
Consequence-Aware Sequential
Counterfactual Generation

Philip Naumann1,2(B) and Eirini Ntoutsi1,2

1 Freie Universität Berlin, Berlin, Germany
2 L3S Research Center, Leibniz Universität Hannover, Hanover, Germany

{philip.naumann,eirini.ntoutsi}@fu-berlin.de

Abstract. Counterfactuals have become a popular technique nowadays
for interacting with black-box machine learning models and understand-
ing how to change a particular instance to obtain a desired outcome from
the model. However, most existing approaches assume instant material-
ization of these changes, ignoring that they may require effort and a
specific order of application. Recently, methods have been proposed that
also consider the order in which actions are applied, leading to the so-
called sequential counterfactual generation problem.

In this work, we propose a model-agnostic method for sequential coun-
terfactual generation. We formulate the task as a multi-objective opti-
mization problem and present a genetic algorithm approach to find opti-
mal sequences of actions leading to the counterfactuals. Our cost model
considers not only the direct effect of an action, but also its consequences.
Experimental results show that compared to state-of-the-art, our app-
roach generates less costly solutions, is more efficient and provides the
user with a diverse set of solutions to choose from.

Keywords: Sequential counterfactuals · Multi-objective optimization ·
Genetic algorithms · Model-agnostic

1 Introduction

Due to the increasing use of machine learning algorithms in sensitive areas such
as law, finance or labor, there is an equally increased need for transparency and
so-called recourse options [12,24]. It is no longer sufficient to simply deliver a
decision, but moreover to be able to explain it and, ideally, offer assistance if
one feels unfairly treated by the algorithm. Hiding the decision-making algorithm
behind a (virtual) wall like an API makes these issues especially intransparent
and problematic in case of black-box models, as they are not able to communicate
with the end user beyond the provided decision (e.g. reject or accept).

For this reason, algorithms emerged that aim to explain a (black-box) decision
or even provide essential recourse information in order to change an undesired
outcome in one’s favor. The latter of these methods is of particular interest,
since it has the capability to improve a bad decision for someone into a good
one by giving explicit directions on what to change with respect to the provided

c© Springer Nature Switzerland AG 2021
N. Oliver et al. (Eds.): ECML PKDD 2021, LNAI 12976, pp. 682–698, 2021.
https://doi.org/10.1007/978-3-030-86520-7_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86520-7_42&domain=pdf
https://doi.org/10.1007/978-3-030-86520-7_42


Consequence-Aware Sequential Counterfactual Generation 683

information. These methods are commonly referred to as counterfactual expla-
nations [24]. The goal here is to change (tweak) characteristics (features) of a
provided input so that the black-box decision turns out in favor afterwards (e.g.
increase your level of education to get a higher salary). The result of applying
these changes on the input is commonly referred to as a counterfactual [24].

Usually, those changes are atomic operations, meaning each feature is
tweaked independently [4,15,17,24]. Thus, feature interrelationships, e.g. of
causal nature, are not considered. Recent approaches propose to define changes in
(multiple) features through so-called actions, which can be thought of as instruc-
tions on how to apply the modifications and their consequences (e.g. increasing
the level of education has an impact on age because it takes time to obtain a
degree). Actions further help to describe what features are actionable, mutable
or immutable [12]. However, these approaches, like the traditional counterfac-
tual methods, still assume that all these changes happen instantly and do not
consider implications and consequences of the order of their application.

Fig. 1. The difference between traditional counterfactual generation (a) and the sequen-
tial approach (b). Although the generated counterfactual xT is the same, the process
and implied knowledge/information is different.

For this reason, recent works regard the application of feature altering
changes as a sequential process [19,20]. The problem is then shifted from simply
computing the counterfactual, to finding an ordered sequence of actions that
accomplishes it. In Fig. 1 we visualized this difference for a person x0 wishing to
attain a higher salary (Class: × ⇒ �) for which getting a higher education level,
switching the job and changing the location is necessary. In this case, e.g., it was
assumed that decreasing one’s working hours is beneficial in order to obtain a
higher degree, which is a relationship that traditional approaches do not model.
Each state xt in Fig. 1b describes the result of applying an action on the previous
state xt−1 and xT denotes the counterfactual. As we can see, the actions have
different effects in the feature space and may alter more than one feature at a
time. Moreover, the order makes a difference as increasing the level of education
before changing the job is usually more beneficial, as well as decreasing the work-
ing hours in order to attain the degree (representing a focus on the education).



684 P. Naumann and E. Ntoutsi

Later on, this change is reset to its original value through another action since
an increased value is now more plausible again with respect to the job change.
The whole process of Fig. 1b can be seen as a sequential counterfactual as each
state is an important part of it, whereas in the traditional setting in Fig. 1a only
the final result is important. Thus, a sequential counterfactual allows us to look
beyond just flipping the class label and provides further information about the
underlying process. It is not the absolute main goal anymore to only switch the
class label, but to take consequential effects into account in order to improve
the overall benefit of the actions. For the end user, this also means getting con-
crete information on the actions and their order. Our work is in the direction of
sequential counterfactual generation and inspired by [19], which we will further
elaborate in Sect. 2.

The rest of this paper is organized as follows: we will first give an overview
on related work in Sect. 2. Then, we introduce the consequence-aware counter-
factual generation problem in Sect. 3, for which our proposed method follows in
Sect. 4. Lastly, we evaluate it in Sect. 5 to a state-of-the-art method and give
final conclusions in Sect. 6. We want to note that the metaphorical examples
used throughout do not always correspond to reality and are merely illustrative.

2 Related Work

Counterfactual explanations were first introduced in [24] as a mean towards
algorithmic transparency. Motivated by the “closest possible world” [24] in which
a favorable outcome is true (e.g. accept), most methods optimize on the distance
between the original input x0 and the counterfactual xT to keep the changes
minimal. Since this notion alone was found to be insufficient, other popular
objectives include the plausibility (often measured as the counterfactual being
within the class distribution [10] or being close to instances from the dataset [4,
18,23]) and sparsity [4,17,23] (measuring how many features had to change)
of solutions. Desirable criteria regarding the algorithms are, e.g., being model-
agnostic [4,11,14,15] (e.g. by using genetic algorithms) or providing a diverse
set of solutions [4,5,16,17] (e.g. by using multi-objective optimization).

More recently, works [13,19,22] began to replace the distance function with
a cost in order to express aspects such as the effort of a change. In alignment
to this, the term recourse [5,10,12,13,18,22] has attracted attention to describe
the counterfactual generation. It can be defined as “the ability of a person to
change the decision of a model by altering actionable input variables” [22] and
thus emphasizes on the actionability of the features to provide comprehensible
recommendations that can be acted upon [12]. In addition, more attention has
been paid on the causal nature of feature interrelationships, e.g. by including
causal models in the generation process to assess mutual effects [5,13,16].

Lastly, motivated by the fact that in reality most changes do not happen
instantly, but are rather part of a process, there have been works that extend
the formulation of actions and their consequences by incorporating them in a
sequential setting [19,20]. In contrast to simply finding the counterfactual that



Consequence-Aware Sequential Counterfactual Generation 685

switches the class label, the focus is on finding a subset of actions that, applied in
a specific order, accomplishes the counterfactual while accounting for potential
consequences of prior actions on subsequent ones (cf. Fig. 1).

In this work, we also focus on sequential counterfactual generation. The
advantages of our method in comparison to [19] can be summarized as follows:
our method is model-agnostic and not bound to differentiable (cost) functions.
It finds diverse sequences instead of a single solution, thus giving more freedom
of choice to the end user. Moreover, it is efficient in pruning and exploring the
search space due to using already found knowledge (exploitation) and the ability
to optimize all sub-problems (cf. Sect. 3.3) at once, while [19] breaks these down
into separate problems. This efficiency allows us to find sequences of any length,
whereas [19] requires multiple runs and more time for it (cf. Sect. 5). Another
difference is our action-cost model (cf. Sect. 3.2). We regard consequences not
only in the feature space (e.g. age increases as a consequence of obtaining a
higher degree), but also explicitly model their effects in the objective or cost
space (e.g. changing the job becomes easier with a higher degree). This way
we extend the cost formulation of [19], which only proposes to model (feature)
relationships through (boolean) pre- and post-requirement constraints (e.g. you
must at least be 18 to get a driver’s license). These constraints are also possible
in our model. Finally, we note that the work of [20] also discusses consequential
effects. However, since no cost function is optimized, but instead the target class
likelihood of the counterfactual, we do not compare with [20] in this work.

3 Problem Statement

We assume a static black-box classifier f : X → Y where X = X1×· · ·×Xd is the
feature space and Y is the class space. The notation

...X h is used to refer to the
feature itself (e.g.

...X Edu denotes Education, whereas XEdu = {. . . , HS, BSc, . . . }
is the domain). For simplicity and without loss of generality, we assume f is a
binary classifier with Y = {reject, accept}. Let x0 ∈ X be an instance of the
problem, e.g. a person seeking to receive an annual salary of more than $50k,
and the current decision of f based on x0 is f(x0) = reject. The goal is to find
a counterfactual example xT for x0 such that f(xT ) = accept. In other words,
we want to change the original instance so that it will receive a positive decision
from the black-box. The sort of changes we refer to are in the feature description
of the instance, like increasing Age by 5 years or decreasing Work Hours to 20
per week. Our problem formulation builds upon [19]. We introduce actions in
Sect. 3.1 along with their associated cost to implement the suggested changes in
Sect. 3.2. Finally, we formulate the generation of sequential counterfactuals as a
multi-objective optimization problem in Sect. 3.3.

3.1 Actions, Sequences of Actions and States

Let A = {a1, . . . , an} be a problem-specific, manually-defined set of actions.
Each action is a function ai : X × V → X that modifies a subset of features



686 P. Naumann and E. Ntoutsi

Iai
= { ...X h,

...X k, . . . } ⊆ ...X in a given input instance xt−1 ∈ X in order to realize
a new instance (which we refer to as a state) ai(xt−1, vi) = xt ∈ X . An action
directly affects one feature

...X h ∈ Iai
(e.g. Education) based on a tweaking value

vi ∈ Vh ⊆ Xh and may have indirect effects on other features
...X k �=h ∈ Iai

as
a consequence (e.g. Age). Here, V ⊆ X describes the feasible value space that
restricts the tweaking values based on the given x (e.g. Age may only increase).

For example, x2 in Fig. 1b is the result of applying aEdu(x1, BSc) = x2 which
changes the Education (HS ⇒ BSc) and affects the Age (19 ⇒ 23) as a con-
sequence. In this case, VEdu and VAge restrict the tweaking values so that they
can only increase. It is possible to use a causal model as in [13] for evaluating
how the indirectly affected features have to be changed. An action-value pair
(ai, vi) thus represents a specification how Iai

of x is affected with respect to the
tweaking value vi of feature

...X h.
Additionally, each action ai may be subject to boolean constraints Ci : X ×

V → B such as pre- and post-requirements as proposed in [19] (cf. Sect. 2),
which can also be used to validate the feasibility of indirectly affected features.
Each action-value pair is considered valid, if it satisfies the associated constraints
and V. An ordered sequence S of valid action-value pairs (at

i, vi) leading to the
counterfactual xT is called a sequential counterfactual. Here, t ∈ {1, . . . , T} is
the order of applying the actions and T ∈ {1, . . . , |A|} is the number of used
actions in S, i.e. the sequence length.

3.2 Consequence-Aware Cost Model

Our goal is to assess the direct effort (which can, e.g., be abstract, as based on
personal preferences, or concrete, like money or time etc.) of an action while con-
sidering possible consequences. We define the cost of an action ai as a function of
two components: ci(·) = bi(·) · gi(·). Here, bi represents the direct effort, whereas
gi acts as a discount of it in order to express (beneficial) consequences of prior
actions. Please note that each action has its own cost function. Summing up all
action costs of a sequence S yields the sequence cost : CS =

∑
ai∈S ci(·). In the

following we will explain the components in more detail.

Action Effort bi: First, we introduce bi : X ×X → R+, which is assumed to be
an action-specific measure of the direct effort caused by an action ai. Therefore,
this is specified as a function between two consecutive states xt−1,xt ∈ X , rep-
resenting the direct effect of applying that action on xt−1. This function can be
thought of as a typical cost function as in e.g. [19]. As an example, bi could be
specified linear and time based, whereby an effort caused by an action addEdu
would be represented by the years required (e.g. four to progress from HS to BSc).
Alternatively, monetary costs could be used (i.e. tuition costs), or a combination
of both. Besides, there are no particular conditions on this function, so it can be
defined arbitrarily (e.g. return a constant value).

Consequential Discount gi: To assess a possible (beneficial) consequential
effect of previous actions on applying the current one at

i, we introduce a so-
called consequential discount gi : X → [0, 1] that affects the action effort bi

based on the current state xt−1 (i.e. before applying at
i). Such effects can be, e.g.,



Consequence-Aware Sequential Counterfactual Generation 687

“the higher the Education, the easier it is to increase Capital” or “increasing
Education in Germany is cheaper than in the US (due to lower tuition fees)”.
This discount therefore describes a value in [0, 1], where 0 would mean that
the current state is so beneficial that the effort of the action to be applied
is completely cancelled out, and 1 that there is no advantageous effect. We
derive the aforementioned consequential effect on an action from consequential
relationships between feature pairs. This is provided as a graph G = (X,E)
where the nodes X ⊆ ...X are a subset of the features and edges ekh ∈ E between
each two nodes

...X k,
...X h ∈ X describe a function τkh : X → [0, 1] that models

a consequential effect between one feature
...X k to another

...X h. For the given
features

...X 1 := Job,
...X 2 := Education and

...X 3 := Location we have exemplified
G in Fig. 2a by the following relations:

1. The Education cost depends on the Location (
...X 3

τ32−−→ ...X 2). E.g., it is cheaper
to get a degree in Germany than the US because of lower tuition fees.

2. The easiness of getting a Job depends on the Location (
...X 3

τ31−−→ ...X 1). E.g.,
it is easier to get a Developer job in the US than in other locations.

3. The higher the Education, the easier it is to change the Job (
...X 2

τ21−−→ ...X 1).

Fig. 2. For simplicity, the τ(·) functions in (a) are based on binary conditions: τ32 =
1.0 if X3 := US, else 0.5. τ31 = 0.5 if X3 := US, else 1.0. τ21 = 0.5 if X2 ≥ BSc, else 1.0.
As a reference, the action efforts bi are provided above each feature in (a).

Based on this modeling in G, we can then derive the consequential discount
gi of an action ai (Eq. 2) by averaging the consequential effect ĝh of each affected
feature

...X h ∈ Iai
(Eq. 1). It is assumed that gi evaluates to 1.0 if no feature in

Iai
is influenced by another one in G (e.g.

...X 3 in Fig. 2a).

ĝh(xt−1) = avg({τkh(xt−1) ∀ ...X k ∈ X | ∃ ekh ∈ E}) (1)

gi(xt−1) = avg({ĝh(xt−1) ∀ ...X h ∈ Iai
| ∃ ...X h ∈ X}) (2)

In order to understand the benefit of the consequential discount on the
sequence order, we exemplify in Fig. 2b the situation from Fig. 1b (for simplic-
ity the working hours altering actions are omitted). The available actions are



688 P. Naumann and E. Ntoutsi

thus: “change Job to Developer” (a1), “get a BSc degree” (a2) and “change
Location to US” (a3) (notice all Vi are fixed to a single value). Each ai alters
their respective feature counterpart

...X i (e.g. Ia1 = { ...X 1}). We can see the cost
computations in Fig. 2b for two differently ordered sequences S1 = 〈a1

3, a
2
1, a

3
2〉

and S2 = 〈a1
2, a

2
3, a

3
1〉 that achieve the same final outcome xT (i.e. only the appli-

cation order is different). To compute the consequential discount for action a2
1

in S1, e.g., we consider the relations
...X 3

τ31−−→ ...X 1 and
...X 2

τ21−−→ ...X 1 with respect to
x1 to derive the feature discount (Eq. 1): ĝ1(x1) = 0.5+1.0

2 = 0.75. Since no other
feature is affected by a1 according to Ia1 , the action discount (Eq. 2) evaluates to
g1(x1) = ĝ1(x1). After computing all action costs ci, we can derive the sequence
costs CS1 = 27.5 and CS2 = 22.5, which shows that S2 would be preferred here
as it benefits more from the consequential discount effects of G. Note, that if we
leave out the consequential discounts completely, i.e. ci = bi, then there would
be no notion of order here as each sequence would receive the same costs (assum-
ing the same tweaking values). Furthermore, our consequence-aware formulation
means, that additional actions are only used if their induced effort is lower than
the consequential benefit they provide (as this would otherwise make CS worse
than if the action was not used).

3.3 Consequence-Aware Sequential Counterfactual Generation

Based on the previous definitions, we now introduce the consequence-aware
sequential counterfactual generation problem. Find the counterfactual xT ∈ X
of an initial instance x0 ∈ X by taking valid action-value pairs (at

i, vi) of a
sequence S according to the constraints Ci and sequence cost CS such that
f(xT ) = accept. In order to solve this, we identify three sub-problems:

Problem 1 (Prob. 1): Find an optimal subset of actions A∗ ⊆ A.
Problem 2 (Prob. 2): Find optimal values V∗ ∈ V for A∗.
Problem 3 (Prob. 3): Find the optimal order of S to apply the actions.

For an arbitrary set of actions A and feasible value space V many sequences
can be generated, therefore it is important to assess their quality. For this pur-
pose, we will use the sequence cost o1 := CS as a subjective measure, as well
as the Gower’s distance [9] o2 := dist(x0,xT ) to act as an objective assessment
how much xT differs from x0. The Gower’s distance is able to combine numerical
and categorical features and is thus an appropriate measure here [4]. The reason
for using both is, that o1 measures the effort of the whole process, whereas o2
only considers the difference to the final counterfactual and is agnostic of the
process.

In order to propose diverse solutions, we will formulate the problem as a multi-
objective one and add, next to o1 and o2, the individual tweaking frequencies
of each of the 1 ≤ h ≤ d features after unrolling the complete sequence, i.e.
o2+h = #(

...X h ∈ Iai
∀ ai ∈ S). In other words, o2+h measures how often a

feature
...X h was affected by all actions of S combined. E.g., the frequencies for

o3, . . . , o7 would be {1, 1, 1, 2, 1} in case of Fig. 1b. In a way this can be thought



Consequence-Aware Sequential Counterfactual Generation 689

of as the sparsity objective mentioned in Sect. 2, but aggregated individually per
feature instead of a sum. The idea behind the diversity objectives is to keep
the number of feature changes minimal and additionally force the optimization
to seek alternative changes instead. This means, solutions mainly compete with
those that change the same features with respect to o1 and o2, resulting in
a diverse set of optimal options. Combining all the above yields the following
multi-objective minimization problem:

min
S

( o1︸︷︷︸
Sequence cost

, o2︸︷︷︸
Gower’s distance

, o2+1, . . . , o2+h, . . . , o2+d
︸ ︷︷ ︸
Feature tweaking frequencies

)

s.t. f(xT ) = accept and
∧

(ai,vi)∈S
Ci

(3)

4 Consequence-Aware Sequential Counterfactuals
(CSCF)

In order to address the combinatorial (Prob. 1, Prob. 3) and continuous (Prob. 2)
sub-problems with respect to Eq. 3, we used a Biased Random-Key Genetic Algo-
rithm (BRKGA) [8] and adapted it for multi-objective optimization by using non-
dominated sorting (NDS) [21]. NDS is preferred over a scalarization approach
to avoid manual prioritization of the objectives and to address them equally.
Moreover, by using BRKGA we avoid the manual definition of problem-specific
operators, which is not trivial here. This choice allows to solve all sub-problems
at once, is model-agnostic, derivative-free and provides multiple solutions.

BRKGA: The main idea behind BRKGA is that it optimizes on the genotype
of the solutions and evaluates on their phenotype, making the optimization itself
problem-independent [8]. A genotype is the internal representation of a solution,
whereas the phenotype is the actual solution we wish to generate. The phenotype
must always be deterministically derivable from the genotype through a decoder
function [8]. Because of this, each solution genotype in BRKGA is encoded as
a vector of real (random) values in the range of [0, 1] (the so-called random-
keys) [8].

In each generation (iteration), the decoded solution phenotypes are evaluated
based on their fitness (given by the vector of evaluating each objective of Eq. 3 indi-
vidually) and the population is divided into two subsets by applying NDS: the so-
called elites, which are the feasible (valid), non-dominated (i.e. best) solutions in
the Pareto-front [7], and the remaining ones, called non-elites. Then, genetic mat-
ing is performed by selecting two parents, one from the elite sub-population and
one from the non-elites. A new solution is created by applying biased crossover [8]
on the two parents, which favors selecting the value of the elite solution with a cer-
tain biased probability. This step is repeated until sufficient new solutions have
been created. Additionally, a number of completely random solutions are gener-
ated in order to preserve the exploration of the search space and the diversity in
the population. Finally, the different sub-populations (elites, crossovered and ran-
dom solutions) are merged and evaluated and form the new population for the next



690 P. Naumann and E. Ntoutsi

generation. This loop continues until some termination criterion is reached. The
Pareto-front of the last generation then represents our final solution set. Note that
the Pareto-front usually holds more than one solution (i.e. a diverse set of optimal
sequences according to the objectives of Eq. 3).

Genotype: We wish to solve the three sub-problems from Sect. 3.3 at once.
Inspired by similar, successful, encodings of problems (cf. [8]), we thus compose
the genotype as G = [A1, . . . ,AN ,VN+1, . . . ,V2N ] = [A,V], with Ai,Vi ∈ [0, 1].

The first N values, A, in G encode the action subset A (cf. Prob. 1) and their
ordering t ∈ {1, . . . , T} in the sequence S (cf. Prob. 3). Each index position i ∈
{1, . . . , |A|} corresponds to one of the actions in the action set ai ∈ A (i.e. Ai ∈ A

encodes ai ∈ A). The other half, V, encodes the tweaking values V (cf. Prob. 2)
of each action, which is also referred to by the index position i ∈ {1, . . . , |V|} (i.e.
VN+i ∈ V encodes vi ∈ Vh). Figure 3 visualizes this composition of the genotype.

Fig. 3. Anatomy and representation of the solution decoding.

Decoder: Since BRKGA itself is problem-independent, we design a problem-
specific decoder D(G) = P to infer the phenotype P from G. Below we discuss
its design, which is inspired by established concepts (cf. [8]).

The subset of actions (cf. Prob. 1) is decoded by identifying inactive actions
in the actions part A. As a simple heuristic, we define an action in G as inactive
(denoted by “−1”), if its genotype value is greater than 0.5. This follows from
the idea that an action has an equal chance to be active or inactive when chosen
randomly. To get the active actions and their order (cf. Prob. 3), we apply the
commonly used argsort : A → A decoding [1,8] on A and identify the inactive
actions afterwards, which will always produce a non-repeating order. We find the
actual actions by looking at the sorted index (cf. P in Fig. 3). Note that an action
will be at an earlier position t in S the lower its genotype value is. Lastly, we
decode the values part by applying a (linear) interpolation Interp : V → V on
each of the genotype values in V. Therefore, only the original value ranges need
to be provided (via V), or in case of categorical values a mapping between the
interpolated value and the respective categorical value counterpart. The decoded
value at position i ∈ {1, . . . , |V|} then belongs to ai ∈ S.



Consequence-Aware Sequential Counterfactual Generation 691

An example of the full decoding process (from a genotype solution G to
the actual solution sequence S) is visualized in Fig. 3. As we can see, applying
argsort on A ∈ G realizes an order (3,2,1) for A via P . Since A1 > 0.5, action
a1 is rendered inactive and the remaining, ordered, action set is 〈a1

3, a
2
2〉. The

associated tweaking values are then decoded by interpolating V ∈ G and assigned
to their action counterparts, thus creating the sequence S. Note that decoding is
necessary for all solutions in each iteration to evaluate the fitness and is repeated
until the termination criterion (e.g. maximum number of iterations) is reached.

5 Experiments

The first goal of our experiments is to evaluate the costs of the generated
sequences1 in comparison to the state-of-the-art approach [19] (Sect. 5.1). Next,
we analyze the diversity of the generated solutions in terms of the action space
and the sequence orders (Sect. 5.2). Finally, we examine the effect of the action
positions in a sequence for switching the class label (Sect. 5.3).

Datasets: We report on the datasets Adult Census [6] (for predicting whether
income exceeds $50k/year based on census data) and German Credit [6] (for
predicting whether a loan application will be accepted).

Baselines: The following three methods were used for the evaluation. The first
one acts as a direct competitor and the others are variations of our method.

synth [19]: The competitor2 only optimizes for finding a single minimal cost
sequence and solves two separate sub-problems independently. First, they
generate candidate action subsets according to Prob. 1 with respect to one
of their proposed heuristics. Then, they perform an adversarial attack based
on [3] in order to find the tweaking values for each candidate sequence to
solve Prob. 2. There is no explicit sequence order notion as per Prob. 3 apart
from pre- and post-requirements, thus it only optimizes on their provided
cost function which is equivalent to the action effort that we introduced in
Sect. 3.2, i.e. ci = bi. To make the comparison to [19] fair, we use their exact
same action-cost model and provided pre-trained black-box classifiers (which
are neural networks here) for all methods. That means, all action behavior is
identical in this comparison (i.e. tweaking effects, constraints, conditions and
costs). Hence, we use the costs of their model for the action effort bi.

cscf: Our method optimizes all sub-problems at once and provides multiple
solutions. Regarding the cost, it considers the consequential discount and
thus optimizes ci = bi · gi. For gi, we provided a simple feature relationship
graph G that models beneficial effects in Adult Census such as:

• The higher the Education level, the easier it gets to increase Capital
Gain, change Work-Class and Occupation.

1 Apart from the cost objective o1, we will not report on the remaining objective space
from Eq. 3 here, since the results were similar and thus not particularly informative.

2 https://github.com/goutham7r/synth-action-seq.

https://github.com/goutham7r/synth-action-seq


692 P. Naumann and E. Ntoutsi

• The lower the Work Hours, the easier it is to increase the Education.
• The higher the Work Hours, the easier it gets to increase Capital Gain.

We only use cscf for Adult Census as it was not practical to create a mean-
ingful graph based on the predefined actions from [19] for German Credit .
Since the gi part primarily affects the order of actions, we would generally
expect cscf to behave similarly to scf in terms of bi, though.

scf: This is a variation of our proposed cscf, leaving out the consequential
discount and thus only optimizes on the action efforts from [19], i.e. ci = bi.
When referring to findings that apply to both cscf and scf, we use “(c)scf”.

Implementations: We implemented our method in Python3 using the
pymoo [2] implementation of BRKGA. The parameters for BRKGA are mostly
based on recommendations from [8]: the population size was set to 500, the
mutant and offspring fractions to 0.2 and 0.8, respectively, and the crossover
bias to 0.7. As the termination criterion for (c)scf, we fixed the number of
iterations to 150. From each dataset we chose 100 random instances that are
currently classified by the black-box as the undesired class (i.e. Salary < $50k
and Credit denied) with the intention of generating a sequential counterfac-
tual to flip their class label. Each instance represents an experiment. We ran all
methods on the same 100 experiments and fixed the maximum sequence length of
synth to T = 2 because of long runtimes for larger values which made the exper-
iments of those unfeasible on our hardware4. The long runtimes of synth were
already mentioned in their paper: “Time/iteration is ∼15s across instances” [19],
which confirms our observations, since the algorithm may take up to a few 100
iterations according to [19] (running synth for T ≤ 2 took the same time as
(c)scf needed for all sequence lengths simultaneously). Because of this, we used
the “Vanilla” heuristic for synth as it was found to perform the best for shorter
sequences based on [19]. Lastly, we had to filter out some experiments in the
post-processing since synth produced constraint violating solutions or did not
find a feasible one. Consequently, the number of experiments for German Credit
was post-hoc decreased to 85, but for Adult Census it did not change.

5.1 Sequence Costs of Sequential Counterfactuals

We show the undiscounted (i.e. only using the action effort share bi) sequence
costs of the solutions (o1 objective) in Fig. 4 for Adult Census and German
Credit . In the x-axis we see the individual, pair-wise relative differences between
the computed minimal cost sequences for two methods and each of the valid
initial inputs/experiments (which are represented by the y-axis). The green color
indicates that the method mentioned first in the title (A) performed better,
whereas red indicates the other one (B) did. The blue line shows the point from
which one method consistently outperforms the other.
3 https://github.com/ppnaumann/CSCF.
4 All experiments (competitor and our method) were executed on the free tier of Google
Colab (https://colab.research.google.com/).

https://github.com/ppnaumann/CSCF
https://colab.research.google.com/


Consequence-Aware Sequential Counterfactual Generation 693

Fig. 4. Relative minimal sequence cost (o1) differences between the three methods for
both datasets and solutions with T ≤ 2. It is computed as: (B−A)/max {A, B}. (Color
figure online)

Since our method finds multiple optimal sequences (on median 4 for German
Credit and 7 for Adult Census) of different lengths per experiment, and synth
only finds a single one, we chose the least cost sequence in (c)scf per set that
satisfies T ≤ 2 in order to make the comparison fair. Note, that there could be
a longer sequence with less overall cost that was found by (c)scf due to using
more, but cheaper actions. Although cscf has optimized on the discounted cost,
we only use the effort share, bi, of it in this analysis to guarantee comparability.

As we can see in Fig. 4, (c)scf usually performed better in Adult Census. In
German Credit it seems to be fairly even, but with a slight tendency towards scf.
The overall larger relative differences in favor of (c)scf (green), with respect to
synth, appear to be the result of synth selecting a different, but more expen-
sive set of actions. By looking through the history trace, we identified that the
same set of actions that (c)scf found to be optimal was evaluated by synth,
although with different tweaking values. These values, however, seemed to pro-
duce a constraint-breaking solution that was either rendered invalid by synth,
or had high costs, since constraints are enforced as a penalty in synth. The
cases where synth outperforms (c)scf (red) show small cost differences only.
Notably, the differences between cscf and scf are also minor, even though cscf
optimizes on the discounted costs. Thus, this suggests that the augmentation by
gi does not significantly interfere with the goal of keeping CS minimal. In gen-
eral, we conclude that (c)scf is capable to find equivalent or better solutions in
comparison to synth in terms of costs.

5.2 Diversity of Sequential Counterfactuals

In Fig. 5 we illustrated the prevalence of actions at different positions t in a
sequence (indicated by the height of each action in the pillars) along with the
frequency of how often one action followed on from another (indicated by the
widths of the flows). The whitespace of an action in the pillar shows that a
sequence stopped there (i.e. had no subsequent actions). For this purpose, we
aggregated over all optimal solution sequences (i.e. the whole final Pareto-fronts)
from each experiment per method and dataset, respectively. Furthermore, we
additionally show (c)scf after filtering out all solutions with T > 2 (c, d, g in
Fig. 5) for better comparability with synth. The plots (a, b, c, d, e) in Fig. 5
belong to the Adult Census (A) and (f, g, h) to the German Credit (B) dataset.



694 P. Naumann and E. Ntoutsi

Fig. 5. Sankey plots showing the sequence orders and flow between subsequent actions
for differently aggregated solution (sub-)sets. The first two rows correspond to Adult
Census (A) and the third to German Credit (B).

As we can see in Fig. 5 (a, b, c, d, f, g), (c)scf makes use of the whole available
action space A, and more evenly utilizes the actions in each step than synth (e,
h). For German Credit , we notice that synth only used five different actions,
whereas scf used all available (f, g). This observation is in alignment with our
diversity goal and can be attributed to the tweaking frequency objectives (o2+h

from Eq. 3) which force the algorithm to seek alternative sequences that propose
different changes while still providing minimal costs. Since synth only finds
the single least cost solution, the same actions were chosen as they appear to
be less expensive than their alternatives. Regarding the lengths of the found
sequences, we see that the minimal cost ones were usually found up to length
three according to (a, b, f). After that, only few sequences still provide some
sort of minimal cost. Because of this, we can say that (c)scf does implicitly
favor shorter sequences if they are in alignment with the costs. This behavior
also follows from the tweaking frequency objectives, which minimize the number
of times a feature was changed and thus the number of actions used (as these
are directly related to another).



Consequence-Aware Sequential Counterfactual Generation 695

Looking at the particular differences between cscf (b, d) and scf (a, c),
we can identify the distinct characteristics of discounting each action effort by
gi through G. The relationship “the higher the Education, the easier it gets to
attain Capital Gain” is reflected in (b, d) as addEdu is the most frequent action
at t = 1. Moreover, there is no single sequence where addEdu would appear after
chCapGain, indicating that the beneficial consequence was always used by cscf.
In comparison, scf in (a, c) has a more equal spread as it has no knowledge of
the relationships. Lastly, the same peculiarity can be observed for chWorkHrs,
which was more often favored to be placed before chCapGain in cscf than scf
because of the beneficial relation in G. Even though it appears that the addEdu
effect is also visible in synth according to (e), this is an artifact since there is
no explicit mechanism that would enforce it. The most likely reason for this is
the order in which the actions were processed in the Vanilla heuristic.

Finally, looking at the T ≤ 2 plots (c, d, e, g, h) specifically, we can see that
some actions show a preferred co-occurrence. E.g., chCapGain and waitYears
seem to appear more often subsequently than others (c, d). This is not visi-
ble in synth (e), which on the other hand shows a distinct co-occurrence of
chCreditAm and chLoanPeriod. The reason for this can be traced back to the
cost model, which values these combinations as least expensive for sequence
lengths of T ≤ 2 (i.e. if we only use two actions). In case of (c)scf this effect is
weaker though, as it seeks for alternatives by design (cf. diversity principle from
Sect. 3.3).

5.3 Effect of the Action Positions on Achieving the Counterfactual

Lastly, looking at Fig. 6 we can see how each action affects the target class prob-
ability of accept in the Adult Census with respect to their positional occurrence
in a sequence. We again aggregated over all computed solutions here. The x-axis
denotes the position t in the sequence and the y-axis shows the median prob-
ability of the target class based on the black-box and the bootstrapped 95%
confidence interval (i.e. 2.5 & 97.5 percentiles).

As we can see, there are some actions that are almost able to switch the
class on their own when used (chCapGain, addEdu), whereas the remaining
ones only do it later at position two (waitYears, enlist) or three (chWorkHrs,
chCapLoss). Based on this, it suggests that some actions are only of support-
ive nature, whereas others can be seen as the main driver behind class label
changes. Additionally, the actions that affect a feature, which was attributed a
consequential effect through G (chCapGain, addEdu, enlist), are the only ones
that show a significant difference here. Furthermore, the effect of G in cscf is
visible. When G was used, chCapGain changed the class often on position one
already, whereas in scf it was usually not quite possible. Based on this, we can
infer that chCapGain at position one in cscf was typically used when it was
able to change the class on its own. Moreover, it suggests that the Education
level was already sufficiently high in the input instance, so that chCapGain was
able to increase more while benefiting from the discount enough that the costs
were kept low. The same might be the reason for enlist (i.e. joining the army),



696 P. Naumann and E. Ntoutsi

Fig. 6. Median effect with 95% confidence interval of each action at position t in
a sequence on the target class (accept) probability for Adult Census. f(xt) > 0.5
indicates the class label switched at position t.

which was more able to change the class in cscf. Since this action affects the
Occupation feature, the beneficial edge of Education might have discounted the
cost here again so much that it became a minimal cost sequence, whereas in scf
it might have been more expensive. The slightly lower probability of addEdu in
cscf may further suggest that Education was more commonly used as a sup-
porting action in order to discount future actions (hence its disappearance after
t = 3).

In summary, we saw that (c)scf is able to find more diverse sequences while
asserting the least cost objective with comparable or better performance to
synth and being more efficient. Furthermore, we demonstrated that the usage
of G in cscf provides the desired advantage of more meaningful sequence orders,
according to the feature relationships, while maintaining minimal costs.

6 Conclusion and Future Work

We proposed a new method cscf for sequential counterfactual generation that
is model-agnostic and capable of finding multiple optimal solution sequences of
varying sequence lengths. Our variants, cscf and scf, yield better or equiva-
lent results in comparison to synth [19] while being more efficient. Moreover,
our extended consequence-aware cost model in cscf, that considers feature
relationships, provides more meaningful sequence orders compared to scf and
synth [19]. In future work, we aim to incorporate causal models to estimate
consequential effects in the feature and cost space. Additionally, we want to
investigate alternative measures and objectives for evaluating sequence orders
and develop a final selection guide for the end user for choosing a sequence from
the solution set.



Consequence-Aware Sequential Counterfactual Generation 697

References

1. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994)

2. Blank, J., Deb, K.: Pymoo: multi-objective optimization in python. IEEE Access
8, 89497–89509 (2020)

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57, May 2017

4. Dandl, S., Molnar, C., Binder, M., Bischl, B.: Multi-objective counterfactual expla-
nations. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 448–469.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_31

5. Downs, M., Chu, J.L., Yacoby, Y., Doshi-Velez, F., Pan, W.: CRUDS: counterfac-
tual recourse using disentangled subspaces. In: ICML WHI 2020, pp. 1–23 (2020)

6. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California,
Irvine (2017). http://archive.ics.uci.edu/ml

7. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Computing
Series, Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8

8. Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for com-
binatorial optimization. J. Heuristics 17(5), 487–525 (2011)

9. Gower, J.C.: A general coefficient of similarity and some of its properties. Biomet-
rics 27(4), 857–871 (1971)

10. Joshi, S., Koyejo, O., Vijitbenjaronk, W., Kim, B., Ghosh, J.: Towards Realistic
Individual Recourse and Actionable Explanations in Black-Box Decision Making
Systems. arXiv:1907.09615, July 2019

11. Karimi, A.H., Barthe, G., Balle, B., Valera, I.: Model-agnostic counterfactual expla-
nations for consequential decisions. In: AISTATS, pp. 895–905. PMLR (2020)

12. Karimi, A.H., Barthe, G., Schölkopf, B., Valera, I.: A survey of algorithmic recourse:
definitions, formulations, solutions, and prospects. arXiv:2010.04050 (2020)

13. Karimi, A.H., von Kügelgen, B.J., Schölkopf, B., Valera, I.: Algorithmic recourse
under imperfect causal knowledge: a probabilistic approach. In: NeurIPS 33 (2020)

14. Lash, M.T., Lin, Q., Street, N., Robinson, J.G., Ohlmann, J.: Generalized inverse
classification. In: SDM 2017, pp. 162–170. SIAM (2017)

15. Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., Detyniecki, M.: Comparison-
based inverse classification for interpretability in machine learning. In: Medina,
J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 100–111. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91473-2_9

16. Mahajan, D., Tan, C., Sharma, A.: Preserving Causal Constraints in Counterfac-
tual Explanations for Machine Learning Classifiers. arXiv:1912.03277, June 2020

17. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: FAT* 2020, pp. 607–617. ACM,
January 2020

18. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: FACE: feasible
and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, AIES 2020, pp. 344–350. ACM, February
2020

19. Ramakrishnan, G., Lee, Y.C., Albarghouthi, A.: Synthesizing action sequences for
modifying model decisions. In: AAAI, vol. 34, no. 04, pp. 5462–5469 (2020)

20. Shavit, Y., Moses, W.S.: Extracting Incentives from Black-Box Decisions.
arXiv:1910.05664, October 2019

https://doi.org/10.1007/978-3-030-58112-1_31
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-662-44874-8
http://arxiv.org/abs/1907.09615
http://arxiv.org/abs/2010.04050
https://doi.org/10.1007/978-3-319-91473-2_9
http://arxiv.org/abs/1912.03277
http://arxiv.org/abs/1910.05664


698 P. Naumann and E. Ntoutsi

21. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

22. Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification. In:
Proceedings of the Conference on Fairness, Accountability, and Transparency, pp.
10–19. ACM, January 2019

23. Van Looveren, A., Klaise, J.: Interpretable Counterfactual Explanations Guided
by Prototypes. arXiv:1907.02584, July 2019

24. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual Explanations Without
Opening the Black Box: Automated Decisions and the GDPR. SSRN (2017)

http://arxiv.org/abs/1907.02584

	Consequence-Aware Sequential Counterfactual Generation
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Actions, Sequences of Actions and States
	3.2 Consequence-Aware Cost Model
	3.3 Consequence-Aware Sequential Counterfactual Generation

	4 Consequence-Aware Sequential Counterfactuals (CSCF)
	5 Experiments
	5.1 Sequence Costs of Sequential Counterfactuals
	5.2 Diversity of Sequential Counterfactuals
	5.3 Effect of the Action Positions on Achieving the Counterfactual

	6 Conclusion and Future Work
	References




