1. An evolving stream with discrimination: At each timepoint, the current decision
boundary (solid line) and the “fairness-corrected” boundary (dashed line) are displayed.

Pre-processing Fairness-Enhancing Interventions: Methods in this cate-
gory work under the assumption that in order to learn a fair classifier, the training
data should be discrimination-free. To this end, they try to balance the represen-
tation of the different groups in the population. Massaging [15] modifies the data
distribution by re-labeling some of the instances which reside close to the decision
boundary in order to neutralize discriminatory effects. Re-weighting [5] assigns dif-
ferent weights to the different group, e.g., the deprived group will receive a higher
score comparing to the favored group. These methods are typically model-agnostic
and therefore, any classifier is applicable after the pre-processing phase.

In-processing Fairness-Enhancing Interventions: Methods in this cate-
gory directly modify the learning algorithm to ensure that it will produce fair
results. As such, they are algorithm-specific; e.g., [18] proposes a decision tree
that encodes fairness by employing a modified entropy-based attribute splitting
criterion and [8] includes sensitive attributes in the learning process by utilizing
a joint loss function that makes explicit trade-off between fairness and accuracy.

Post-processing Fairness-Enhancing Interventions: Post-processing
methods modify the results of a trained classifier to ensure the chosen fairness
criterion is met; e.g., [18] modifies the leaf labels of a decision tree, [22] changes
the confidence values of classification rules and [10] shifts the decision boundary
of an AdaBoost learner until the fairness criterion is fulfilled.

Stream Classification: Data stream algorithms must be able to adapt to con-
cept drifts in order to maintain a good performance over the stream [12]. Model
adaptation is typically enabled by: (i) incorporating new instances from the
stream into the model and (ii) forgetting or downgrading outdated information
from the model. The former calls for online/incremental algorithms, whereas the
latter calls for methods that are able to forget e.g., [11,19]. We discuss several
stream classifiers in the experiments (Sect. 4).

Sequential Fairness: When a sequence of decisions has to be taken, the notion
of sequential fairness is relevant. For example, [27], studies fair online item rank-
ing for groups and [20] how fairness criteria interact with temporal indicators of
well-being and affect discriminated populations on the long-term.
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Our work lies in the intersection of pre-processing methods for fairness and
stream classification methods. The former, however, focus solely on the static
case, i.e., they assume that the data is stationary, whereas the latter focus solely
on predictive accuracy and ignore fairness. To the best of our knowledge, this is
the first work trying to bridge the two domains.

3 Fairness-Aware Stream Classification

A data stream S is a potentially infinite sequence of instances arriving over
time, each instance described in a feature space A = (A1, A2 · · · Ad). One of the
attributes is the sensitive attribute, denoted by SA, with values SA = {s, s};
we refer to s and s as “deprived” and “favored”, respectively. We also assume
a binary class attribute C = {rejected, granted}. We refer to “granted” class
value as target class. We process the stream in chunks of fixed size, S1, · · · , St

with St being the most recent chunk. We assume the fully supervised learning
setting, where the labels of the instances are available shortly after their arrival.
Therefore, the goal is to make a prediction for the instances based on the cur-
rent classifier and use the labels later on for update (the so-called prequential
evaluation [12]). The underlying stream population is subject to changes, which
might incur concept drifts, i.e., the decision boundary might change overtime
(c.f., solid line in Fig. 1) and therefore, fairness implications may take place (c.f.,
dashed line in Fig. 1). A stream classifier typically takes care of concept drifts,
but does not consider fairness.

The discrimination aware stream classification problem therefore is to main-
tain a classifier that performs well (i.e., the predictive accuracy is high) and does
not discriminate (i.e., the discrimination score is low, c.f. Eq. 1) over the course
of the stream. In this work, we follow the pre-processing approaches to fairness-
aware learning that intervene at the input data to ensure a fair representation
of the different communities. In particular, we monitor the discrimination in
each incoming chunk from the stream (Sect. 3.1) and if the discrimination score
exceeds a user defined threshold ε, we “correct” the chunk for fairness (Sect. 3.2)
before feeding it into the learner (Sect. 3.3). We assume an initialization phase
at the beginning of the stream for which an initial fairness-aware classifier F0 is
trained upon an initial dataset S0 from the stream. An overview of our approach
is depicted in Fig. 2, where M1–M4 are the adaptation strategies introduced in
Sect. 3.3.

3.1 Detecting Classifier Discrimination in Data Streams

Let F be the current (non-discriminating) stream classifier and St be the current
chunk received from the stream. We evaluate the discriminative behavior of F
over St, i.e., discS(F, St) by evaluating the predictions of F over instances of St.
First, we define four communities in each chunk St by combining the sensitive
attribute SA with the (predicted) class attribute C (both binary attributes):
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Fig. 2. Fairness-aware stream classification overview

Table 1. (Chunk St) Communities

Sensitive Attribute SA (predicted) class

Rejected Granted

s (Female) DRt (deprived rejected) DGt (deprived granted)

s (Male) FRt (favored rejected) FGt (favored granted)

As discrimination measure, we employ statistical parity that evaluates
whether the favored and deprived groups have equal probabilities of being
granted [25]:

discS(F, St) =
FGt

FGt + FRt
− DGt

DGt + DRt
(1)

If the discrimination value exceeds the threshold ε, i.e., discS(F, St) > ε, the
discrimination performance of the model degrades, due to, e.g., changes in the
distribution that reside in the newly arrived chunk St. A typical stream classifier
would update F based on St to adapt to the incoming stream. However, to also
account for fairness, we first “correct” St for fairness (c.f., Sect. 3.2), before
employing its instances for updating the model (c.f., Sect. 3.3).

3.2 Fairness-Enhancing Data Interventions in Data Streams

If discrimination is detected, St is “corrected” for fairness before being used for
model update (Sect. 3.3). To this end, we employ two different data intervention
techniques: massaging and re-weighting.

Chunk-Based Massaging. Massaging [15] modifies the data distribution by
swapping the class labels of certain instances (from “granted” into “rejected” or
vise versa) from each of the deprived rejected (DR) and favoured granted (FG)
communities. The amount of affected instances, Mt, from each community is
derived by Eq. 1 and is as follows:

Mt =
FGSt

∗ (DGSt
+ DRSt

) − DGSt
∗ (FGSt

+ FRSt
)

|St| (2)
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The best candidate instances for label swapping are those close to the decision
boundary, as intuitively their alternation will have the least impact on the model
while it will fulfill the discrimination requirement (Eq. 1). To this end, we employ
a ranker Rt trained on St that estimates the class probabilities of the instances in
St. Then, Mt instances assigned with high probability to DR and Mt instances
assigned with low probability to FG are selected for label swapping.

Chunk-Based Re-weighting. Re-weighting [5] modifies the data distribution
by assigning different weights to each community (c.f., Table 1) to “enforce” a
fair allocation of deprived and favored instances w.r.t the target class. Similarly
to massaging, the exact weights depend on the St distribution in the different
communities. Below we provide the weight for the favoured granted community,
same rationale holds for the other communities:

WFG
t =

|sSt
| ∗ |{x ∈ St|(x.C = “granted”)}|

|St| ∗ |FGSt
| (3)

Each instance x ∈ St is weighted by “inheriting” the weight of its community.

Massaging vs Re-weighting. Both methods modify the data distribution to
equalize the number of deprived and favored communities in the target class.
However, there are fundamental differences between the two approaches: mas-
saging interferes at the instance level by altering single instances, whereas re-
weighting affects a whole community by lowering/increasing its weight. More-
over, massaging is more intrusive than re-weighting as it alters the class labels.
Both interventions result in a “corrected” chunk S′

t (|St| = |S′
t|) used for updat-

ing the classifier (c.f., Sect. 3.3).

3.3 Fairness-Aware Classifier Adaptation in Data Streams

The update of a classifier should take into account both concept drifts and
fairness. For the former, we work with stream classifiers, like, Hoeffding Trees,
Accuracy Updated Ensembles and Naive Bayes that already adapt to concept
drifts. In that sense, the concept drift problem is directly tackled by the learner.
For the latter, we “correct” the input stream per chunk, using either massaging or
re-weighting, to ensure that learners are trained on “fair” data (c.f., Sect. 3.2). In
particular, we propose update strategies for fairness-aware stream classification:

– Accum&FullTrain (shortly M1): F is continuously updated over the
stream using the original current chunk St, if no discrimination is detected,
or its “corrected” counterpart S′

t, if discrimination is detected.
– Reset&FullTrain (shortly M2): Similar to M1, but if discrimination is

detected, F is reset and a new model is created from the “corrected” S′
t.

The underlying assumption for Accum&FullTrain is that if trained with
“fair” chunks, the classifier F should be fair. In practice, though and due to the
complex interaction between input data and learning algorithms, this might not
be true (c.f., [17]); therefore, we also propose the Reset&FullTrain model
that resets the learner once its predictions incur discrimination.
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In addition, we propose two variations that focus more on fairness. The ratio-
nale is similar to the previous approaches but the model is updated only if
discrimination is detected and only via “corrected” data. Therefore, these two
models adapt slower to concept drifts comparing to the first two models, as their
adaptation occurs only if discrimination is detected. In particular:

– Accum&CorrectedTrain (shortly M3): F is updated over the stream
only if discrimination is detected. Update is based on “corrected” chunks S′

t.
– Reset&CorrectedTrain (shortly M4): Similar to M3, but once discrimi-

nation is detected F is reset and a new model is created from the corrected
chunk S′

t. Thus, M4 adapts only via reset, when discrimination is detected.

4 Experiments

We evaluate the performance of our methods for discrimination elimination in
data streams using both real and synthetic datasets (Sect. 4.1). As evaluation
measures, we use the performance of the model, in terms of accuracy and discrim-
ination, over the new coming chunk from the stream. We report on the perfor-
mance of the different methods over the stream but also on the overall accuracy-
vs-fairness behavior of the different methods. We experiment with a variety
of stream classifiers such as Naive Bayes (NB), Hoeffding Tree (HT), Accuracy
Updated Ensemble (AUE) and k-Nearest Neighbors (KNN). The aforementioned
models are updated based on the new incoming chunk from the stream, however
they differ w.r.t how they handle historical information. NB and HT classifiers
do not forget, whereas AUE forgets by replacing old learners with new ones.
kNNs on the other hand, rely solely on the last chunk for the predictions, due
to its internal buffer. An overview of each classifier is given below:

– Naive Bayes (NB): A probabilistic classifier that makes a simplistic assump-
tion on the class-conditional independence of the attributes. The stream ver-
sion of NBs [2] is an online algorithm, i.e., the model is updated based on
new instances from the stream, but does not forget historical information.

– Hoeffding Tree (HT): A decision tree classifier for streams that uses the
Hoeffding bound to make a reliable decision on the best splitting attribute
from a small data sample [7]. HT is an online algorithm (so, it is updated
based on new instances from the stream) but does not forget.

– Accuracy Updated Ensemble (AUE): An ensemble model that adapts to con-
cept drifts by updating its base-learners based on the current data distribu-
tion, tuning their weights according to their predictive power on the most
recent chunk [4]. The model replaces old learners with newer ones trained
upon more recent chunks. We used HTs as base learners for the ensemble and
we set the maximum number of base learners to 10.

– KNN: A lazy learner which predicts based on the class labels of the neigh-
boring instances [3]. In particular, the previous chunk instances and their
labels are used to make predictions for the instances of the current chunk.
The neighborhood is set to k = 10.
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We evaluate our strategies M1–M4 (c.f., Sect. 3.3) for the different classifiers,
as well as against the following baselines that do not explicitly handle discrimi-
nation:

B1 B.NoSA (Baseline NoSensitiveAttribute): The classifier F does not employ
SA neither in training nor in testing. The model is continuously updated
over the stream from the original chunks St. Intuitively, the model tackles
discrimination by omitting SA.

B2 B.RESET (Baseline Reset): If discrimination is detected, the old model F
is deleted and a new model is learned on St. The model is updated over
the stream, but without any correction. Discrimination is being monitored
and if it is detected again, the whole procedure starts over. Intuitively, this
approach tackles discrimination by resetting the model when discrimination
is detected.

For the massaging techniques, we use NB as a ranker which according to [5]
is the best ranker. We implemented our methods1 in MOA [3]. For all of our
reported experiments, we consider a discrimination threshold of ε = 0.0, that is,
we do not tolerate any discrimination, and a chunk size of |S| = 1, 000 instances.
The effect of these parameters is discussed in Sect. 4.2.

4.1 Datasets

As real dataset we employ the census-income (or adult-census) dataset, which
comprises one of the most popular datasets in this area; we simulate the stream
using the file order. Due to lack of stream data for fairness, we extend an existing
stream generator to simulate different discrimination scenarios in data streams.

Census-Income [21]: The learning task is to predict whether a person earns
more than 50K/year using demographic features. We consider gender as the
sensitive attribute with females being the deprived community and males being
the favored community. In addition, we consider an annual income of more than
50K as the target class. The dataset consists of 48,842 records and has an overall
discrimination of 19.45%. In Fig. 3a, the discrimination score and the different
community volumes (DRt,DGt, FRt, FGt) are shown over time using a chunk
size of |S| = 1, 000 instances. The discrimination score ranges between 15%−25%
overtime.

Synthetic Generator: Our generator comprises an extension of the static fair-
ness generator of [30] that represents each community using a Gaussian distri-
bution. It forces the DG community to be closer to the negative class whereas
the FG community is placed further away from the negative class. An example
can be already seen in Fig. 1. We extend this idea in a stream setting by varying
the amount of discrimination over the stream while introducing concept drifts.

In particular, we initialize four Gaussians, as follows, similarly to the static
generator: p(DG) = N([2; 2], [3, 1; 1, 3]), p(FG) = N([2.5; 2.5], [3, 1; 1, 3]),
1 Code will be made available online.
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p(DR) = N([0.5; 0.5], [3, 3; 1, 3]) and p(FR) = N([−2; −2], [3, 1; 1, 3]).
In the initialization phase, all Gaussians contribute equally to each community
with n instances each, giving a total of N = 4n instances for the initial chunk.
With respect to discrimination, we introduce a parameter SPP that controls
the statistical parity by controlling the number of generated instances x in the
DG community over the stream. The exact amount of instances x can be derived
from Eq. 1 as follows:

SPP =
n

2 ∗ n
− x

x + n
⇒ x = n ∗ 1 − 2 ∗ SPP

1 + 2 ∗ SPP
(4)

where n is the amount of instances generated by each Gaussian in a chunk and
x is the amount of instances for the DG community based on the desired SPP
value; the rest n−x instances generated originally by its corresponding Gaussian
are evenly distributed to the FG and FR communities. This way, the ratio of
positive instances in the favored community remains the same. To simulate con-
cept drifts in the population, we change the means of the Gaussians at random
points over the stream. To maintain the initial problem (unfair treatment of one
community), we shift the means all together at a random direction up, down,
left or right by a random value k ∈ [0, 2].

For evaluation purposes, we generate a synthetic dataset of 200,000 instances
(200 chunks, N = 1, 000 instances per chunk), 4 numerical attributes, 1 binary
sensitive attribute and 1 binary class. We inserted 20 concept drift at random
points and vary SPP randomly over time from 0% to 30%. The dataset charac-
teristics are shown in Fig. 3b.

4.2 Evaluation Results

For each dataset, we report on the discrimination-vs-accuracy behavior of the
different classifiers under the different adaptation strategies. The discrimination-
vs-accuracy plot (an example is shown in Fig. 4a) allows for a quick evaluation
of the different behaviors. Values close to 0 in the x-axis mean fair models,
whereas as the values increase the corresponding classifier become more discrim-
inating. w.r.t accuracy (y-axis), good predictive power models reside close to
100%, whereas low y values indicate poor performing models. The ideal models
are located on the up left region which indicates high accuracy and low dis-
crimination performance models. The worst models are located in the bottom
right region where low accuracy and high discriminating behavior take place. Up
right and bottom left regions indicate unfair but accurate models and fair but
inaccurate models, respectively.

Census-Income. For the massaging, c.f., Fig. 4a, our strategies achieve lower
discrimination comparing to the baselines (our values are closer to 0 in the x-
axis). As expected, the improvement w.r.t discrimination incurs a drop in accu-
racy, i.e., baselines have better accuracy comparing to our strategies (baseline
values are closer to 100% in the y-axis). We also observe that some strategies
depict very similar performance, e.g., M2 and M4 when combined with HT .
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(a) Census-Income

(b) Synthetic data

Fig. 3. Discrimination and community size over the stream (|S| = 1, 000
instances/chunk)

The reason is that since ε = 0, our discrimination detector is activated on almost
every chunk from the stream and therefore strategies like M2 and M4 will both
reset the model on each chunk. Accumulative strategies, M1 and M3, perform
better than reset strategies, M2 and M4; the reason is probably that the latter
ones forget too fast. Regarding the different classifiers employed by our strate-
gies, we can see that the best performing ones in terms of both accuracy and
discrimination are KNN and AUE. AUE and HT models yield better accuracy
and less discrimination when they do not discard previous knowledge. Although
KNN is not the best performing model in terms of accuracy, it yields the lowest
discrimination score with the smallest drop in accuracy when compared to its
baselines, namely B.RESET and B.NoSA. In particular, discrimination drops
from 19% to 4% while accuracy drops by almost 1%, when KNN is employed
by M3 and M4 strategies.

In Fig. 4b, we compare the discrimination-vs-accuracy behavior of the differ-
ent classifiers under re-weighting. Same as in massaging, our strategies reduce
discrimination in predictions. Classifiers such as HT behave similarly under dif-
ferent strategies since the detector detects discrimination in almost every chunk.
KNN on the other hand, doesn’t take into consideration weights, hence all the
strategies perform identically.
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(a) Massaging

(b) Re-weighting

Fig. 4. Census-income (small): Discrimination-vs-accuracy of the different strategies

We also compare models overtime in Fig. 5. We have selected one model
for each method (massaging/re-weighting) based on the discrimination-accuracy
trade off (points which are closer to (0, 1) based on Euclidean distance) and the
best baseline of those two models. Although HT’s baseline has the best accuracy
overtime, its discrimination score is close to stream’s discrimination. On the
other hand, re-weighting and massaging methods result in a significant drop in
discrimination. The number of massaged instances M varies over the stream,
based on how discriminative the KNN’s predictions are.

Synthetic Data. The dataset contains 20 concept drifts while its discrimination
score varies overtime, as seen in Fig. 3b. The majority of baselines, in Figs. 6a and
b, are able to adapt to concept drifts (i.e., they achieve high accuracy), however
they cannot handle discrimination, which in some cases is even amplified compar-
ing to the original stream overall discrimination. The vast majority of baselines
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Fig. 5. Census-income: Accuracy (top), discrimination (middle) and # massaged
instances (bottom) over the stream

occupy the up right region which means that models are able to adapt to concept
drifts even though they are highly discriminating. By inspecting Fig. 6a, we can
observe once again that accumulative models are less discriminating in contrast
to reset models. KNN achieves high reduction in discrimination (up to 6%),
while maintaining high accuracy. Classifiers such as AUE and HT perform well
when combined with accumulative strategies while reset strategies incur higher
discrimination. A possible reason for this behavior is that when trained on more
data, a model can generalize better, especially in re-occurring concepts, compar-
ing to reset strategies that rely solely on recent chunks. KNN is an exception as
it performs well despite relying on an internal sliding window for its predictions.
A possible reason is that a kNN learner is an instance-based learned and does
not perform explicit generalization like HT and AUE. Similarly to census-income
dataset, NB is not able to tackle discrimination.

In Fig. 6b, we observe that almost all baselines, same as in massaging, cover
the up right region area. AUE’s performance is increasing while it becomes
more discriminating in contrast to AUE in massaging. Same as before, HT and
KNN have the least discriminating behavior while NB performs poorly. Again,
reset strategies produce good accuracy models but fail to reduce discrimination.

In Fig. 7, we compare the best “correction” methods and the best baseline.
M1 combined with KNN has the lowest discrimination score overtime. Its accu-
racy is slightly worse than its baseline. However, discrimination is lower than
stream’s and baseline’s discrimination overtime. HT’s overall performance w.r.t
accuracy is relatively good except the interval between 77th and 90th chunk
where four concept drifts occurred incurring accuracy loss. Despite the accuracy
degradation, HT achieved lower discrimination compared to other classifiers.
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(a) Massaging

(b) Re-weighting

Fig. 6. Synthetic stream: Discrimination-vs-accuracy of the different strategies

Parameter effect: Due to lack of space we omit the time execution charts. A
derived conclusion is that our strategies are executed slightly slower compared
to the baselines and moreover, that the reset strategies are faster than the accu-
mulative strategies. We have also experimented with different chunk sizes |S|
and discrimination thresholds ε. Based on our experiments, increasing ε results
in better accuracy models but their discrimination also increases. With respect
to the chunk size effect, there was no clear effect on the performance except for
the execution time that decreases with chunk size as less operations take place.



274 V. Iosifidis et al.

Fig. 7. Synthetic stream: Accuracy (top), discrimination (middle) and # massaged
instances (bottom) over the stream

5 Conclusions and Future Work

In this work, we proposed an approach for fairness-aware stream classification,
which is able to maintain good predictive performance models with low discrimi-
nation scores overtime. Our approach tackles discrimination by “correcting” the
input stream w.r.t fairness and therefore, can be coupled with any stream clas-
sifier. Our experiments show that such a correction over the stream can reduce
discrimination in model predictions, while the maintenance of the model over the
stream allows for adaptation to underlying concept drifts. Comparing the dif-
ferent fairness-intervention methods, our experiments show that massaging per-
forms better than re-weighting. A possible explanation is that massaging works
at the individual instance level by swapping its class label, whereas re-weighting
works at a group level by applying different weights to different communities.
Moreover, massaging affects selected instances, which are closer to the boundary.

Our approach is model-agnostic, however our experiments show that the
effect of “data correction for discrimination” depends on the classifier and there-
fore, how to “best correct” for specific classifiers is an interesting research direc-
tion. Moreover, we want to investigate in-processing fairness-aware stream clas-
sifiers that incorporate fairness notion directly in the classification algorithm.

Acknowledgements. The work is inspired by the German Research Foundation
(DFG) project OSCAR (Opinion Stream Classification with Ensembles and Active
leaRners) for which the last author is Co-Principal Investigator.
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10. Fish, B., Kun, J., Lelkes, Á.D.: A confidence-based approach for balancing fairness

and accuracy. In: SIAM, pp. 144–152 (2016)
11. Forman, G.: Tackling concept drift by temporal inductive transfer. In: SIGIR, pp.

252–259. ACM (2006)
12. Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Boca Raton

(2010)
13. Ingold, D., Soper, S.: Amazon doesn’t consider the race of its customers. Should

it. Bloomberg, April 2016
14. Iosifidis, V., Ntoutsi, E.: Dealing with bias via data augmentation in supervised

learning scenarios. Jo Bates Paul D. Clough Robert Jäschke, p. 24 (2018)
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