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Abstract. Data-driven algorithms are employed in many applications, in which
data become available in a sequential order, forcing the update of the model with
new instances. In such dynamic environments, in which the underlying data dis-
tributions might evolve with time, fairness-aware learning cannot be considered
as a one-off requirement, but rather it should comprise a continual requirement
over the stream. Recent fairness-aware stream classifiers ignore the problem of
class distribution skewness. As a result, such methods mitigate discrimination by
“rejecting” minority instances at large due to their inability to effectively learn
all classes. In this work, we propose FABBOO, an online fairness-aware ap-
proach that maintains a valid and fair classifier over a stream. FABBOO is an
online boosting approach that changes the training distribution in an online fash-
ion based on both stream imbalance and discriminatory behavior of the model
evaluated over the historical stream. Our experiments show that such long-term
consideration of class-imbalance and fairness are beneficial for maintaining mod-
els that exhibit good predictive- and fairness-related performance.
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1 Introduction

Data-driven decision support systems have become a necessity nowadays for many ap-
plications where huge amounts of historical data are available for analysis. Their perfor-
mance in many tasks is comparable or has even surpassed human performance [15] and
therefore, for many processes, human decisions are substituted by algorithmic ones.
Such a replacement, however, has raised a lot of concerns [4] regarding the fairness,
accountability and transparency of such methods in domains of high societal impact
such as risk assessment, recidivism, predictive policing, etc. For example, Google’s Ad-
Fisher online recommendation tool showed significantly more highly paid jobs to men
than women [10]. Many similar incidents of algorithmic unfairness have been reported
in recent years [1, 18, 26].

As a result of the ever-increasing interest in issues of fairness and responsibility of
data-driven systems, a large body of work exists already in fairness-aware learning [17,
19–21, 23–25, 31]. Only a few recent works, however, investigate the problem of fair
learning in non-stationary environments [22, 30]. Nonetheless, these methods ignore
an important aspect of the learning problem, namely that the majority of (streaming)
datasets suffer from class-imbalance. Class imbalance refers to the disproportion among
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classes i.e., when one class, called minority class, has significantly fewer examples than
another class, called majority class. If the imbalance problem is not tackled, the learner
mainly learns the majority class and strongly misclassifies/rejects the minority. Such
methods might appear to be fair for certain fairness definitions that rely on parity in
the predictions between the protected and non-protected groups. In reality though the
low discrimination scores are just an artifact of the low prediction rates for the minority
class. This observation has been made in [21] but for the static case. We observe the
same issue for the streaming case and propose an imbalance monitoring mechanism
based on which we adapt the weighted training distribution.

Moreover, in a stream environment the decisions do not only have a short-term ef-
fect, but rather they might incur long-term effects. In case of discrimination, this means
that discriminatory model decisions affect not only the immediate outcomes, but they
might also affect future outcomes [9]. For example, [9] indicates small wage gaps be-
tween college-educated blacks and whites when they are first hired, but the pay gap
increased over the years. To this end, we propose to define discrimination cumulatively
over the stream rather than based only on the most recent outcomes. This is in contrast
to recent stream fairness-aware approaches that focus only on short term outcomes,
e.g., [22]. Our experiments verify that when treating for short-term discriminatory out-
comes, the cumulative effects can be substantially higher over time and therefore, a
cumulative approach is better.

Our contributions are summarized as follows: i) we propose FABBOO, a fairness
and class imbalance-aware boosting method that is able to tackle class-imbalance as
well as mitigate different parity-based discriminatory outcomes, ii) we introduce the
notion of cumulative fairness in streams, which accounts for cumulative discriminatory
outcomes, iii) our experiments, in a variety of real-world and synthetic datasets, show
that our approach outperforms existing approaches that either do not consider class-
imbalance or are based on short-term fairness evaluation.

2 Basic Concepts and Problem Definition

LetX be a sequence of instances x1, x2, · · · , arriving over time at timepoints t1, t2, · · · ,
where each instance x ∈ Rd. Similarly, let y be a sequence of corresponding class la-
bels, such that each instance in X has a corresponding class label in y. Without loss
of generality, we assume a binary classification problem, i.e., y = {+1,−1}, and we
denote by y+ (y−) the positive (negative, respectively) segments. We denote the clas-
sifier by f : X → y. We follow the online learning setting, where new instances from
the stream are processed one by one. For each new instance x arriving at t, its class
label ft−1(x) is predicted by the current model ft−1. The true class label of the in-
stance is revealed to the learner before the arrival of the next instance, and it is used
for model updating, thus resulting into the updated model ft. This setup is known as
first-test-then-train or prequential evaluation [14].

We assume that the underlying stream distribution is non-stationary, that is, the
characteristics of the stream might change with time leading to concept drifts, i.e.,
changes in the joint distribution so that Pt1(X, y) 6= Pt2(X, y) for two different time-
points t1 and t2. We are particularly interested in real concept drifts, that is when
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Pt1(y|X) 6= Pt2(y|X), as such changes make the current classifier obsolete and call for
model update. Moreover, we consider the scenario where the stream population is im-
balanced, that is, one of the classes dominates the stream impacting the learning ability
of the classifiers that traditionally tend to ignore the minority to foster generalization
and avoid overfitting [29]. We, however, do not require that the minority class is prede-
fined and fixed over the course of the stream. Instead, we assume that this role might
alternate between the two classes.

We also assume the existence of a sensitive feature SA, e.g., gender or race, which
is binary with values SA = {z, z}, e.g., gender={female, male}; we refer to z, z as
protected, non-protected group respectively 1. Traditional fairness-aware classification
aims to learn a mapping f : X → y that accurately maps instances x to their correct
classes without discriminating between the protected and non-protected groups. The
discrimination is assessed in terms of some fairness measure. Formalizing fairness is a
hard topic per se, and there has already been a lot of work in this direction. For example,
[27] overview more than twenty measures of fairness; however, there is no clear indica-
tion which measure is the most appropriate for classification tasks. In this work, we in-
vestigate parity-based notions of fairness such as the well-known statistical parity [23]
and equal opportunity [16]; however, FABBOO can accommodate various parity-based
fairness notions such as disparate mistreatment [31], predictive quality [27], and so on.

Statistical parity (S.P.) measures the difference in the probability of a random indi-
vidual drawn from z to be predicted as positive and the probability of a random indi-
vidual drawn from the complement z to be predicted as positive:

S.P. = P (f(x) = y+|z)− P (f(x) = y+|z) (1)

The S.P. values lie in the [-1, 1] range, with 0 meaning the decision does not depend
on the sensitive value (aka fair), 1 meaning that the protected group is totally discrim-
inated (aka discrimination), and -1 that the non-protected group is discriminated (aka
reverse discrimination).

S.P. does not take into account the real class labels, and therefore may allow indi-
viduals to be assigned to the positive class, even though they do not satisfy the require-
ments, thus causing reverse discrimination. Equal opportunity (EQ.OP.) resolves this
issue by measuring the difference in the True Positive Rates (TPR) between the two
groups, i.e.,:

EQ.OP. = P (f(x) = y+|z, y+)− P (f(x) = y+|z, y+) (2)

Similar to S.P., EQ.OP’s values lie in the [-1, 1] range.
Our work investigates the problem of fair classification in a stream environment.

Fairness-aware stream learning refers to the problem of maintaining a valid and fair
classifier over the stream. The term valid refers to the ability of the model to adapt
to the underlying evolving population and deal with concept drifts. At the same time,
the classifier should be fair according to the adopted S.P. or EQ.OP. fairness measures.
Ensuring fairness is much harder in such an online environment comparing to the tradi-
tional batch setting. First, the model should be continuously updated to reflect the un-
derling non-stationary population. The typically accuracy-driven update of the model

1 SA definition could also be extended to cover feature combinations such as race and gender



4 Vasileios Iosifidis and Eirini Ntoutsi

cannot ensure fairness, so even if the initial model was fair, its discriminatory behavior
might get affected by the model updates. Second, small amounts of unfairness at each
time point might accumulate into significant discrimination as the learner typically acts
as an amplifier of whatever biases exist in the data and furthermore, reinforces its er-
rors. So, model update should consider fairness constraints and long term effects of
discrimination beyond the point of its evaluation.

3 Related Work

Static Fairness-Aware Learning: Static fairness-aware approaches have received a lot
of attention over the recent years. Literature in this area can be categorized in: i) pre-
processing methods [5, 20, 23], where data are processed, transformed, or augmented
to reduce discrimination or remove the correlation between various attributes and the
sensitive attribute. ii) In-processing methods [21, 25, 31] focus on facilitating a fairness
notion into a model’s objective function. iii) Post-processing methods [12, 16, 19] alter
a model’s predictions or adjust a model’s decision boundary to reduce unfairness.
Stream Fairness-Aware Learning: Stream fairness-aware approaches aim to remove
unfair outcomes when data are presented sequentially. In [22], authors present a chunk
based stream classification approach in which they apply pre-processing methods, such
as label swapping, to remove discrimination, which is measured by statistical parity,
from data before updating an online classifier; however, this approach accounts for
short-term outcomes. In [30], they incorporate the notion of statistical parity into Ho-
effding’s Tree split criterion so that it accounts for cumulative discriminatory outcomes.
Stream Learning: In stream learning, data arrive sequentially and their distributions
can change over time, the so-called concept drifts [14]. Concept drifts can be handled
explicitly through informed adaptation, where the model adapts only if a change has
been detected, or implicitly through blind adaptation, where the model is updated con-
stantly to account for changes in the underlying data distributions. In addition, models
developed for stream learning are categorized as incremental and online [28]. Incremen-
tal models are trained in batches [13], with the help of a chunk (window), while online
models are updated continuously to accommodate newly incoming examples [7].

The goal of this paper is to highlight the importance of class-imbalance problem
in fairness-aware stream learning; therefore, we select as competitors fairness-aware
stream learners [22, 30] and omit class-imbalance stream learners.

4 Online Fairness- and Class Imbalance-aware Boosting

An overview of FABBOO, standing for online fairness and class imbalance-aware boosting,
is shown in Figure 1. Our method consists of a class-imbalance monitoring component
that keeps track of the class ratios over the stream and adjusts the weights of the new
training instances accordingly to ensure that the learner properly learns both classes
(Section 4.1), while adapting to concept drifts via blind model adaptation [14]. In ad-
dition, the cumulative discriminatory behavior of the learner is monitored, and when it
exceeds a user-defined tolerance threshold ε, the decision boundary is adjusted to ensure
that the learner does not incur discrimination (Section 4.2).
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Fig. 1. An overview of FABBOO

4.1 Online Monitoring of Class Imbalance and Model Update

In evolving data streams, the role of minority and majority classes can exchange and
what is now considered to be minority might turn later into a majority class or vice
versa [28]. Knowing the class ratio over the stream is important for our method as it
directly affects the instance weighting during training. Therefore, we keep track of the
stream imbalance using the online class imbalance monitor (OCIS) of [28].

OCISt =W+
t −W−

t (3)

whereW y
t is the percentage of class y at timepoint tmaintained in an online fashion. In

particular, upon the arrival of a new instance x at timepoint t, the percentage of a class
y is updated as follows:

W y
t = λ ·W y

t−1 + (1− λ) · I[(yt, y)] (4)

where λ ∈ [0, 1] is a user-defined decay factor that controls the extent to which old
class percentage information should be considered, and I[(yt, y)] is an identity function
which equals to 1 if the true class label of xt is y, otherwise 0.

The imbalance index OCIS takes values in the [−1, 1] range, with 0 indicating a
perfectly balanced stream and -1 or 1 indicating the total absence of one class.
Model adaptation: Our basic model is OSBoost [7] that generates smooth distribu-
tions over the training instances, and guarantees to achieve small error if the number of
weak learners and training instances is large enough. We extend OSBoost to take into
account class imbalance by changing the weighted instance distribution so that minority
instances become more prominent during the training process.

The pseudocode of the algorithm is shown in Algorithm 1. OSBoost comes with
a set of predefined parameters: γ ∈ [0, 1] that is an online analog of the “edge” of the
weak learning oracle, andN ∈ Z+ that is the number of online weak learners. Upon the
arrival of a new instance x at timepoint t, the class imbalance status is updated (line 2)
according to Equation 3. Then, the weak learners are updated sequentially (lines 4-11)
so that the predictions of model Ht

i (line 6) affect the training of its successor model
Ht

i+1 by changing the weight/contribution of instance x to the model accordingly. The
weight of instance x is tuned per learnerHt

i based on the error of the predecessor model
Ht

i−1 on x, but also based on current class imbalance (lines 8-11).
To summarize, traditional OSBoost performs error-based instance weight tuning

but does not adjust for class-imbalance. On the contrary, FABBOO adjusts the instance
weights also based on the dynamic class ratio (c.f. Equation 3) so that minority instances
receive extra “boosting” during training. Note that if the stream is balanced, i.e., W+

t −
W−

t ≈ 0, the weights are only slightly affected.
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Algorithm 1 FABBOO training procedure
1: procedure TRAIN(xt, yt, γ,Ht−1

1:N ) . xt: newly arrived instace, yt: label of xt, γ: learning
rate, Ht−1

1:N : current ensemble
2: OCISt = W+

t −W−
t . Update the class imbalance status

3: w1 = 1, q0 = 0
4: for i = 1 to N do
5: Train Ht

i on xt with weight wi
6: qi = qi−1 + yt ·Ht

i (xt)− γ
2+γ

7: wi+1 = min{(1− γ)qi/2, 1}
8: if xt ∈ y+ and OCISt < 0 then . y+ is minority at timepoint t
9: wi+1 =

wi+1

1+OCISt

10: if xt ∈ y− and OCISt > 0 then . y− is minority at timepoint t
11: wi+1 =

wi+1

1−OCISt

12: return updated ensemble Ht
1:N

4.2 Online Monitoring of Cumulative Fairness and Boundary Adjustment

Methods which restore fairness only on short-term (recent) outcomes fail to mitigate
discrimination over time as discrimination scores that might be considered negligible
when evaluated individually (i.e., at a single time point) might accumulate into signif-
icant discrimination in the long run [9]. In this work, we aim to mitigate cumulative
discrimination accumulated from the beginning of the stream in order to remove such
long term discriminatory effects and adjust the decision boundary not only based on the
recent behavior of the model, but rather on its historical performance.

Cumulative fairness monitoring accounts for discriminatory outcomes from the be-
ginning of the stream until time point t. We introduce the cumulative fairness notion for
non-stationary environments w.r.t. statistical parity and equal opportunity as follows:

Definition 1. Cumulative Statistical Parity (Cum.S.P.)

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z̄]

t∑
i=1

1 · I[xi ∈ z̄] + l

−

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z]

t∑
i=1

1 · I[xi ∈ z] + l

Definition 2. Cumulative Equal Opportunity (Cum. EQ.OP.)

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z̄, y+i ]

t∑
i=1

1 · I[xi ∈ z̄, y+i ] + l

−

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z, y+i ]

t∑
i=1

1 · I[xi ∈ z, y+i ] + l

where parameter l is employed for correction in the early stages of the stream. Cum.S.P.
or Cum.EQ.OP. are maintained online using incremental counters updated with the ar-
rival of new instances from the stream, and therefore, it is appropriate for stream ap-
plications where typically random access to historical stream instances is not possible.



FABBOO - Online Fairness-aware Learning under Class Imbalance 7

The cumulative fairness notions are employed by FABBOO for discrimination monitor-
ing. When their values exceed a user-defined discrimination tolerance threshold ε, the
decision boundary should be adjusted i.e., Cum.S.P. > ε or Cum.EQ.OP. > ε.
Decision boundary adjustment: Post-processing adjustment of the decision bound-
ary for discrimination elimination has been investigated in the literature, e.g., [12, 16].
Closer to our approach is [12], where the authors adjust the decision boundary of an
AdaBoost classifier based on the (sorted) confidence scores of misclassified instances
of the protected group. However, in contrast to [12], we deal with stream classification,
and therefore, we do not have access to historical stream instances in order to adjust the
boundary accurately. Except for the access-to-the-data constraint, another reason for not
considering the whole history for the adjustment of the boundary is the non-stationary
nature of the stream. In such a case, adjusting the boundary based on the whole history
of the stream will hinder the ability of the model to adapt to the underlying data and
will eventually hurt predictive performance.

To overcome this issue, we use a sliding window model of a pre-defined size M
for the adjustment. In particular, we maintain a sliding window of size M for each seg-
ment to allow for boundary adjustment for different parity-based notions based on each
discriminated segment. In the case of statistical parity or equal opportunity, the only rel-
evant sliding window is the one for the protected positive segment (denoted by SW+

z ).
The number of examples (nt) which are needed in order to mitigate discrimination at
timepoint t is given by:

nt =

⌊
t∑
i=1

1 · I[xi ∈ z] ·

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z̄]

t∑
i=1

1 · I[xi ∈ z̄]
−

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z]

⌋
(5)

Similar to statistical parity, to estimate the number of examples (nt) for equal op-
portunity, we follow the same logic:

nt =

⌊
t∑
i=1

1·I[xi ∈ z, y+i ]·

t∑
i=1

1 · I[fi(xi) = y+|xi ∈ z̄, y+]

t∑
i=1

1 · I[xi ∈ z̄, y+i ]

−
t∑
i=1

1·I[fi(xi) = y+|xi ∈ z, y+]

⌋

(6)
Afterwards, the misclassified instances in SW+

z are sorted based on the confidence
scores in a descending order. The decision boundary is adjusted according to the nt-th
instance of the sorted window (SW+

z ). In particular, if θt−1 is the decision boundary
value (original value θ0 is 0.5) of the nt−1-th, the fair-boundary is adjusted to θt. Note
that in the early stage of the stream, where the sliding window does not contain a suffi-
cient number of instances, the boundary is tweaked based on the misclassified instance
with the highest confidence within the window.

4.3 FABBOO Classification

FABBOO is an online ensemble of sequential weak learners that tackles class imbalance
and cumulative discriminatory outcomes in the stream. Moreover, FABBOO deals with
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concept drifts, through blind adaptation, by employing a base learner that is able to
react to concept drifts. In particular, we employ Adaptive Hoeffding Trees (AHT) [3] as
weak learners; AHT is a decision-tree induction algorithm for streams that ensures DT
model adaptation to the underlying data distribution by not only updating the tree with
new instances from the stream, but also by replacing sub-trees when their performance
decreases.

The classification of a new unseen instance at time point t, i.e., xt, is based on
weighted majority voting and depends on its membership to z. If the instance does
not belong to z (i.e., it is a non-protected instance), then the standard boundary of the
ensemble is used. Otherwise, the adjusted boundary is used. More formally:

ft(xt) =

{
y+ if xt ∈ z and Ht

1:N (xt) ≥ θt

Ht
1:N (xt) otherwise.

(7)

where N is the number of weak learners of the ensemble, and θt is the fair adjusted
boundary at timepoint t. For Cum.S.P. and Cum.EQ.OP., only the boundary of the
protected group is tweaked. Other parity-based notions (such as Disparate Mistreat-
ment [31]) may also tweak the boundary of the non-protected group. Note that the
adjustment of the boundary based on θt is applied at the ensemble level and not at each
individual weak learner predictions.

5 Evaluation

In this section, we introduce the employed baselines as well as variants of FABBOO2

that help us to demonstrate the behavior of FABBOO’s individual components. The
employed datasets as well as the performance measures are given below. For the ex-
perimental evaluation, in order to get the best γ, λ and M parameters, we performed a
grid-search and selected γ = 0.1, λ = 0.9, M = 2, 000 that showed an overall good
performance across all datasets. We also setN = 20 for all the ensemble methods and a
very small value ε = 0.0001, which means no tolerance to discriminatory outcomes. Fi-
nally, for the prequential evaluation of the non-stream datasets, we report on the average
of 10 random shuffles (same as in [22, 30]).

5.1 Competitors and Performance Measures

We evaluate FABBOO against two recent state-of-the-art fairness-aware stream classi-
fiers [22, 30] and the fairness agnostic non-stationary OSBoost [7]. We also employ two
variations of FABBOO to show the impact of its different components, namely class-
imbalance and cumulative fairness. All methods employ AHTs as weak learners and
therefore are able to handle concept drifts. The only exception is FAHT [30] which is
an incremental Hoeffding Tree that not tackle concept drifts. An overview follows:

1. Fairness Aware Hoeffing Tree (FAHT) [30]: FAHT is an extension of the Hoeffd-
ing tree that accounts for statistical parity by alternating the node split procedure

2 https://iosifidisvasileios.github.io/FABBOO
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Table 1. An overview of the datasets.

#Instances #Attributes Sen.Attr. z z̄ Class ratio (+:-) Stream Positive class Source
Adult Cen. 45,175 14 Gender Female Male 1:3.03 - <50K [2]
Bank 40,004 16 Marit. Status Married Single 1:7.57 - subscription [2]
Default 30,000 24 Gender Female Male 1:3.52 - default payment [2]
Kdd Cen. 299,285 41 Gender Female Male 1:15.11 - <50K [2]
Loan 21,443 38 Gender Female Male 1:1.26 X paid [8]
NYPD 311,367 16 Gender Female Male 1:3.68 X felony [6]
synthetic 150,236 6 synth. synth. synth. 1:3.13 X synth. [22]

to facilitate information as well as fairness gain (statistical parity). FAHT grows
according to the joint split of information and fairness gain, thus accounts for cu-
mulative outcomes; however, it does not handle concept drifts nor class-imbalance.

2. Massaging (MS) [22]: a chunk based model-agnostic approach which minimizes
S.P. on recent discriminatory outcomes. It detects and removes discrimination within
the chunk by performing label swaps and retrains the model based on the “cor-
rected” chunk. MS is dealing with concept drifts by blind adaptation (using an
adaptive learner), but is considering short-term discrimination outcomes and does
not account for class imbalance. We use the default chunk size of 1,000 instances.

3. Online Smooth Boosting (OSBoost) [7]: OSBoost does not consider fairness nor
class imbalance.

4. Online Fair Imbalanced Boosting (OFIB): A variation of FABBOO that does not
account for class imbalance i.e., it does not use OCIS during training. This variation
helps to show the importance of tackling class imbalance.

5. Chunk Fair Balanced Boosting (CFBB): A variation of FABBOO that tackles
short-term, instead of cumulative, discrimination. This variation helps to show the
importance of long term fairness assessment. Instead of accounting for discrimina-
tion from the beginning of the stream, it monitors the 1,000 most recent instances.

To evaluate the performance of FABBOO and baselines, we employ a set of mea-
sures which are able to show the performance in the presence of class-imbalance. Same
as in [11], we employ gmean, recall, and balanced accuracy (Bal.Acc.). For measuring
discrimination, we report on cumulative statistical parity in Section 5.3 and cumulative
equal opportunity in Section 5.4.

5.2 Datasets

To evaluate FABBOO, we employ a variety of real-world as well as synthetic datasets
which are summarized in Table 1. The datasets vary in terms of class imbalance, di-
mensionality and volume. Same as in [22, 30], we use Adult census dataset (Adult)
and Kdd Census dataset (Kdd Cen.) as well as Bank dataset, and Default dataset by
randomly shuffling them, since they are not streaming datasets. We also employ Loan,
NYPD and a synthetic dataset, all of which have temporal characteristics. For syn-
thetic dataset, we follow the authors’ initialization process [22], where each attribute
corresponds to a different Gaussian distribution, and also inject class-imbalance and
concept drifts to the stream. Concept drifts in this scenario are performed by shifting
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Table 2. Overall predictive and fairness performance for Cum.S.P. (Winner in bold)

Method Bal. Acc. (%) Gmean (%) Recall (%) Cum.S.P. (%)

A
du

lt

FAHT 72.14±1.4 68.65±2.2 50.11±3.5 16.51±1.3
MS 72.31±1.2 69.00±1.8 50.91±2.9 22.93±1.6
OSBoost 73.90±0.5 71.11±0.8 53.73±1.3 18.05±0.6
OFIB 74.21±0.3 72.92±0.4 60.01±1.0 0.26±0.1
CFBB 74.12±0.6 73.74±0.6 66.95±1.1 -5.00±2.0
FABBOO 76.58±0.1 76.57±0.1 73.98±0.7 0.21±0.1

B
an

k

FAHT 61.92±2.0 50.64±4.4 26.51±4.4 2.58±0.5
MS 63.21±1.9 53.54±3.6 29.75±4.1 8.10±1.2
OSBoost 64.41±0.6 55.54±1.1 31.81±1.3 3.37±0.2
OFIB 67.90±0.7 62.04±1.2 40.21±1.6 0.22±0.1
CFBB 78.37±0.5 78.08±0.6 71.24±1.5 -6.06±1.3
FABBOO 83.39±0.4 83.38±0.4 83.36±1.4 0.22±0.1

D
ef

au
lt

FAHT 62.72±0.6 53.48±1.2 29.95±1.4 1.80±0.4
MS 63.76±0.5 55.53±1.4 32.4±2.0 12.16±1.5
OSBoost 63.06±0.6 53.87±1.3 30.32±1.7 1.89±0.4
OFIB 63.79±0.7 55.41±1.6 32.36±2.1 0.29±0.1
CFBB 65.82±0.6 65.44±0.4 58.58±3.0 -7.74±2.2
FABBOO 67.49±0.6 66.89±0.5 58.66±2.8 0.17±0.1

K
dd

C
en

.

FAHT 62.80±2.3 51.04±4.6 26.45±4.7 2.82±0.6
MS 62.02±1.2 49.71±2.3 24.91±2.4 15.8±0.97
OSBoost 65.55±0.8 56.28±1.3 31.97±1.5 3.62±0.3
OFIB 67.55±0.9 60.48±1.5 37.59±1.9 0.13±0
CFBB 78.40±0.5 77.58±0.6 66.60±1.1 1.34±0.5
FABBOO 81.48±0.3 81.41±0.4 77.98±0.6 0.04±0

L
oa

n

FAHT 62.61 60.14 70.21 6.41
MS 61.44 59.64 69.31 60.13
OSBoost 63.84 60.31 76.13 8.14
OFIB 62.41 58.34 78.63 1.12
CFBB 63.15 60.05 79.73 -2.72
FABBOO 63.47 60.22 79.91 0.51

N
Y

PD

FAHT 50.15 6.13 0.37 0.09
MS 56.93 41.06 17.47 5.87
OSBoost 52.24 24.33 6.01 0.75
OFIB 52.32 24.96 6.36 0.05
CFBB 62.48 59.48 43.63 -6.46
FABBOO 62.96 60.78 46.83 0.03

sy
nt

he
tic

FAHT 57.12 42.56 18.90 8.31
MS 62.43 53.81 30.90 15.26
OSBoost 63.42 54.87 31.61 7.97
OFIB 64.01 57.54 35.85 -0.56
CFBB 65.93 64.75 53.75 -9.68
FABBOO 69.09 69.01 60.11 0.66

the mean average of each Gaussian distribution (5 non-reoccuring concept drifts have
been inserted at random points, see Figure 2 or 3).

5.3 Results on cumulative statistical parity

In this section, we compare our approach against the employed competitors for Cum.S.P.,
and report the overall results in Table 2. As we see, FABBOO is able to mitigate unfair
outcomes and maintain the best performance in terms of balanced accuracy, gmean,
and recall for all datasets. E.g., for Adult Cen., the best balanced accuracy is achieved
by FABBOO followed by OFIB (2.3%↓), the best gmean is achieved by FABBOO fol-
lowed by CFBB (2.8%↓), and the best recall is achieved by FABBOO followed by
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Fig. 2. Cum.S.P. and boundary adjusting for Loan (top), NYPD (middle) and Synthetic (bottom)
datasets

CFBB (7%↓). OFIB is able to reduce discrimination, same as FABBOO, in expense of
sacrificing 2.3%↓ balanced accuracy.

Overall, FABBOO achieves the best balanced accuracy, across all datasets, with an
average score of 72.01%, followed by CFBB with an average score of 69.73%. In terms
of discrimination, FABBOO is the clear winner, across all datasets, with an average
score of 0.26%, followed by OFIB with an average score of 0.37%. Although the dif-
ference in terms of discrimination is small, OFIB has an average balanced accuracy
score of 64.57%. CFBB achieves an average score of 5.57% in terms of Cum.S.P, while
FAHT and MS achieve an average score of 5.49% and 20.02%, respectively.

To get a closer look at the over time performance of the different methods, we show
in Figure 2 the Cum. S.P. (left) and the required decision boundary adjustment (right),
i.e., the boundary threshold θt, for the datasets with temporal information. Looking
at the Cum.S.P.(left), we see that for all datasets, CFBB is not able to mitigate dis-
crimination; instead, it propagates reverse discrimination (negative Cum. S.P.) and dis-
criminates the non-protected group. MS falls in the same pitfall; by “correcting” the
data based solely on the chuck it is not able to tackle unfair cumulative outcomes.
Both CFBB and MS results show that a short-term consideration of fairness is unable
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to tackle discrimination propagation and reinforcement in the stream. The fairness-
agnostic OSBoost is also not able to tackle discrimination. The only exception is the
NYPD dataset. However, a closer look shows that the achieved low S.P. is only a result
of vast rejecting the minority class (c.f., Table 2). On the other hand, FABBOO and
OFIB (the FABOO variation that does not tackle class-imbalance) are able to tackle
discrimination overtime, and outperform FAHT and MS.

Looking at the required adjustments of the decision boundary (right), we notice that
OFIB tends to produce higher boundary values than FABBOO. This is caused due to
OFIB’s inability to learn the minority class effectively; therefore, it rejects more minor-
ity instances from both protected and non-protected groups. For Loan dataset FABOO
and OFIB are performing similarly since the dataset is not severely imbalanced. Finally,
we observe that CFBB has high fluctuation when adjusting the decision boundary due
to its inability to adapt to underlying changes in data distributions w.r.t. fairness.

5.4 Results on cumulative equal opportunity

Table 3. Overall predictive and fairness performance for Cum.EQ.OP. (Winner in bold)

Method Bal.Acc. (%) Gmean (%) Recall (%) Cum.EQ.OP. (%)

A
du

lt

OSBoost 73.90±0.5 71.13±0.8 53.73±1.3 18.41±3.2
OFIB 74.74±0.5 72.36±0.7 56.07±1.1 3.14±1.4
CFBB 76.70±0.4 75.46±0.5 62.96±1.1 9.34±1.6
FABBOO 78.71±0.2 78.38±0.3 70.83±0.9 3.27±1.6

B
an

k

OSBoost 64.41±0.6 55.54±1.1 31.81±1.3 5.51±1.1
OFIB 65.42±0.6 57.46±1.2 34.17±1.4 1.5±0.8
CFBB 76.74±0.8 75.27±1.1 61.88±2.0 -1.85±1.2
FABBOO 82.58±0.5 82.44±0.5 78.05±1.7 0.1±0.6

C
om

pa
ss

OSBoost 65.25±0.3 64.91±0.4 58.74±1.4 29.81±1.7
OFIB 64.58±0.2 64.53±0.2 62.51±1.5 4.84±2.5
CFBB 64.76±0.4 64.69±0.4 62.07±1.3 14.73±3.3
FABBOO 64.52±0.3 64.50±0.3 64.40±1.5 4.76±2.9

D
ef

au
lt

OSBoost 63.06±0.6 53.87±1.3 30.32±1.7 79.01±0.9
OFIB 63.14±0.6 54.06±1.5 30.57±1.8 0.26±0.6
CFBB 66.61±0.3 65.75±0.4 56.31±2.6 -2.21±0.9
FABBOO 67.55±0.5 66.78±0.5 57.79±2.7 0.93±0.7

K
dd

C
en

. OSBoost 65.55±0.8 56.28±1.3 31.97±1.5 15.99±0.3
OFIB 66.85±0.8 58.88±1.3 35.21±1.6 0.83±0.2
CFBB 78.52±0.5 77.30±0.7 64.75±1.2 2.72±0.9
FABBOO 82.39±0.4 82.16±0.4 76.26±0.5 0.6±0.3

L
oa

n

OSBoost 63.84 60.31 76.13 1.25
OFIB 61.51 58.59 78.31 0.12
CFBB 62.61 59.84 79.03 12.89
FABBOO 63.06 60.18 80.73 0.07

N
Y

PD

OSBoost 52.24 24.33 6.01 1.25
OFIB 52.31 24.75 6.22 0.12
CFBB 62.17 58.84 42.08 12.89
FABBOO 62.65 60.38 45.92 0.07

sy
nt

he
tic

OSBoost 63.42 54.87 31.61 5.18
OFIB 63.75 56.67 34.55 -6.04
CFBB 66.97 65.02 50.92 -18.10
FABBOO 69.13 68.17 57.68 -0.17

For Cumul. EQ.OP., we report the results of OSBoost, OFIB, CFBB, and FABOO
on Table 3. We exclude FAHT and MS since they are designed to mitigate unfair out-
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Fig. 3. Cum.EQ.OP. and boundary adjusting for Loan (top), NYPD (middle) and Synthetic (bot-
tom) datasets

comes based on statistical parity. To the best of our knowledge, there are no fairness-
aware stream learning methods that mitigate unfair outcomes based on equal opportu-
nity.

The results indicate that FABBOO performs good in terms of balanced accuracy,
gmean, and recall in all datasets except Compass and Loan, which are balanced datasets.
E.g., for Adult Cen. dataset, the best balanced accuracy is achieved by FABBOO fol-
lowed by CFBB (2%↓), the best Gmean is achieved by FABBOO followed by CFBB
(2.9%↓), and the best recall is achieved by FABBOO followed by CFBB (7.9%↓). OFIB
achieves slightly better Cumul. EQ.OP. than FABBOO (0.01%↓), however OFIB rejects
more instances in the positive class. Similar behavior can be observed in all datasets,
where FABBOO is able to tackle class imbalance and mitigate unfair outcomes bet-
ter than the other methods. OSBoost fails to learn the positive (minority) class, thus
under-performs in almost all datasets. In some cases, it produces low discriminatory
outcomes; however, this is a result of misclassifying huge portions of the positive class.

We also demonstrate how Cumul. EQ.OP. and the decision boundary (FABBOO,
OFIB and CFBB) vary over time for the stream datasets in Figure 3. In all datasets, we
observe that CFBB’s decision boundary is highly fluctuating in contrast to OFIB and
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FABBOO. CFBB is also unstable in terms of Cumul. EQ.OP., since it is not mitigating
cumulative unfair outcomes. OFIB tweaks the boundary less than FABBOO, while it
fails to learn the minority class well enough, thus rejects more positive instances.

6 Conclusion

In this paper, we proposed FABBOO, an online fairness-aware learner for data streams
with class imbalance and concept drifts. Our approach changes the training distribution
online taking into account class-imbalance. Moreover, our method can facilitate differ-
ent fairness notions by adjusting the decision boundary on demand. Our experiments
show that our approach outperforms other methods in a variety of datasets w.r.t. both
predictive- and fairness-performance. In addition, we show that recent fairness-aware
methods reject the minority class at large to ensure fair results. On the contrary, our
class-imbalance-oriented approach effectively learns both classes and fulfills different
fairness criteria while achieving good predictive performance for both classes. Finally,
we show that our cumulative definitions enable the model to mitigate long-term discrim-
inatory effects, in contrast to a short-term definition like in CFBB and MS which are
unable to deal with discrimination propagation and reinforcement in the stream. As part
of our future work, we plan to embed the decision boundary adjustment directly into
the training phase by altering the weighted training distribution, as proposed in [21].
Finally, we have assumed that the role of the minority class is not fixed over the stream;
however, we have assumed that the protected group is fixed over the stream. We intend
to waive this assumption and extend FABBOO to tackle reverse discrimination as well.
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