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Abstract. Recent studies showed that datasets used in fairness-aware
machine learning for multiple protected attributes (referred to as multi-
discrimination hereafter) are often imbalanced. The class-imbalance prob-
lem is more severe for the protected group in the critical minority class
(e.g., female +, non-white +, etc.). Still, existing methods focus only on
the overall error-discrimination trade-off, ignoring the imbalance prob-
lem, and thus they amplify the prevalent bias in the minority classes. To
solve the combined problem of multi-discrimination and class-imbalance
we introduce a new fairness measure, Multi-Max Mistreatment (MMM ),
which considers both (multi-attribute) protected group and class mem-
bership of instances to measure discrimination. To solve the combined
problem, we propose Multi-Fair Boosting Post Pareto (MFBPP) a boost-
ing approach that incorporates MMM -costs in the distribution update
and post-training, selects the optimal trade-off among accurate, class-
balanced, and fair solutions. The experimental results show the supe-
riority of our approach against state-of-the-art methods in producing
the best balanced performance across groups and classes and the best
accuracy for the protected groups in the minority class.

Keywords: Multi-discrimination · Class-imbalance · Boosting.

1 Introduction

There are growing concerns about the potential discrimination and unfairness of
Machine Learning (ML) models in areas of high societal impact like recidivism,
job hiring and loan credit. Over the last years a growing body of works has been
proposed to address the problem of fairness and algorithmic discrimination [21].
The vast majority of fairness-aware ML approaches however, assumes that dis-
crimination is due to a single protected attribute e.g., only race or only gender
(referred hereafter as mono-discrimination). In reality though, the roots of dis-
crimination can be ascribed to multiple protected attributes (referred hereafter
as multi-discrimination3), e.g., a combination of race, gender and age [17].

3 Through the paper we use the terms “multi-discrimination” and “multi-fairness”
interchangeably.
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The problem of multi-discrimination has attracted attention recently and sev-
eral approaches to multi-fairness have been proposed [1,12,18,24,25]. However,
none of the existing multi-discrimination methods considers class-imbalance
and the problem arising out of it. Studies [9, 11, 15] showed that many datasets
used in fairness-aware ML research are class-imbalanced, i.e., they contain a dis-
proportionately larger amount of instances from the majority class (typically
called negative “-” class) comparing to the minority class (typically called pos-
itive “+” class). The imbalance is even more pronounced in protected groups
like female (vis-a-vis male), non-white (vis-a-vis white) etc. Table 1 highlights
the problem in three real-world datasets, which are widely used to evaluate fair-
ML algorithms [15]. The Class Imbalance Ratio (CIR) is the (+/-) ratio in the

Table 1. Overview of class imbalance ratio (CIR) and protected:non-protected group
imbalance ratio in the minority “+” class (GIR) for different protected attributes.

Data n Minority (+) class CIR (+:-) GIR (Prot. : Non-prot) in “+” class

Adult 45K > 50k 1:3 Race: (1:6),Sex: (1:2)
Bank 40K subscription 1:8.9 Marital (1:3), Age (1:23)
Credit 30K default pay. 1.4:3 Sex (1:1.5), Age (1:6), Marital (1:1.5)

whole dataset. For the minority ‘+’ class, we also show the Group Imbalance
Ratio (GIR) which is the ratio between the protected and non-protected groups,
for different protected attributes. As seen in Table 1, within the minority ‘+’
class there exist extreme imbalance between the protected and non-protected
group. Thus, within the entire data these protected groups have very less ‘+’
examples. The degree of imbalance varies from attribute to attribute. Thus,
giving an uniform and equal importance to tackle discrimination for all the pro-
tected attributes may not be sufficient. In these circumstances, a classifier can
be highly accurate even by completely ignoring these protected ‘+’ examples.
On the other hand, a fair classifier whose working principle is to minimize the
difference between performance of the two groups, can have high error rate on
both protected and non-protected ‘+’ examples (i.e., predicting them as ‘-’).
Such a situation may result in an acceptable drop in accuracy (in lieu of fair-
ness), however, may lead to heavy under-performance in the positive outcome
of some protected groups.

State-of-the-art multi-discrimination methods [1,12,18,19,24,25] focus only
on error-discrimination trade-off, but ignore this precise imbalance problem.
Also, the evaluation strategy presently used ignores to report on this issue of per-
formance of the worst performing group in the minority class. Thus, we need a
holistic algorithm approach along with a thorough evaluation mechanism to mea-
sure that analyses the performance based on overall error, multi-discrimination,
imbalance, and protected groups in the minority class. In this work, we target
the combined combined problem of multi-discrimination and class-imbalance.
Our main contributions are as follows:
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i) We extend the definition of multi-group [24] fairness to introduce the notion
of Multi-Max Mistreatment (MMM )4 that evaluates discrimination for multiple
protected attributes and across different classes.
ii) We formulate the multi-discrimination under class-imbalance problem as a
multi-faceted problem of finding a MMM -fair classifier that achieves low overall
error, and minimizes performance differences across the classes and groups, to
overcome the problem of underrepresented protected groups in the minority (+)
class.
iii) We propose Multi-Fair Boosting Post Pareto (MFBPP) algorithm, an in-
processing boosting-based approach coupled with a post-processing Pareto Front
selection to solve the multiple problems in-hand.
iv) We demonstrate an all round evaluation based on accuracy, imbalance, multi-
discrimination, and accuracy of protected groups in the positive class to show
the superiority of our MFBPP against various state-of-the art approaches w.r.t.
multi-discrimination under class-imbalance.
v) We offer a flexible alternative of our model to provide solutions per user needs
based on user preferences.

The rest of the paper is organized as follows: Related work is summarized
in Section 2. In Section 3 we introduce basic notation and our Multi-Max Mis-
treatment (MMM ) fairness measure. Our boosting-based method towards an
MMM -fair classifier is presented in Section 3.1 and the experimental evaluation
in Section 5. We conclude this work in Section 6 where we also point to open
directions.

2 Related Work

In the following, we summarize related work referring to multi-discrimination,
and imbalanced learning. Notions built around intersectional discrimination [5,
13] is the most common practice to measure multi-discrimination. However,
such measures suffer from the drawback of clarity in subgroup definition [6]
and scarcity in subgroup distribution [13]. Recently, works [12, 24] towards the
more operational multi-discrimination measure concerning disjoint groups de-
fined by multiple protected attributes came into light. However, they do not
take into account ground truth or class membership which is important to con-
sider in presence of class-imbalance. Our introduced MMM notion, overcomes
the issue by considering both class and multi-group membership of the instances
to measure multi-discrimination.

A few existing approaches [1, 12, 18, 19, 24, 25] in supervised learning can
handle multi-discrimination. [25] introduces fairness-related convex-concave con-
straints to a logistic regression classifier (FairCons). [1] imposes a set of lin-
ear fairness constraints on an exponentiated-gradient reduction method (Fair-
Learn). [12] tackles the fairness-accuracy trade-off by minimizing mutual infor-
mation between the learning error and the vectorized multiple protected at-
tributes (MI-Fair). [24] applies a Bayes-optimal group-fair classifier (W-ERM)

4 The term ‘multi ’ here refers to both multiple attributes and multiple classes.
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to identify the most-dicriminated group. Fairness-aware learning as a mini-max
theory has been already used in the literature [18], searching for a Pareto ef-
ficient solution of a multi-objective problem (MiniMax). Recently it has been
shown that skewed class distributions can affect the discriminatory behaviour of
a model [9–11] in the mono-discrimination set-up. None of the existing multi-
discrimination methods considers class-imbalance. Boosting-based approaches
have shown their effectiveness in tackling class-imbalance [3,23], fairness [8,11],
and multi-class [2] problems. [11] tackles both fairness and class-imbalance but
for a single protected attribute (AdaFair).

Our proposed MFBPP considers both multi-discrimination and class-imbalance
to overcome the limitation of multiple underrepresented groups while delivering
accurate solutions across the classes.

3 Basics and Multi-Max Mistreatment(MMM ) fairness

We assume a dataset D = (u(i), s(i), y(i)) ∼ P of n instances drawn from the
i.i.d distribution P over the domain U × S × Y , where U is the subspace of
non-protected attributes, S is the subspace of protected attributes, and Y is the
class attribute. For simplicity, we assume a binary problem: Y ∈ {+,−} with
‘+’ being the minority (+) class [20]. U and S together define the feature space
X = U × S, so x(i) = (u(i), s(i)).

Let the protected subspace consist of k protected attributes: {S1, S2, · · · , Sk}.
Each protected attribute is considered to be binary: ∀j=1,··· ,kSj ∈ {gj , gj} and
where gj and gj represent the protected group and the non-protected group, re-
spectively w.r.t. protected attribute Sj . Each group gj (gj) w.r.t. a protected
attribute Sj can be further subdivided based on class information into: protected
positive gj+, protected negative gj−, non-protected positive gj+ and non-protected
negative gj−.

To measure mistreatment in mono-discrimination cases, [25] introduced the
notion of Disparate Mistreatment for a protected feature j as:

DMj = |δFNRj |+ |δFPRj | (1)

where δFNRj (δFPRj) is the discrimination w.r.t. Sj in the positive ‘+’
class (respectively, negative ‘-’ class) defined as:

δFNRj = ER(gj+)− ER(gj+)

δFPRj = ER(gj−)− ER(gj−)

3.1 Multi-Max Mistreatment(MMM ) measure

The Disparate Mistreatment measure (c.f., Equation 1) fails to focus on per-
class discrimination due to the summation operation. To ensure fair treatment
across all classes, for a protected attribute Sj , we measure mistreatment as
max(|δFNRj |, |δFPRj |) where the ‘max’ operator enforces focus on each of the
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classes. Moreover, we want to ensure fair treatment across all protected attributes
S = {S1, · · · , Sk}. Our goal is therefore, to focus on the most discriminated group
defined based on a protected attribute and a class. To this end, we introduce a
new multi-discrimination notion, called Multi-Max Mistreatment (MMM ), that
measures the maximum discrimination among the protected attributes and for
the different classes.

Definition 1. The Multi-Max Mistreatment(MMMS) due to multiple-protected
attributes S = {S1, · · · , Sk} across all classes Y = {+,−}, is defined as:

MMMS = max
Sj∈S

(
max(|δFNRj |, |δFPRj |)

)
(2)

where δFNRj and δFPRj measure the mistreatment due to Sj in the (+) and
(-) class, respectively.

Definition 2. Given a tolerance threshold µ, a classifier f(·) is MMM-fair iff
the maximum mistreatment w.r.t all the protected attributes Sj ∈ S across all
classes is less than µ i.e., MMMS ≤ µ.

In the ideal case, µ=0 which signifies no discrimination w.r.t. any protected
attribute and in any class.

4 Multi-Fairness-aware Learning

Our goal is to learn a MMM -fair classifier: f(·) : X → Y that achieves equal low
error rates for all the groups (gj/gj , j = 1, · · · , k) in both the classes (+/−).
To this end, we first formulate clear objectives (Sec. 4.1) and then, propose a
sequential learner approach to find f(·) (Sec. 4.2).

4.1 Multi-discrimination-free Learning under Class-imbalance

We define three objectives for the MMM -fair classifier f(·): low overall error
(O1), similar (low) error rates across all classes (O2), and mitigation of discrim-
inatory outcomes for all protected attributes (O3).

Objective O1 targets overall error and is defined as minimizing the classifi-
cation loss (0-1 loss):

O1 : L(f) =
1

n

∑
(xi,yi)∈D

|yi − f(xi)| (3)

where f(xi) is the predicted and yi is the true class of xi.
Objective O2 explicitly targets class-imbalance by ensuring balanced perfor-

mance across both classes. Motivated by [7], we define a balanced loss function
to minimize the performance differences between the two classes:

O2 : B(f) = | 1

|D+|
∑

(xi,yi)∈D+

|yi − f(xi)| −
1

|D−|
∑

(xi,yi)∈D−

|yi − f(xi)| | (4)
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where DY ⊂ D, Y ∈ {+,−} denotes the set of instances belonging to class Y .
O3 is the multi-discrimination objective aiming to mitigate discrimination

due to multiple protected attributes Sj ∈ S and across both classes. We call it
MMMS loss, as on optimization it aims to mitigate MMMS (c.f. Def. 1):

O3 : Φ(f) = max
Sj∈S

(
max

Y ∈{+,−}
(| 1

|gjY |
∑

(xi,yi)∈gjY

|yi − f(xi)| −
1

|gjY |
∑

(xi,yi)∈gjY

|yi − f(xi)| |)
)

(5)

where |gjY | is the cardinality of group gj in class Y ∈ {+,−}.
The objectivesO3 andO2 ensure similar performance across all the protected/non-

protected groups and the (+/-) classes respectively, thus minimizing the perfor-
mance bias against the underrepresented protected groups in the minority (+)
class, while the objective O1 would help establish low error rate overall.

4.2 The MMM -fair Boosting Post Pareto (MFBPP) Algorithm

Our goal is to develop a classifier that takes into consideration the above three
objectives, eventually solving the problem of multi-discrimination under class-
imbalance. Boosting-based [22] approaches have been promising in tackling class-
imbalance [3, 23] and discrimination [8, 11]. However, they have also been crit-
icised for being vulnerable in the presence of noise or outliers. As outliers are
more likely to be missclassified, boosting may overshoot over the iterations the
weights of those instances [16]. Thus, the ensemble obtained at the end of a
predefined number of boosting rounds may produce inferior outcomes than an
ensemble produced in an earlier round.

Inspired by the literature, we propose a boosting-based learner that in-
training modifies the distribution weights to incorporate our objective goals.
The new weighting puts more attention to the instances from the protected
groups in minority class (as they are frequently missclassified) and might there-
fore, aggravate the weight overshooting problem. To overcome this drawback, we
deploy a post-training step to select the best solution (partial ensemble).

In-training: MMM -boosted weight distribution update. Let T be the
number of boosting rounds. In each round t (1 ≤ t ≤ T ) we train a weak learner
(a decision stump) based on the current instance weight distribution Dt. In the
first round, all instances receive the same weight: D1(xi) = 1

n . In a later round
0 < t+ 1 ≤ T − 1, the weight distribution is updated as follows:

Dt+1(xi) =
Dt(xi) exp(−αtsign(yiht(xi)))fct(xi)

Zt
(6)

where as in AdaBoost αt = 1
2 ln

1−
∑

n Dt(xi)∑
n Dt(xi)

is the weight of the weak learner

ht, sign(yiht(xi)) returns −1 if ht(xi) 6= yi and 1 otherwise, and Zt is the nor-
malization factor which ensures that Dt+1 is a probability distribution. The term
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fct(xi) is our modification, which corresponds to the multi-discrimination cost
(MMM-cost) for a misclassified instance xi defined as:

fct(xi) =

{
max1≤j≤k(cdc

(t)
ij ), if ht(xi) 6= yi

1, otherwise
(7)

where cdc
(t)
ij is the discrimination weight of instance xi at round t concerning

protected attribute Sj , which depends on the group membership of xi w.r.t Sj .
It is defined as:

cdc
(t)
ij =

{
1 + |δFNR1:t

j |, if (δFNR1:t
j ≥ 0 ∧ xi ∈ gj+) ∨ (δFNR1:t

j ≤ 0 ∧ xi ∈ gj+);

1 + |δFPR1:t
j |, if (δFPR1:t

j ≥ 0 ∧ xi ∈ gj−) ∨ (δFPR1:t
j ≤ 0 ∧ xi ∈ gj−);

(8)

where δFNR1:t
j and δFPR1:t

j are the cumulative discrimination of the partial
ensemble Ht(xi) =

∑t
l=1 αlhl(xi) for Sj as in [11].

In each boosting round t we evaluate the partial ensemble Ht and collect
the solution vector ~ft = [o1, o2, o3]t, where oi = Oi(t) is a solution point of Ht

for the respective objective Oi. In total, T solution vectors are collected. The
sequential training stops when the maximum number of iterations T is reached.

Post-training: Selecting Pareto Optimal Solution. Our goal is to find the
optimal round t∗ ≤ T to output the partial-ensemble with the best (O1, O2, O3)
objectives trade-off:

Ht∗ =

t∗∑
l=1

αlhl

This is achieved in two steps: First, out of all T solutions we select the set
of non-dominating optimal solutions. Next, we find the best trade-off solution
among the shortlisted ones to get the corresponding optimal t∗.

1. Pareto front computation: Among all solution vectors ~ft, t = 1, · · · , T
collected over the boosting rounds, we find the Pareto Front (PF), i.e., the non-

dominated set of Pareto optimal solutions. A solution ~ft′ is said to be dominated
by a solution ~ft if 1) Oi(t) ≤ Oi(t

′) ∀i ∈ {1, 2, 3}, and 2) ∃i ∈ {1, 2, 3} Oi(t) < Oi(t
′).

2. Pseudo-weight calculation and choice of best solution : To choose the
best solution we use the pseudo-weight algorithm [4] that calculates the relative
distance of each solution from the worst (maximum value) solution for each

objective. The pseudo-weight wti for oi ∈ ~ft is given by:

wti =
(omax

i − oti)/(omax
i − omin

i )∑3
i=1(omax

i − oti)/(omax
i − omin

i )
(9)

where omax
i (omin

i ) is the maximum or worst (minimum or best) objective value

achieved in any of the rounds. This way, for each solution ~ft = [o1, o2, o3]t we
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compute the corresponding pseudo-weight vector ~wt = [wt1, wt2, wt3]. Next, we
select the solution with the least relative weighted sum as the best trade-off
solution w.r.t all the objectives:

~f∗t = argmint{(1− ~wt) · ~ft} = argmint{
3∑

i=1

(1− wti)oti} (10)

where (1 − ~wt) is the required transformation as the pseudo-weights vector by
its nature assigns bigger weight wti to a smaller objective solution value oti.

5 Experiments

We evaluate MFBPP performance against state-of-the-art approaches (Sec. 5.2).
To show the utility of our MMM -cost (Eq. 7) in tackling balanced error (O2), we
plot balanced loss B(f) with varying MMM tolerance thresholds µ (Sec. 5.3).
Further, we show the changes in the dataset distribution over training and the
effectiveness of our approach in promoting underrepresented protected groups
(Sec. 5.3). We plot the O1, O2, O3 losses over the rounds to justify the need for
post-training selection. At last, in Sec. 5.4 we show the flexibility of MFBPP to
intake user preferences for post-training selection.

5.1 Experimental settings

Baselines: We compare against four state-of-the-art fairness-aware methods:
FairCons [25]: Tackles multi-discrimination fairness-related convex-concave con-
straints,
FairLearn [1]: imposes a set of linear fairness constraints on an exponentiated-
gradient reduction method to tackle multi-discrimination,
MiniMax [18]: tackles multi-discrimination as a mini-max game while searching
for a Pareto efficient solution of a multi-objective problem,
W-ERM [24]: applies a Bayes-optimal group-fair classifier to consider algorith-
mic fairness across multiple overlapping groups simultaneously to tackle the
multi-discrimination trade-off,
MI-Fair [12]: minimizes mutual information between the learning error and
the vectorized multiple protected attributes to tackle multi-discrimination, and
AdaFair [11]: uses mono-discrimination based boosting algorithm along with
summed accuracy and class-imbalance loss to tackle mono-discrimination and
class-imbalance.

In order to understand the effect of the post-training part as well as the effect
of the PF selection in the post-training part, we also include in the experiments
two variations of MFBPP:

– MFB that completely discards the post-training part and
– MFBP that uses post-training but does not use the Pareto Front PF set for

the final selection but rather selects from all solutions.
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Datasets:
We report on three imbalanced real-world datasets (c.f., Table 1). Addition-

ally, we also report on Compas [14] (CIR: 1 : 1.2) to show the usability of
our method also for class-balanced scenarios. The protected attributes and pro-
tected groups studied in the experiments are Sex (gj=“female”), Race (gj=“non-
white”), Marital status/Mari (gj=“married”), Age (gj=“≤ 25 & ≥ 60”).

Evaluation Measures:
For O1, we report on accuracy (Acc), for O2 on geometric mean (G.M) and

for O3 we report on the proposed MMM-fairness, as well as on the DM for
each protected attribute. Additionally, we report on the accuracy of the worst
performing protected group in the minority (+) class (Wg+).

Experimental setup:
We set the number of weak learners to T = 500. We follow the same evalua-

tion setup as in [11,25] by splitting each dataset randomly into train (50%) and
test (50%) and report on the average of 10 random splits.

5.2 Evaluation results

The discriminatory and predictive performance evaluation of the different ap-
proaches is shown in Fig 1 and Table 2, respectively.

Fig. 1. Discrimination performance: For each dataset, the overal MMM score and the
DM scores for each protected attribute are shown (lower values are better).

Multi-discrimination: From Fig. 1 we notice that our MFB outperforms all
the approaches in all the dataset. MFBPP comes second outperforming the base-
line competitors in mitigating multi-discrimination (i.e., objective O3) by pro-
ducing the lower MMM discrimination values in three datasets (Adult: 0.05,
Compas: 0.04, Credit: 0.01), while falling behind FairLearn in one dataset
(Bank: 0.08). However, in Table 2 we notice that MFB severely underperforms
in all the predictive evaluation measures, thus failing to provide a good trade-off
between O1, O2, and O3. The closest competitor to us w.r.t. fairness is FairLearn,
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Table 2. Predictive performance evaluation. Wg+ is the accuracy of the worst per-
forming protected group in the minority (+) class

Adult Bank Credit Compas
Acc Wg+ G.M Acc Wg+ G.M Acc Wg+ G.M Acc Wg+ G.M

AdaFair 0.84 0.63 0.76 0.88 0.62 0.76 0.81 0.33 0.57 0.65 0.50 0.64
FairCons 0.85 0.43 0.75 0.91 0.33 0.59 0.81 0.28 0.55 0.67 0.53 0.66
FairLearn 0.83 0.54 0.73 0.88 0.21 0.46 0.79 0.21 0.45 0.65 0.55 0.64
MiniMax 0.86 0.49 0.76 0.90 0.45 0.66 0.82 0.37 0.60 0.68 0.49 0.67
W-ERM 0.85 0.52 0.75 0.90 0.29 0.56 0.81 0.22 0.47 0.66 0.47 0.64
MI-Fair 0.84 0.65 0.72 0.89 0.69 0.82 0.80 0.59 0.68 0.68 0.60 0.68

MFB 0.69 0.64 0.74 0.36 0.28 0.41 0.71 0.68 0.70 0.64 0.63 0.63
MFBP 0.85 0.77 0.84 0.85 0.75 0.85 0.71 0.64 0.69 0.67 0.60 0.65

MFBPP 0.81 0.79 0.81 0.81 0.72 0.80 0.74 0.65 0.70 0.66 0.63 0.66

which however achieves low discrimination by consistently ignoring the minority
class (A closer look to Table 2, shows that FairLearn achieves the lowest G.M
for all four datasets). Approaches like FairCons, MiniMax, and W-ERM result in
different levels of discrimination for the different protected attributes and over-
all high MMM values. MI-Fair have mixed outcome with high discrimination in
Adult, but performed at par with MFBPP in Bank and Compas data. AdaFair
trained on one protected attribute (for Adult: sex, for Bank: marital status, for
Credit: sex, for Compas: race) does not mitigate discrimination for other pro-
tected attributes and consequently also results in high MMM values esp. for
Bank and Compas. In case of Adult and Credit datasets, AdaFair, albeit trained
for mono-discrimination it seems to tackle multi-discrimination; the reason is
the strong correlation between the protected attributes as revealed by chi-square
test with ρ-value ≈ 0.

Underrepresented protected groups (gj+): In Table 2 we notice that MF-
BPP and MFBP both outperform the other approaches on Wg+ by far ([5%−
21% ↑]). Thus, our proposed methods overcome the issue of bias due to the im-
balanced distribution of protected groups (c.f Table 1), ensuring high predictive
accuracy for any gj+. Note that all the other approaches that even after miti-
gating multi-discrimination fail on this task. MI-Fair emerges as the best among
the baseline competitor in all the four datasets behind our proposed methods
MFBPP, MFBP,and MFB in Adult, Credit, and Compas datasets, while out-
performing only MFB in Bank data.

Balanced performance: Table 2 shows that our MFPB and MFBP outperform
the baselines in G.M in the range [4%−11%] ↑ for the imbalanced Adult, Bank,
and Credit datasets, while being marginally behind MI-Fair, and Minimax in the
balanced Compas dataset. We can easily notice that our Acc and G.M values
are close to each other for all the datasets with Acc/G.m ≈ 1. This indicates
we achieve B(f) ≈ 0 (O2), in all the datasets. Our closest competitors here
are MI-Fair, AdaFair and MiniMax. AdaFair explicitly targets class-imbalance
for mono-discrimination. MiniMax, and MI-Fair indirectly tackles the problem as
they aims at minimizing error for all groups. For other baselines, Acc/G.m >> 1,
indicating substantial performance differences between the classes.
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Overall accuracy: MFBPP is marginally compromised on the overall Acc in
Adult, Credit, and Bank datasets ([12% − 5%] ↓). MiniMax emerged as the
winner here, accomplishing the best accuracy in Adult, Credit, and Compas
dataset. This is the trade-off we pay to ensure nearly equal performance for all
(protected/non-protected) groups across all the classes.

Fig. 2. Visualization of the Pareto front and the selected trade-off solution in the
complete solution surface.

Summary: MFBPP provides the best holistic outcome in overall trade-off, out-
performs the baselines in mitigating multi-discrimination, produces the best pre-
dictive performance on underrepresented protected groups (∀jgj+) in minority
class, and equal performance across all classes, while maintaining comparable
high accuracy against the baselines. MFB produces the most-fair outcomes but
suffers in predictive performance. It overshoots the weight and increases overall
error to gain fairness. MFBP solves the overshooting problem but gets out-
performed by MFBPP in the fairness task. In Fig 2 we see that the solution
surface after the training-MFB phase of our algorithm is very wide spread in the
O1, O2, O3 objective space. By computing PF as in MFBPP, we narrow down
the search space. Using the pseudo-weights, we pick a solution each time close to
the origin in the objective space (which is desired). Hence, we are always able to
deliver a good trade-off solution without any hyper-parameter tuning. FairLearn
also tackled the multi-discrimination problem consistently well, but by under-
performing in the minority class. MiniMax lacks in multi-discrimination conver-
gence but produces the most overall accurate (O1) predictions. FairCons has dif-
ficulty in finding the optimal parameters leading to its poor multi-discrimination
performance. W-ERM apart from Bank dataset (the most imbalanced), always
delivers comparable trade-offs. However, the method is very slow. MI-Fair can
be argued as the closest competitor in overall trade-off delivering balanced and
accurate performance with low discrimination in three out of the four datasets
under study.
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5.3 Internal analysis

This section aims to analyse MFBPP’s ability to produce state-of-the-art bal-
anced performance while dealing with multi-discrimination. In particular, we try
to find answers for three significant points: i) How MFBPP ensures high accu-
racy for the underrepresented protected groups in the imbalanced minority (+)
class? ii) How the overshooting problem affects and, is the post-processing step
really required? iii) Does the multi-discrimination cost (Eq. 7) also tackle the
balanced loss and, what happens if we relax cost by varying the MMM threshold
µ (Def. 2)? Here we focus the study using only the imbalanced data (Table 1).

Fig. 3. Changes in instance weight distribution. For each dataset and protected at-
tribute Sj , we depict the initial distribution Sin and the final one Sfin.

Answer to point (i): We analyse the changes in weight distribution of the
various groups from its initial (ini) distribution (actual data representation), to
boosted weight till the finally selected partial ensemble point (fin) in Fig 3. For
any protected attribute Sj , P and Np refer to the respective protected and non-
protected groups. Thus, P (+) translates as the protected group in the minority
(+) class (gj+). We notice that ini weights of each P (+) in every dataset is
largely underrepresented. But, in the fin weights each P (+) group is boosted
significantly. MFBPP increases the weight of the underrepresented groups, thus
changing the decision boundary to produce highly accurate and unbiased results
for all the groups even in case of high imbalance.

Fig. 4. B(f) loss over boosting rounds with varying MMM thresholds µ.
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Answer to points (ii): We have already shown the effectiveness of our MMM
cost (Eq. 7) in mitigating multi-discrimination. Now to understand its effect
on balanced loss we monitor B(f) over the boosting rounds (Fig 4) for different
MMM-tolerance thresholds µ. We see that when µ = 0, the shape of the B(f) loss
curve is parabolic for Adult and Bank datasets. In Credit data, the loss continues
to descent till the final round. The parabolic curve supports our intuition of the
possibility of overshooting the weights due to the possible repeated boosting of
noisy instances, whereas a consistently descending loss curve for Credit data
shows the uncertainty involved in estimating the optimal size of the ensemble.
These results justify the necessity of the post-training selection part.

Answer to points (iii): In Fig 4 we also show the effect of different MMM thresh-
old µ values on B(f). By increasing µ we relax the MMM boost i.e we have
fct(xi) = 1 in Eq. 6 when discrimination (Eq. 7) is ≤ (1 + µ). We observe the
immediate effect on the B(f) loss. In each of the datasets, the effectiveness of
MFBPP to tackle class imbalance decreases as the B(f) loss increases while
we increase the threshold µ. Thus, showcases the ability of our MMM cost in
tackling the O2 along with our multi-discrimination objective O3.

5.4 Flexibility of MFBPP

Thus far, we use the pseudo-weight method (Eq. 10) to select the best solution
among the (PF) solutions. If information on user preferences exists, in the form of
a user-preference vector ~u = [u1, u2, u3]: u1+u2+u3 = 1, it can be used to select
the best solution according to user needs. In this case, we choose the solution
~ft∗ whose corresponding pseudo-weight ~wt∗ is closest according to L1 distance,

to the preference vector ~u. To evaluate the effect of such an approach, we mimic
four different users and provide their preference vector ~u as an additional input
to MFBPP. In particular, we assume the following users: i) ~u = [0.33, 0.33, 0.33]
indicating equal preference to all Oi, ii) ~u = [0, 0, 1], iii) ~u = [0, 1, 0], iv) ~u =
[1, 0, 0], indicating preference only for Oi if ui = 1.

Fig. 5. Performance evaluation for different user preference vectors ~u
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As expected, the output changes noticeably with changes with ~u. For all
datasets the most accurate classifier (for ~u = [1, 0, 0]) delivers Acc at par if not
better than the state of the art, whereas the fairest (for ~u = [1, 0, 0]) produces
state of the art fair predictions. With preference ~u = [0.33, 0.33, 0.33] the classi-
fier consistently produces good trade-off solutions, however, the default version
of MFBPP (without ~u) produces better trade-offs.

6 Conclusions and Outlook

In this work we claimed that multi-discrimination under class-imbalance is
an important multi-faceted problem of finding low overall error, while mini-
mizing performance differences across the classes and groups. Existing multi-
discrimination approaches consider only error-discrimination trade-off, and ig-
nore class-imbalance. This way, they achieve multi-discrimination by under-
performing in the minority (+) class, especially for the underrepresented pro-
tected groups. To this end, we propose the Multi-Max Mistreatment fairness
measure (MMM ) and a MMM -fair boosting post Pareto classifier (MFBPP) to
ensure MMM -fairness. Our experiments show the superiority of our method in
mitigating multi-discrimination, producing best balanced performance across
groups and classes along with best accuracy for underrepresented protected
groups in the minority (+) class, without a significant compromise on overall
accuracy. Further, our method is flexible to user needs as it can select the best
solution trade-off according to user preferences. In future, we want study the
multi-discrimination under class-imbalance problems in the more challenging
multi-class and multi-label set-up, where the complexity is much harder.
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