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Abstract. In this paper, we propose FairNN a neural network that
performs joint feature representation and classification for fairness-aware
learning. Our approach optimizes a multi-objective loss function which
(a) learns a fair representation by suppressing protected attributes (b)
maintains the information content by minimizing the reconstruction loss
and (c) allows for solving a classification task in a fair manner by min-
imizing the classification error and respecting the equalized odds-based
fairness regularizer. Our experiments on a variety of datasets demon-
strate that such a joint approach is superior to separate treatment of
unfairness in representation learning or supervised learning. Addition-
ally, our regularizers can be adaptively weighted to balance the different
components of the loss function, thus allowing for a very general frame-
work for conjoint fair representation learning and decision making.

Keywords: Fairness · Bias · Neural networks · Auto-encoders

1 Introduction

The wide usage of AI-based systems, mostly powered nowadays by data and
machine learning algorithms, in areas of high societal impact raises a lot of con-
cerns regarding accountability, fairness, and transparency [25] of their decisions.
Such systems can become discriminatory towards groups of people or individ-
uals based on protected attributes like gender, race, religious beliefs etc., as it
has been already showcased in a variety of cases [3,5,9]. For example, [3] shows
that Google’s ad-targeting system was displaying more highly paid jobs to men
than to women, thus making discriminatory decisions based on gender. Such
incidents call for methods that explicitly target bias and discrimination in AI-
systems, while maintaining their predictive power. The ever increased interest
in this area is already reflected in the large, given the recency of the field, body
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of literature on fairness-aware learning and responsible AI, in general (see [23]
for a recent survey).

However, despite the large number of methods and approaches for fairness-
aware machine learning proposed thus far, most of these approaches refer to
supervised learning upon a given feature representation. Some approaches that
target fair representation learning also exist, e.g., [28] but they focus on learning
a fair lower dimensional representation of the data which can be used either as a
standalone result (e.g., for visualization purposes), or as an input to some other
learning task (e.g., for learning a classifier upon the reduced representation) [26].
Only a few approaches exist that jointly target fairness in both representation
learning and supervised learning, e.g., [6,19,22,24].

In this work we argue that a joint tackling of fairness in the machine learning
pipeline (data → algorithm → model) is superior to the separate treatment of
unfairness in representation- or supervised-learning. This is because bias-related
corrections in representation learning do not guarantee that a model derived from
the corrected data will be fair. Instead, the learning algorithm might still pick
up certain data peculiarities that lead to discriminatory outcomes. Therefore,
a joint goal-oriented consideration in the pipeline is much more effective, as
also demonstrated in our experimental results. To this end, we aim for a fair
representation learning that preserves as much as possible the original data while
obfuscating information on the protected attribute so decisions based on the
protected attribute in the latent space are not possible. Additionally, the learned
representation should structure itself in such a fashion, that a task-goal, such as
a classification task, can still be appropriately solved.

Our contributions can be summarized as follows:

– We propose a neural network that learns a fair representation and a fair
classifier jointly in an end-to-end manner.

– The contribution of the different components during training can be adjusted,
leading to a very flexible and competitive framework.

– Our experiments demonstrate that FairNN with a goal-oriented fair repre-
sentation is superior to a plain fair classifier without explicit representation
constraints as well as to a standard fair representation learner without an
explicit classification goal.

– The source code is available1.

The rest of the paper is organized as follows: Related work is summarized in
Sect. 2. Necessary background is provided in Sect. 3. Our joint goal-oriented app-
roach to fairness-aware learning is introduced in Sect. 4. Experimental results are
presented in Sect. 5. Finally, Sect. 6 concludes our work and identifies interesting
directions for future research.

2 Related Work

The domain of fairness-aware machine learning can be categorized into pre-
processing, in-processing and post-processing approaches to fairness depending
1 git@github.com:wtliao/FairNN.git.
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on whether they focus on mitigating discrimination at the data, algorithms or
model output, respectively.

Mitigating Fairness in Supervised Learning: Pre-processing approaches
to fairness assume that there exist encoded (e.g., societal) biases in the data
which they try to eliminate before “feeding” the data to some learning algo-
rithm. For example, [14] proposes instance re-weighting, label swapping, and
data augmentation to eliminate discrimination in the input data. Similar ideas,
but for the online scenario, were proposed by [13]. Data augmentation has also
been used in [11] in order to force the model so as to learn efficiently all the
population segments. In [10] a bagging schema is proposed to equalize the data
distributions for the different population segments. In [2] a probabilistic frame-
work for discrimination-preventing preprocessing in supervised learning is intro-
duced with the goal to preserve the utility of the data for the learning task while
controlling the correlation between the protected attributes and class and mini-
mizing instance distortion. In-processing approaches to fairness aim to explicitly
consider fairness into the learning algorithm by constraining or regularizing the
model during the training phase. It comprises the most popular category to fair-
ness mitigation, which however depends on the algorithm per se. For example,
in [29] the authors tweak the objective function of the linear SVM and Logistic
Regression models by inserting convex-concave fairness-related constraints (they
use equalized odds as fairness measure). In [15], a fairness-aware splitting crite-
rion for decision trees is proposed that evaluates not only the splitting quality
w.r.t. the class but also the discrimination effect of a potential split. The work
is extended in [30] for online learning, using Hoeffding Trees as the underlying
model. In [12] the authors aim to eliminate discrimination in sequential learning
scenarios (in particular, boosting) by dynamically adapting the data distribu-
tions over the training rounds using a cumulative version of equalized odds.
In [17] it is assumed that there exist latent fair class labels (non-observable)
which are estimated via an iterative process. Finally, post-processing approaches
to fairness work directly at the output of a model and change its outcomes until
a chosen fairness notion is satisfied. For example, [7] shifts the decision bound-
ary of AdaBoost w.r.t a protected attribute until statistical parity is achieved.
In [8] different thresholds are introduced for different population segments to
enforce equal error rates. In [16] the predictions of probabilistic classifiers and
ensemble models for instances close to the decision boundary are altered until
statistical parity is fulfilled. Our FairNN belongs to the category of in-processing
approaches as the objective function of the NN is altered to account for fairness.
In contrast to the majority of the previous approaches however, our method com-
prises a joint approach for fair-feature representation- and classifier-learning.

Fair Representation Learning Approaches: Fair representation learning
aims to learn a transformation to a lower dimensional space where the pro-
tected and non-protected groups are indistinguishable. In [28] the authors pro-
pose Fair-PCA, an extension of PCA, that forces similar reconstruction errors
between protected and non-protected groups. In [18], the Variational Fair Auto
Encoder is proposed that is able to also learn fair non-linear functions, which can
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be used after as input to other learning models. Our FairNN also derives non-
linear transformations via autoencoders, however on the contrary to [18], we dont
only focus on fair-representation learning but rather on joint representation-and
classifier-learning. In [27] an approach for learning individually fair representa-
tions is proposed using an end-to-end model with autoencoders. On the contrary,
our FairNN aims at learning representations that are fair for each group (i.e.,
protected and non-protected).

Closer to our work are the joint approaches [6,19] that aim at both fair
representation- and classifier-learning. In [6,19] instead of using some constrain-
ing to reduce the dependencies on the sensitive attribute in the latent space (e.g.,
by minimizing KL-divergence as in our FairNN), they train an adversary classifier
to discriminate between the protected and non-protected groups. In particular,
in [6] they optimize for statistical parity, whereas [19] extends the idea for more
fairness measures. It is not clear in what circumstances a constraint-based app-
roach or an adversary one should be preferred [6], but we include [19] in our
experimental analysis.

3 Basic Concepts and Definitions

Let A = {A1, ..., Ad} be a d-dimensional feature space of mixed attribute types.
We assume the existence of a protected attribute S ∈ A, e.g., S = gender.
We assume S is binary: S = {s, s̄}, with s denoting the protected group (e.g.,
s = female), and s̄ the non-protected group e.g.., s̄ = male. An instance X ∈
A1 × A2 · · · × An is a d-dimensional feature vector representing an object in the
vector space A. Each instance is assigned a label c ∈ C by some unknown target
function g : A → C. For simplicity, we assume the class attribute is also binary,
i.e., C = {+,−}. We use the notation s+ (s−), s̄+ (s̄−) to denote the protected
and non-protected group for the positive (negative, respectively) class.

The target function g() is unknown, instead a training set D = {(Xi, c)}
of i.i.d. instances drawn from the joint attribute-class space A × C is available
and can be used for approximating g(). The goal of fairness-aware supervised
learning is to approximate g() via a mapping function f() that does not only
map correctly future unseen instances of the population from A into C, but also
mitigates discriminatory outcomes. The former aspect corresponds to the typical
objective of supervised learning achieved through empirical risk minimization.
The latter aspect is evaluated in terms of some fairness measure (c.f. Sect. 2).

3.1 Formalizing Fairness

In this work, we employ Equalized Odds [8] (shortly Eq.Odds) as our fairness
measure. Eq.Odds accounts for the percentage difference among protected and
non-protected groups in the model’s outcomes. In particular, let δFPR (δFNR)
be the difference in false positive rates (false negative rates, respectively) between
the protected and non-protected groups, defined as follows:

δFPR = P (c �= ċ|s̄−) − P (c �= ċ|s−)
δFNR = P (c �= ċ|s̄+) − P (c �= ċ|s+)

(1)
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where ċ are the predicted labels. The goal of Eq.Odds is to minimize both
differences:

Eq.Odds = |δFPR| + |δFNR| (2)

where Eq.Odds ∈ [0, 2], with 0 indicating no discrimination and 2 indicating
maximum discrimination.

Eq.Odds has become quite popular among recent state-of-the-art fairness-
aware methods [8,12,17,19,29]. In contrast to the well-known statistical par-
ity [14], which uses only the positive predicted outcomes without the aid of true
labels, or equal opportunity [8], which accounts only for the false negative differ-
ence among s and s̄, Eq.Odds is able to locate discriminatory outcomes for both
classes. Furthermore, statistical parity is prone to favor groups by discriminating
on specific individuals [4].

3.2 Auto-encoders

An auto-encoder (AE) is an unsupervised neural network that learns an approx-
imation of the identity function such that the output of the network is similar to
its input. A reduced/compressed representation is learned by placing constraints
in the structure of the network, e.g. by using a bottleneck layer.

In this work, we consider mixed attribute type data of numerical and nomi-
nal attributes. Reconstructing the numerical attributes could be considered as a
regression task, so we use the Mean Square Error as the loss function for numer-
ical attributes. Since for the nominal attributes there is no order among their
values, reconstructing their values could be considered as a classification task, so
we use the Cross Entropy as the loss function for nominal attributes. We assume
there exist K numerical and N nominal features, such that K +N = d. We com-
bine the feature-type specific loss functions in the overall objective function of
the auto-encoder as follows (we compute the loss per batch of B instances):

L
(
X, X̂

)
=

1
B

B∑
b=1

⎛
⎝

K∑
k=1

(
Xb,k − X̂b,k

)2

−
N∑
j=1

Mj∑
lj=1

Xb,lj log
(
pb,lj

)
⎞
⎠ (3)

where X is the original instance, X̂ is the reconstructed instance and Xji is the
value of instance j in dimension i. The first term of the above equation refers to
the loss of numerical attributes: Xb,k, X̂b,k denotes the original and reconstructed
data of numerical attributes, respectively. The second term of the above equation
refers to the loss of nominal attributes. For each nominal attribute j, lj represents
the class label and Mj the number of values of the feature. For the j-th nominal
attribute in instance b, Xb,lj has the binary value (positive or negative) which
indicates if the class label lj is the correct classification, pb,lj represents the
predicted probability of class lj .

4 FairNN

In this section, we introduce our proposed method, namely FairNN that jointly
learns a fair representation and a fair mapping function for classification.
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Fig. 1. An overview of FairNN that jointly learns a fair representation and a fair
mapping function for classification. The auto-encoder (left part) is responsible for rep-
resentation learning; the KL-divergence constraint forces the representation to be fair.
The loss function of the classifier (right part) is tweaked towards fairness through the
Eq.Odds regularization. Both aspects are reflected in the joint objective

An overview of our approach is depicted in Fig. 1. The architecture consists
of two parts, an auto-encoder block aiming at learning a fair latent representa-
tion of the data (left) and a classification block aiming at learning a fair classifier
(right). We explicitly consider fairness in the representation learning by adding
an additional constraint to the latent space of the auto-encoder in order to obfus-
cate the information on the protected attribute (Sect. 4.1). Likewise, we explicitly
consider fairness in the classification part by adding an additional constraint to
the loss function based on the Equalized Odds fairness notion (Eq. 2) (Sect. 4.2).
We consider these aspects jointly and optimize a multi-loss objective function
that balances the importance of the different components in training (Sect. 4.3).

4.1 Fair Representation Learning via KL-Divergence Regularization

In order to learn fair feature transformations for the protected and non-protected
groups, KL divergence is added to the loss function to train the auto-encoder,
which constrains the learned features of different groups to have similar distribu-
tion properties. With this constraint, the auto-encoder is trained to mix up the
protected attribute information and meanwhile to maintain good reconstruction
ability. In practice, we use the KL divergence as an additional regularization in
the objective function. Based on the values of protected attributes, we divide the
data points into protected group s and non-protected group s̄. Without loss of
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Fig. 2. Effect of the KL-Divergence Regularizer in (fair) representation learning

generality, we assume their distribution in the latent space as d-dimensional nor-
mal distributions with means μs, μs̄ and covariance matrices Σs, Σs̄ respectively.
Then, the KL divergence between the their distributions is given as:

DKL (Ps ‖ Ps̄) =
1

2

(
log

det (Σs̄)

det (Σs)
− d + tr

(
Σ−1

s̄ Σs

)
+ (μs̄ − μs)

T Σ−1
s̄ (μs̄ − μs)

)

(4)
where, det(Σ) is the determinant of the covariance matrix Σ, and tr(·) is the
trace of the matrix, which is the sum of elements on the main diagonal of the
matrix. With the KL-Divergence Regularization, the original reconstruction loss
function of the auto-encoder (c.f., Eq. 3) is rewritten as:

Lae = (1 − α) L
(
X, X̂

)
+ αDKL (Ps ‖ Ps̄) (5)

where α ∈ [0, 1), is a coefficient for balancing the two terms.
Figure 2 demonstrates the impact of our KL-divergence regularizer, as dis-

tribution of data points in a low-dimensional feature space, in contrast to a
transformation that has been learned without KL-Divergence regularization. The
protected and non-protected groups are denoted in blue and orange respectively.
Figure 2(a) shows that the data points belonging to different groups are easy to
be separated in the latent space with direct implications to fairness. The regu-
larizer mixes-up the distributions of the two groups making it hard to predict
the protected attribute, c.f., Fig. 2(b).

4.2 Fair Classifier Learning via Equalized Odds Regularization

The classifier is an MLP with two FC layers followed by Relu activation. The
output is a scalar that is squashed by the sigmoid function between 0 and 1 for
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our binary classification task. The Binary Cross Entropy is used as loss function
to train the classifier as follows:

Lbce(c, ċ) = − 1
B

b∑
n=1

((cb log (ċb) + (1 − cb) log (1 − ċb))) (6)

where cb is the true label and ċb is the predicted probability of the data point b
having the label cb.

Our goal is to improve the fairness performance without losing the classifica-
tion performance. This motivates us to add an additional fairness measurement
as a regularization term in the objective function. As we mentioned before,
among different fairness measurements, Equalized Odds does not only consider
the predicted outcome but also compares it to the actual outcome recorded in
the dataset. It considers both the samples with actual positive labels and also
those with negative labels. Therefore, Equalized Odds (Eq.Odds) is used as the
constraint term and added to the classification loss Eq. (6):

Lcls(c, ċ) = (1 − β) · Lbce(c, ċ) + β · Eq.Odds (7)

where β ∈ [0, 1), is a balancing coefficient between the classification loss Lbce

and the Eq.Odds fairness regularization.

4.3 Fair Representation and Classifier-Learning via Joint
Optimization

By combining the two parts of our network, which are the auto-encoder (Eq. 5)
and classifier loss (Eq. 7), the acquired multi-loss function can be expressed as:

L = Lae + Lcls(c, ċ). (8)

It is known that neural networks can easily be over-parameterized and tend
to overfit, given limited training data. The additional constraints in our architec-
ture, together with the auto-encoder component enforces better generalization,
as demonstrated in our experiments (Sect. 5). We implemented FairNN in the
Python framework using PyTorch.

5 Experiments

We evaluate the predictive and fairness performance of FairNN and compare
the results with recent state-of-the-art methods. Additionally, we perform sev-
eral ablation studies to demonstrate the importance of each component in our
proposed framework. Accuracy and balanced accuracy are reported for evalu-
ating the predictive performance and Equalized Odds for fairness performance.
Since Equalized Odds reports the difference between two groups and we also
want to maintain the predictive performance for both groups, we also report the
actual TPR and TNR of both groups.
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Table 1. An overview of the datasets.

#Instances #Attributes Protected
attribute

Protected
group

Class ratio
(+:−)

Positive class

Adult census 45,175 14 Gender Female 1:3.03 >50K

Bank marketing 40,004 16 Marital
status

Married 1:7.57 Yes

5.1 Experimental Setup

5.1.1 Datasets

We evaluate our method on two real-world datasets, summarized in Table 1:

– Adult Census Income Dataset [1] is extracted from the 1994 American
Census Database. The task is to predict whether a person’s income is over
50K a year. People with label >50K belong to the positive class. S = gender
is considered as the protected attribute, s = female the protected group and
s̄ = male the non-protected group.

– Bank Marketing Dataset [21] is collected from a Portuguese bank that
focuses on selling long-term deposits over the phone. The task is to predict
whether a client will make a deposit subscription. We take S = marital sta-
tus as the protected attribute, s = married the protected group and s̄ =
single/divorced as the non-protected group.

5.1.2 Experimental Settings

The nominal attributes are encoded to one-hot vector and max-normalization is
applied to the numerical attributes to ensure the values are in [0, 1]. In the auto-
encoder block, both the encoder and decoder have three fully-connected linear
layers and each is followed by a ReLU activation. Following the evaluation setup
in [12,17,29], 50% of the data is used for training in which 20% of them are used
for validation, and the other 50% is for testing. All experiments are evaluated
using 10 random splits. We train the auto-encoder and classifier simultaneously
by minimizing the objective function Eq. 8. For training, we use the Adam
optimization method, with batch size B = 512 and a learning rate 0.002. In order
to get the best α − β combination (see Eq. (5) and 7), grid search is operated
within α ∈ [0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and β ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. Finally, α =
0.9, β = 0.2 for the Adult Census Income Dataset and α = 0.8, β = 0.4 for the
Bank Marketing Dataset are selected.

To further improve the performance, the well known preferential sam-
pling [14] is applied. The samples are ranked according to their classification
scores ascendingly. Centered on classification score 0.5, K samples whose scores
>0.5 are duplicated while K samples whose scores <0.5 are skipped. K is com-
puted based on the size of sensitive attributes and labels.
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(a) Comparison on Adult Census Income
Dataset.

(b) Comparison on Bank Marketing Dataset.

Fig. 3. Comparison with the state-of-the-art methods on Adult Census Income dataset
and Bank Marketing dataset. For fairness measurement Eq.Odds, lower values are bet-
ter; For others, higher are better.

5.2 Comparison with Other Methods

We compared our approach with the recently proposed state-of-the-art in-
processing approaches which mainly aim to minimize Eq.Odds.

AdaFair [12]: a boosting model which assigns fairness related weights in each
boosting round by observing the cumulative fairness behavior of the ensemble.

LAFTR [19]: a holistic approach that learns a latent fair representation using an
encoder/decoder and an adversary (where the encoder/decoder seek to minimize
the adversary’s objective), and at the same time trains a fair classifier on the
latent space.

FairPCA-SVM [28]: aims to find a low dimensional representation of the orig-
inal data while maintaining similar fidelity for two groups. We project the data
to the Fair PCA space and use SVM for binary classification.

PCA-SVM: Similar to FairPCA-SVM, we project the data to the PCA space
and use an SVM classifier. This is only a naive baseline method for comparison.

EO-Network [20]: A two-layer neural network, with Eq.Odds as a constraint in
the loss function. This can be seen as our model without the auto-encoder part.

Krasanakis et al. [17]: In this work, the authors assume the existence of a latent
fair class distribution, which they approximate through the CULEP model by
re-estimating the instance weights iteratively.

Zafar et al. [29]: In this work, the authors formulate fairness as a set of convex-
concave constrains which are embedded in the objective function of a logistic
regression model.
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(a) Adult Census Dataset. (b) Bank Marketing Dataset.

Fig. 4. Ablation Study (for Eq.Odds lower values are better - for the rest, higher values
are better.)

The experimental results from different methods on two datasets are depicted
in Fig. 3, detailed discussion on each dataset follows hereafter. The results of
[12,17,29] are taken from [12].

5.2.1 Adult Census Income

Figure 3(a) displays the baselines, state-of-the-art and our final experimental
results on the Adult Census Dataset. Our method achieves the highest accuracy
and balanced accuracy rates. The lowest Eq.Odds is achieved by Krasanakis et
al. However, its TPRs for both protected (TPR prot) and non-protected (TPR
non-prot) groups are much lower than the other methods (the lowest TPR prot
and the second-lowest TPR non-prot). Fair-PCA aims to learn a fair feature
representation in the low-dimensional space. But the learned representation may
be unsuited for the binary classification task. It achieves fairer decision-making
(lower Eq.Odds) comparing to PCA yet performs worse compared to our method.
The comparison of our method with EO-Network demonstrates an 8% decrease
in Eq.Odds and 14% improvement in TPR prot, revealing the effectiveness of
generating low-dimensional features. Similar to our approach, LAFTR also lever-
ages the joint-learning thought, but ours is more effective comparing to theirs:
balanced accuracy is 5% higher and Eq.Odds 3% lower. Our method also brings
a significant increase in TPR prot (18% higher). The superior performance from
our method indicates that our method is able to learn the fair representation. It
balances the balanced accuracy and Eq. Odds well.
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(a) colored by gender (b) colored by income

Fig. 5. Visualization of learned features colored by (a) gender and (b) income.

5.2.2 Bank

In Fig. 3(b), we report experimental results on the Bank Marketing Dataset. Due
to the class imbalance problem, both PCA-SVM and FairPCA-SVM perform
poorly on this dataset. They output all zeros for the binary classification task
which result in balanced accuracy 0.5, TPR prot and TPR non-prot are 0. In
EO-Network, the weight parameter of the Eq.Odds constraint is the same as
used in our method i.e., 0.4. LAFTR reaches the lowest Eq. Odds result but
its TPRs for both groups are also the lowest. There is a minor difference in
Eq.Odds between LAFTR and our method, yet ours achieves the much higher
balanced accuracy rate, TPR prot, and TPR non-prot. Compared to Zafar et
al. and Krasanakis et al., our method reports a higher balanced accuracy rate,
higher TPRs for both groups and also the comparable Eq.Odds. It proves that
our method maintains classification performance while achieving fairness.

5.3 Ablation Study

We perform ablation studies to evaluate how different parts influence the pre-
dictive and fairness performance of our method. In Fig. 4, α = 0 represents
the outcome without KL-Divergence regularization and β = 0 without Eq.Odds
regularization respectively. Figure 4(a) demonstrates the ablation study on the
Adult Census Income Dataset and Fig. 4(b)the Bank Marketing Dataset. We can
see that, integrating only the KL-Divergence regularization is more effective than
integrating Eq.Odds regularization only (comparing the second and third bars
in Fig. 4(a)). Applying both regularizations further improves the performance
(the fourth bars in Fig. 4(a)). Preferential sampling further improves the TPR
prot and TPR non-prot while almost not affecting Eq.Odds. The ablation study
results on the Bank Dataset (as shown in Fig. 4(b)) display a similar tendency
yet Preferential sampling does not bring much improvement on TPRs.

5.4 Feature Visualization

To better understand what kind of features are learned from the auto-encoder
part, we visualize the extracted features by randomly selecting 2 dimensions
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(a) Testing accuracy of AE-M (b) Testing accuracy of AE-N

Fig. 6. Comparison of auto-encoder with MSE+Cross-Entropy loss (left) and with
normal MSE loss function (right).

of the 10 dimensional latent space and color them according to the protected
attribute (Fig. 5(a)) and by the label (Fig. 5(b)) respectively. Figure 5(a) illus-
trates that the protected attribute information is mixed up in the latent space,
which indicates that the fair representation is learned. Figure 5(b) shows that
the label information is distinguishable. The learned representation is not only
fair but also suitable for the binary classification task which follows afterwards.

5.5 The Effect of the Multi-loss Function on the Accuracy

In this experiment we evaluate the effect of the multi-loss function on the accu-
racy and compare the auto-encoder with MSE loss + Cross Entropy loss (we
call the network AE-M), to an auto-encoder with normal MSE loss (AE-N). We
set α = 0, β = 0, which means to ignore the Eqs. 5 and 7.

By observing the testing accuracy shown in Fig. 6(a) and Fig. 6(b), we can
conclude that AE-M does not perform worse but even achieves a slightly better
predictive performance (testing accuracy is 0.76% higher than AE-N).

6 Conclusion

We proposed FairNN , a neural network approach for fairness-aware learning
that jointly learns a feature representation and classification model. The neural
network consists of two parts, an autoencoder component for fair representation
learning and a classification component for fair decision making. Our approach
optimizes a multi-objective loss function which (a) learns fair representation by
suppressing protected attributes (b) maintains the information content by mini-
mizing the reconstruction loss and (c) allows for fair classification by minimizing
the classification error and respecting the equalized odds-based fairness regu-
larizer. Our experiments demonstrate that such a joint approach is superior to
a separate treatment of unfairness in representation learning or classifier learn-
ing. Our method achieves the highest accuracy and balanced accuracy rates. All
components are important as demonstrated by the ablation study.
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Note that our architecture contains a branch of an auto-encoder which allows
unsupervised learning. Thus, our framework is suited for semi-supervised learn-
ing with sparsely labeled data. We will elaborate on this aspect in future works.
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