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Abstract. While image understanding on recognition-level has
achieved remarkable advancements, reliable visual scene understanding
requires comprehensive image understanding on recognition-level but also
cognition-level, which calls for exploiting the multi-source information
as well as learning different levels of understanding and extensive com-
monsense knowledge. In this paper, we propose a novel Cognitive Atten-
tion Network (CAN) for visual commonsense reasoning to achieve inter-
pretable visual understanding. Specifically, we first introduce an image-
text fusion module to fuse information from images and text collectively.
Second, a novel inference module is designed to encode commonsense
among image, query and response. Extensive experiments on large-scale
Visual Commonsense Reasoning (VCR) benchmark dataset demonstrate
the effectiveness of our approach. The implementation is publicly available
at https://github.com/tanjatang/CAN.

1 Introduction

Visual understanding is an important research domain with a long history that
attracts extensive models such as Mask RCNN [1], ResNet [2] and UNet [3]. They
have been successfully employed in a variety of visual understanding tasks such
as action recognition, image classification, pose estimation and visual search [4].
Most of them gain high-level understanding by identifying the objects in view
based on visual input. However, reliable visual scene understanding requires not
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only recognition-level but also cognition-level visual understanding, and seamless
integration of them. More specifically, it is desirable to identify the objects of
interest to infer their actions, intents and mental states with an aim of having
a comprehensive and reliable understanding of the visual input. While this is
a natural task for humans, existing visual understanding systems suffer from a
lack of ability for higher-order cognition inference [5].

To improve the cognition-level visual understanding, recent research in visual
understanding has shifted inference from recognition-level to cognition-level
which contains more complex relationship inferences. This directly leads to four
major directions on cognition-level visual understanding research: 1) image gen-
eration [6], which aims at generating images from given text description; 2) image
caption [7], which focuses on generating text description from given images; 3)
visual question answering, which aims at predicting correct answers for given
images and questions; 4) visual commonsense reasoning (VCR) [5], which addi-
tionally provides rational explanations along with question answering and has
gained considerable attention [8]. Research on VCR typically necessitates pre-
training on large scale data prior to performing VCR tasks. They usually fit
well towards the properties that the pre-training data possessed but their gen-
eralization on other tasks are not guaranteed [9]. To remove the necessity of
pre-training, another line of research focuses on directly learning the architec-
ture of a system to find straightforward solutions for VCR [10]. However, these
methods suffer commonsense information loss where the last hidden layer is
taken as output while jointly encoding visual and text information.

In this paper, we focus on the generic problem of visual scene understand-
ing, where the characteristics of multi-source information and different levels of
understanding pose great challenges to comprehensive and reliable visual under-
standing: 1) Multi-source information. Visual understanding entails infor-
mation from different sources. It is difficult for the model to capture and fuse
multi-source information and to infer the rationale based on the fusion of collec-
tive information and commonsense [11]. 2) Various levels of understanding.
Cognition requires accumulation of an enormous reservoir of knowledge. Com-
prehensive cognition from limited datasets is even more challenging, and requires
consideration of different levels of understanding [5]. 3) Difficulty in learning
commonsense. The learning of commonsense from the dataset is a hard prob-
lem per se. Unlike humans who can learn an unlimited commonsense library from
daily life effortlessly, learning extensive commonsense knowledge for a model is
an open problem.

To address the above challenges, we propose a novel Cognitive Attention
Network (CAN) for interpretable visual scene understanding. We first design
a new multimodal fusion module to fuse image and text information based on
guided attention. Then we introduce an co-attention network to encode the com-
monsense between text sequences and visual information, followed by an atten-
tion reduction module for redundant information filtering. The novelty of this
research comes from four aspects:
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– A new VCR model for comprehensive and reliable visual scene understanding.
– A new multimodal fusion method that jointly infers the multi-source infor-

mation.
– A new co-attention network to encode commonsense.
– Extensive experiments comparing with state-of-the-art works and ablation

studies.

The rest of the paper is organized as follows. Related studies are first dis-
cussed in Sect. 2. Section 3 presents the notations and problem formulation. We
describe our method in Sect. 4, followed by the experimental results in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Related Work

From individual object level scene understanding [1] which aims at object
instance segmentation and image recognition, to visual relationship detec-
tion [12] which captures the relationship between any two objects in image or
videos, state-of-the-art visual understanding models have achieved remarkable
progress [13]. However, that is far from satisfactory for visual understanding
as an ideal visual system necessitates the ability to understand the deep-level
meaning behind a scene. Recent research on visual understanding has there-
fore shifted inference from recognition-level to cognition-level which contains
more complex relationship inferences. Rowan et al. [5] further formulated Visual
Commonsense Reasoning as the VCR task, which is an important step towards
reliable visual understanding, and benchmarked the VCR dataset. Specifically,
the VCR dataset is sampled from a large sample of movie clips in which most of
the scenes refer to logic inferences. For example, “Why isn’t Tom sitting next to
David?”, which requires high-order inference ability about the scene to select the
correct answer from available choices. Motivated studies generally fall into one
of the following two categories based on the necessity of pre-training dataset.

The first line of research, pre-training approaches, trains the model on a large-
scale dataset then fine-tunes the model for downstream tasks. The recent works
include ERNIE-ViL-large [8] and UNITER-large [9]. While the former learns
semantic relationship understanding for scene graph prediction, the latter is pre-
trained to learn joint image-text representations. However, the generalizability
of these models relies heavily on the pre-training dataset and therefore is not
guaranteed.

Another line of research is independent of large-scale pre-training dataset,
and instead studies the architecture of a system to find a straightforward solution
for VCR. R2C [5] is a representative example in this line of efforts in which atten-
tion based deep model is used for visual inferencing. More recently, a dynamic
working memory based memory cells framework is proposed to provide prior
knowledge for inference [14]. Our model more closely resembles this method
with two distinctions: i) a parallel structure is explicitly designed to relax the
dependence on the previous cells, alleviating the drawback of information lose
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of long dependency memory cell for long sequences, and ii) a newly proposed
co-attention network rather than dynamic working memory cell to ease model
training but also to enhance the capability of capturing relationship between
sentences and semantic information from surrounding words.

3 Notations and Problem Formulation

Given the input query q := {q1, q2, ..., qm} and the objects of the target image
o := {o1, o2, ..., on}, the general task of VCR is to sequentially predict one correct
response from the responses represented as r := {r1, r2, ..., ri}. Figure 1 shows
a typical VCR task, where q is to elicit information for Q (“How is [1] feeling
about [0] on the phone?”) or both Q and its correct answer A (“She is listening
attentively.”) depending on the specific sub-task discussed hereafter, r provides
all possible answers or all reasons also depending on the specific sub-task, and
o consists of objects of the image, i.e., person 0–2, tie 3, chair 4–6, clock 7 and
vase 8. The three sub-tasks of VCR can then be represented as:

1) Q2A: is to predict the answer for the question. In this task, the inputs include:
a) query q: question Q only, b) responses r: all possible answers, c) objects
o, and d) given image, i.e., Fig. 1. This sub-task needs to predict A based on
the inputs.

2) QA2R: is to reason why the answer is correct. Compared to the previous Q2A
task, the query q, in addition to question Q, also includes the correct answer
A and the responses r that are four given reasons. The aim of this sub-task is

Fig. 1. A VCR example with the correct answer and rationale highlighted in green.
(Color figure online)
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then to predict the correct reason R (“She has a concerned look on her face
while looking at [0]”) for its input.

3) Q2AR: is to integrate the results from the previous two tasks as the final
result. The correct and wrong results will be shown and recorded for final
performance evaluation.

4 The Proposed Framework

The proposed Cognitive Attention Network (CAN) consists of four modules as
shown in Fig. 2: a) feature extraction module generates feature representations
from the given multi-source image and text input, b) multimodal feature fusion
module integrates the extracted heterogeneous features; c) co-attention network
encodes the fused features; and d) attention reduction module filters redundant
information. The following subsections discuss the four modules in details.

4.1 Feature Extraction

Extracting informative features from multi-source information plays an impor-
tant role in any machine learning application, especially in our context where
the feature itself is one of the learning targets. As shown in Fig. 2, for the image
feature extraction, the original image information source is the image along with
its objects, which is given by means of related bounding boxes serving as a point
of reference for objects within the images. The bounding boxes of given image
and objects are then fed into the deep nets to obtain sufficient information from
original image information source. Concretely, CAN extracts image features by
a deep network backbone ResNet50 [15] and fine-tunes the final block of the net-
work after RoiAlign. In addition, the skip connection [2] is adopted to circumvent
the gradient vanishing problem when training the deep nets.

Fig. 2. The architecture of the proposed CAN consists of four modules to achieve
interpretable visual understanding.



560 X. Tang et al.

In term of the text feature extraction, the original text information source
includes Query (Q or Q together with A) and Response (given answers or rea-
sons). The text information is then extracted in a dynamic way in which the
attention mechanism is employed to encode information from words around them
in parallel [16], resulting text features including query features q and response
features r.

4.2 Multimodal Feature Fusion

After features from heterogeneous information sources are extracted from the
previous module, a multimodal feature fusion module is designed to fuse them,
including: 1) a visual grounding unit to learn explicit information by aligning
relevant objects with query and response; 2) a guided attention unit to learn
implicit information that is omitted during visual grounding.

Visual Grounding (VG). To fuse the previously extracted heterogeneous fea-
tures, i.e., related object features o along with text features q and r, a visual
grounding module is designed to learn joint image-text representations explicitly.

To this end, VG firstly identifies related objects in query and response
by using tags contained therein. Taking Fig. 1 as example, object features
[person 0] and [person 1] are learned to match tags [0] and [1] in query
q and responses r, while object features [person 2], [tie 3], [chair 4], [chair
5], [chair 6], [clock 7] and [vase 8] are omitted due to the lack of cor-
responding tags in q and r. Next, the aligned representations are fed
into a one-layer bidirectional LSTM [17] to learn joint image-text repre-
sentations. The learned image-query and image-response representations are
denoted as grounded q := {grounded q1, grounded q2, · · · , grounded qj} and
grounded r := {grounded r1, grounded r2, · · · , grounded rj}, respectively.

Guided Attention (GA). After the VG stage, CAN learned an explicit joint
image-text representations. However, the implicit information, which is impor-
tant for commonsense inference including unidentified objects as well as reference
relationship between grounded representations, is omitted. The guided attention
module, shown as the two blocks within the purple dashed square in the bottom
of Fig. 3, is therefore designed to learn these implicit information, allowing for the
attention on the two types of implicit but important correlations. Note that the
unit of this guided attention module is also the atomic structure of the following
co-attention network (c.f., Sect. 4.3). Specially, right hand side unit captures the
implicit information between image-response representations grounded r and
image objects features o. Back to the running example in Fig. 1, VG focuses on
learning explicit information that is relevant to person 0 and person 1, and omits
the explicit information associated with other objects, i.e., tie 3, chair 4–6, clock
7 and vase 8. This unit is designed to identify such implicit correlations between
grounded r and o. On the other hand, the left unit learns the implicit relationship
between image-response representations grounded r and image-query represen-
tations grounded q. For example in Fig. 1, both “[1]” in the question (“How is
[1] feeling about [0] on the phone”) and “She” in the answer (“She is listing
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attentively”) refer to identical person 1, but such implicit information is not
learnable at VG stage. This unit accounts for such implicit correlations among
grounded r and grounded q. Note that attention can also be guided between
grounded q and o. However, grounded q contains much lesser information than
grounded r as query normally entails lesser words and could be inferred from
responses. Such an attention is therefore not considered to simplify the model
with limited information loss. In the following, we will discuss the details of the
proposed guided attention unit.

Fig. 3. Attention network of contextualizing feature representations. It consists of self-
attention module and guided attention module to encode commonsense among image,
query and response representations.

A guided attention unit is composed of a multi-head attention layer and a
feed-forward layer. To speed up training, we additionally add LayerNorm for
normalization behind both of these two layers. Recall that the aim of GA is
to learn the omitted implicit information. To this end, GA first takes o and
grounded q or grounded r as the input depending on the focused type of implicit
information to guide the attention. Here, we employ the multi-head attention [18]
to guide this process. More specifically, multi-head attention consists of h divided
attention operations, referred as heads, through scaled dot-product attention.
Formally put,

MultiHead(Q1,K1, V1) = Concat(head1, ..., headh)WO (1)

where Q1 is grounded r, both K1 and V1 are o or grounded q, WQ1
i ,WK1

i ,WV1
i ,WO

are trainable linear transformation parameters, and h is the total number of heads
which can be formulated as:

headi = Attention(Q1W
Q1
i ,K1W

K1
i , V1W

V1
i ) (2)

Attention(Q1,K1, V1) = softmax(
Q1K

T
1√

dk
)V1 (3)
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where T is the transpose operation, dk represents the dimension of input K1,
and i is the ith head of total h heads. In practise, headi outputs the attention
weighted sum of the value vectors V1 by softmax.

Next, the output of multi-head features are transformed by a feed-forward
layer, which consists of two fully-connected layers with ReLU activation and
dropout. Finally, GA outputs the fused multimodal representations q̃ and r̃
with weight information among o, grounded q and grounded r.

4.3 Co-attention Network

Given the fused image-text representations q̃ and r̃, we further propose a co-
attention network to encode commonsense between the fused image-text rep-
resentations for visual commonsense reasoning. The input of the network, in
addition to q̃ and r̃, therefore further considers their joint representation X
defined as:

X = q̃||r̃ (4)

where || is the concatenation operation.
The red dashed square of Fig. 3 shows the structure of the co-attention net-

work, consisting of two co-attention modules for attending query and response
commonsense, respectively. In specific, the former is used for encoding com-
monsense between X and q̃, thus learning the attended commonsense for query
jointly considers response. The latter then focuses on encoding commonsense
between X and r̃, capturing the attended commonsense for response taking query
into consideration. These two co-attention modules share the same structure,
comprised of two sub-units: i) the self attention units, which are the blocks with
yellow background in Fig. 3, aiming at attending weighted information concern-
ing each other within a sentence; ii) the blocks with green background depicted
guided attention units to attend weighted information inter-sentence-wise as
opposed to intra-sentence-wise attention of the self attention units.

Self Attention. The structure of self attention is similar to guided attention
(c.f., Sect. 4.2). The difference comes from self attention takes identical inputs,
i.e., query Q1, key K1 and value V1 are identical, for the sake of capturing pair-
wise relationship in a sequence. In details, pairwise relationship between samples
in a sequence is learned by the multi-head attention layer. For input sequence
X = [x1, x2, ..., xm], the multi-head attention learns the relationship between
< xi, xj > and outputs attended representations. Subsequently, the attended
representations are transformed by a feed-forward layer which contains two fully-
connected layers with ReLU activation and dropout.

Pairwise Guided Attention. In comparison to self attention, pairwise guided
attention focuses on inter-sentence-wise attention and can be regarded as guided
attention learning weighted information among different sentences. When tak-
ing two different sentences representations X = [x1, x2, ..., xm] and Y =
[y1, y2, ..., ym] as the inputs, X is the query Q1 while key K1 and Value V1
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are Y , guiding the attention learning for X. Specifically, the multi-head layer
in a guided attention unit attends the pairwise relationship between the two
paired input sequences < xi, yj > and outputs the attended representations. A
feed-forward layer is then applied to transform the attended representations. The
co-attention network finally outputs Zq and Zr, which are attention information
over both images and texts.

4.4 Attention Reduction

After the previous multilayer data encoding, CAN now contains rich multi-source
attention information. Among them, not all of them are necessarily to be inneg-
ligible. An attention reduction module is therefore further designed to select
information with the most important attention weights. In details, the output
of attention network Zl

l∈{q,r}
are fed into a multilayer perceptron (MLP) to learn

attention weights, outputting ˜Zl
l∈{q,r}

:

˜Zl =
m

∑

i=1

αi
lz

i
l , α = softmax(MLP (Zl)) (5)

where α is the learned attention weights and i is the position in a sequence.
For better gradient flow through the network, CAN also fuses the features

by using LayerNorm on the sum of the final attended representations,

c = LayerNorm(WT
x1

˜Zq + WT
x2

˜Zr) (6)

where WT
x1 and WT

x2 are two trainable linear projection matrices.
The fused feature c is then projected by another FC layer for classification,

which is used to find the correct answer and reason from given candidates, e.g.,
“B. She is listening attentively” and “C. She has a concerned look on her face
while looking at [0]” among all other candidate answers and reasons in Fig. 1.

5 Experimental Results

This section evaluates the performance of our model in comparison to state-
of-the-art visual understanding models. The experiments were conducted on a
64-bit machine with a 10-core processor (i9, 3.3 GHz), 64 GB memory with GTX
1080Ti GPU.

5.1 Dataset

The VCR dataset [5] consists of 290k multiple-choice questions, 290k correct
answers, 290k correct rationales and 110k images. The correct answers and ratio-
nales are labeled in the dataset with >90% of human agreements. As shown
previously in Fig. 1, each set consists of an image, a question, four available
answer choices, and four reasoning choices. The correct answer and rationale are
provided in the dataset as ground truth.
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5.2 Understanding Visual Scenes

We compare our method with several state-of-the-art visual scene understanding
models based on the mean average precision metric for the three Q2A, QA2R
and Q2AR tasks, respectively, including: 1) MUTAN [19] proposes a multimodal
based visual question answering approach, which parametrizes bi-linear interac-
tions between visual and textual representations using Tucker decomposition; 2)
BERT-base [18] is a powerful pre-training based model in natural language field
and is adapted for the commonsense reasoning; 3) R2C [5] encodes commonsense
between sentences with LSTM; 4) DMVCR [14] trains a dynamic working mem-
ory to store the commonsense in training as well as using commonsense as prior
knowledge for inference. Among them, BERT-base adopts pre-training method,
while MUTAN, R2C and DMVCR are non pre-training methods. The obtained
results are summarized in Table 1.

Table 1. Comparison of results between CAN and other methods on VCR dataset
with the best performance marked in bold.

Models Q2A QA2R Q2AR

MUTAN [20] 44.4 32.0 14.6

BERT-base [18] 53.9 64.5 35

R2C [5] 61.9 62.8 39.1

DMVCR [14] 62.4 67.5 42.3

CAN 71.1 73.8 47.7

In these results, it is clear that CAN consistently outperforms other methods
across all tasks and is the only method capable of handling all tasks properly.
Specially, CAN outperforms MUTAN by a significant margin. This is expected
as CAN incorporates a reasoning module in its encoder network to enhance com-
monsense understanding while MUTAN only focuses on visual question answer-
ing without reasoning. In addition, to alleviate the lost information when encod-
ing long dependence structure for long sentences of other methods, CAN further
encodes commonsense among sentences with attention weights in parallel for a
better information maintenance, which also leads to its superior performance
over the others.

5.3 Ablation Studies

We also perform ablation studies to evaluate the performance of the proposed
guided attention for multimodal fusion and co-attention network encoding. As
one can see in Table 2, when taking out guided attention unit, the prediction
result decreases 4.2% in Q2A task and 5.7% lower in QA2R task. It indicates
guided attention can help the model learn implicit information from images,
query and response representations, by attending the object in the images and
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the corresponding noun in the sentence. In addition, if we replace co-attention
encoder network with LSTM encoder, the prediction result decreases 2.5% in
Q2A task and 4.6% in QA2R task. Compared to LSTM keeping the mem-
ory among sentences, our proposed co-attention encoder network can attend
the commonsense among various sentences and words with multi-head attention
mechanism, thus capturing rich information from more aspects.

Table 2. Comparison of ablation studies.

Models Q2A QA2R

LSTM encoder 68.6 69.2

Without GA 66.9 68.1

CAN 71.1 73.8

5.4 Qualitative Results

We evaluate the proposed framework with qualitative examples, which are shown
in Fig. 5.4. The candidate with green color represents the correct choice along
with the check mark by � labeling the prediction by the proposed model. As the
qualitative results show, our method works well for most of the visual scenes.
For instance, in Fig. 4(a), the query is “Why isn’t [person 0] sitting next to
[person 1]?”, our model predicts the correct answer: “B. They were both looking
for something”, and the correct rationale “C. Him picking up and then staring
at the envelope means it was something he was looking for”. By co-attending
the commonsense for [person 0] and [person 1] among the textual information
in query, response and image representation, our model can select the correct
answer and rationale for both Q2A and QA2R tasks.

Moreover, we can gain more insight into how the model understands the
scene by co-attending the visual information and text information to predict
the correct answer and rationale. For example in Fig. 4(b), the question is “How
is [person 0] feeling?”, our model predicts the correct answer “B. [person 0] is
upset and disgusted”, and the correct rationale, “D. Her mouth is open, body
is positioned and hand pointed toward [person 0]”. This result shows that our
model performs well by fusing multimodal features and co-attending the visual
and textual information.

Figure 4(c) shows two more challenging scenarios. CAN successfully predicted
the correct answer and rationale for Question 1 but provided the incorrect answer
with right rationale. Recall that question answering task (Q2A) and answer
justification task (QA2R) are two separate tasks, and QA2R task performs on
the condition that the correct answer is given. Therefore, the result of QA2R
is independent of Q2A, and CAN can still predict the correct rationale in this
challenging setting.
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Fig. 4. Qualitative examples. Prediction from CAN is marked by � while correct results
are highlighted in green. (Color figure online)
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6 Conclusion

In this paper we propose a novel cognitive attention network for visual com-
monsense reasoning to achieve interpretable visual understanding. This work
advances prior research by developing an image-text fusion module to fuse infor-
mation between images and text as well as the design of a novel inference mod-
ule to encode commonsense among image, query and response comprehensively.
Extensive experiments on VCR benchmark dataset show the proposed method
outperforms state-of-the-art by a wide margin. One promising future direction
is to explore visual reasoning with fairness constraints [21].
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