
Power of Explanations: Towards automatic
debiasing in hate speech detection

Yi Cai
Dept. of Math. and Comp. Science

Freie Universität Berlin
Berlin, Germany

yi.cai@fu-berlin.de

Arthur Zimek
Dept. of Math. and Comp. Science

University of Southern Denmark
Odense, Denmark

zimek@imada.sdu.dk

Gerhard Wunder
Dept. of Math. and Comp. Science

Freie Universität Berlin
Berlin, Germany

gerhard.wunder@fu-berlin.de

Eirini Ntoutsi∗
Research Institute CODE

Universität der Bundeswehr München
Munich, Germany

eirini.ntoutsi@unibw.de

Abstract—Hate speech detection is a common downstream
application of natural language processing (NLP) in the real
world. In spite of the increasing accuracy, current data-driven
approaches could easily learn biases from the imbalanced data
distributions originating from humans. The deployment of biased
models could further enhance the existing social biases. But
unlike handling tabular data, defining and mitigating biases in
text classifiers, which deal with unstructured data, are more
challenging. A popular solution for improving machine learning
fairness in NLP is to conduct the debiasing process with a list
of potentially discriminated words given by human annotators.
In addition to suffering from the risks of overlooking the biased
terms, exhaustively identifying bias with human annotators are
unsustainable since discrimination is variable among different
datasets and may evolve over time. To this end, we propose
an automatic misuse detector (MiD) relying on an explanation
method for detecting potential bias. And built upon that, an end-
to-end debiasing framework with the proposed staged correction
is designed for text classifiers without any external resources
required.

Index Terms—AI fairness, bias detection, bias mitigation,
explainable AI, text classification

I. INTRODUCTION

Although the recent breakthrough led by attention mech-
anism [30] is beneficial to the increasing performance in
downstream tasks [17], the growing complexity of models
leads to more concerns about machine learning fairness due to
the opacity [19], [31]. Previous work shows that bias widely
exists in various corpora for natural language processing
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(NLP) [7], [27] and can be easily learned by even the most
advanced text classifiers [14]. Hate speech detection as one
of the downstream tasks has been widely applied on social
media platforms. Biases held by these detectors will certainly
harm the right of specific groups to be referred to or express
themselves. Solving bias in this scenario is therefore crucial.

With years of discussion on machine learning fairness, the
majority puts their efforts into defining and mitigating bias
in classifiers for tabular data. But the unstructured nature
of textual data forbids the direct use of numerous debiasing
methods [9]–[11] specialized for structured data. A popular
solution for identifying bias in NLP is to manually select a
list of words from the given vocabulary, which usually refer
to demographic information (for example, gender and ethnic-
ity), then measure the performance difference under similar
contexts for various groups as bias [8], [16]. Having the bias
defined, the improvement of text classifiers in terms of fairness
is feasible through different approaches, such as instance
weighting [34], data augmentation [25], and feature attribution
suppression [14], [33]. However, using a manually defined list
can again introduce discrimination to the debiasing process
by either under-/over-representing demographic groups in the
list as shown in Fig. 1. While omitting discriminated group
identifiers can undoubtedly strengthen specific biases, over-
representation in the debiasing list could also limit model
performance through indirect impacts as demonstrated by
our experimental results. Moreover, discrimination learned by
models is variable to datasets, hyperparameters, and training
processes. Hence, exhaustively defining bias through human
annotators is unsustainable.

To this end, we proposed a fully automatic misuse detector
(MiD), which deploys an explanation method, to identify
potentially biased features (tokens/words) at the training stage
without any external knowledge or resources. Aiming to per-
form the detection at runtime, we introduced the false positive
proportion FPP as an efficient proxy of feature contributions
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Fig. 1: Feature attribution extracted from a fine-tuned BERT
model without debiasing for words omitted/included in the
manual list used in [14]. The omitted neutral group identi-
fiers actively contributing to the prediction as hateful, which
indicates strong biases, are overlooked by human annotators.
On the contrary, some less biased words are selected for the
debiasing list.

to predictions since the time complexity of feature attribution
examination with the explanation method is impractical. Built
upon that, an end-to-end debiasing framework1 is designed
to mitigate bias in hate speech classifiers during the train-
ing process. The experimental results show that the list of
potentially biased words delivered by the proposed MiD has
good coverage on the manually defined list and results in an
outstanding performance in balancing accuracy and fairness.
Another key finding is that the correction targeting single
words has indirect impacts on their semantic neighbors, which
calls for more attention to potential effects the debiasing
process could bring into hate speech detectors.

The rest of the paper is organized as follows. In Section II,
we discuss the related work of machine learning fairness
and current progress in explainable AI (XAI), which is an
essential component of the proposed framework. Section III
details the proposed method MiD for automatic bias detection.
Afterwards, the debiasing framework with a staged correction
is introduced in Section IV. To evaluate the proposed method,
we conduct detailed experiments in Section V. Finally, we
discuss and conclude the findings of this work in Section VI.

II. RELATED WORK

To mitigate discrimination in hate speech classifiers, there
are debiasing methods at different stages of the machine learn-
ing pipeline proposed. Data augmentation tackles the problem
at the data preprocessing stage. Instances relating to under-
represented groups are augmented through random combina-
tions of pre-defined templates and group identifiers [7], [16],
[36]. But augmentation without supervision always delivers
meaningless and unrealistic instances, which could introduce
potential risks into the system. Similar to the previous solution,
instance weighting balances the distribution of class labels
over ethnic groups by editing the weights of entries in the

1The source code is available at https://github.com/caiy0220/PoE

training set [34] during the preprocessing. Without creating
synthetic samples, it avoids the potential risks.

Our work is highly related to the recently emerging work
which mitigates bias at the training stage. The idea is to
debias hate speech classifiers during training by suppressing
unwanted model attention on selected neutral words [14].
A static list of group identifiers gives the definition of the
sensitive neutral words. Instead of preparing a pre-defined
list, [33] suggests correcting model behaviors by involving
human-in-the-loop. For both methods, the essential part is the
employment of an explanation method, which dominates the
derivation of feature attribution.

A feature/word is not necessary to be biased even if it fre-
quently appears in incorrect predictions. Therefore, obtaining
insights into the decision making process is the key to the
precise treatment for its bias. Recent developments in XAI,
especially in explaining text classifiers [4], [5], [20], offer
a solution to the detailed analysis by revealing the evidence
supporting a decision through explanations. Among different
categories, model-agnostic local explanation methods [18],
[23] are in favor with debiasing text classifiers, as methods
belonging to this category would not harm the flexibility of
the debiasing framework since no prerequisites are present
for the targeting model, In addition, because state-of-the-art
text classifiers treat the same token differently depending on
the context [22], [26], we prefer a local explanation method
that interprets one decision at a time rather than a global
one. Regarding the concrete form of presenting explanations,
feature importance [29] outperforms other choices, such as
saliency map [28] and counterfactual [21], as it quantifies
feature contributions to a prediction, which is accessible to
both machine and human.

III. AUTOMATIC MISUSE DETECTOR

Before introducing the misuse detector, we specify the
targeting bias to mitigate in this paper. Imbalanced data
distribution is a common problem while solving tasks with
data-driven approaches. The same problem also holds for hate
speech detection. For example, there are more toxic speeches
against specific demographic groups on social media platforms
because of social bias and stereotypes. Hate speech detectors
trained on these datasets could be biased while observing
the high co-occurrence between the group identifiers and
the hateful sentiment, which means they may use sensitive
identifiers (e.g., “Muslim”, “Jewish”) as evidence for their
prediction. This kind of bias is highly undesired and is referred
to as “wrong reasons” since it is an obvious misuse of features.
Here, we summarize the misuse into two cases:
• Wrong for wrong reasons: a model delivers wrong de-

cisions based on incorrect reasoning of the observations.
• Right for wrong reasons: a model delivers right decisions

based on incorrect reasoning of the observations.
Regarding the first case, it is natural that problematic inference
produces wrong predictions. However, models could also
coincidentally output accurate classification for biased reasons.
Detecting misuses in the second case is extremely difficult



as we cannot distinguish unreasonable right decisions from
the justified ones without external resources. Therefore, we
decided to concentrate on bias and misuse that result in wrong
decisions as the first step towards automatic bias detection in
text classification.

In the following parts of this section, we introduce the
proposed automatic misuse detector (MiD). It firstly filters out
potentially biased words using an efficient proxy of feature
importance (Section III-A, Section III-B) and then conducts
a more detailed investigation using an explanation method to
finalize the list of discriminated words (Section III-C).

A. Wrong for wrong reasons

Given a hate speech detector M(·) and a dataset D con-
taining input texts x ∈ D with each text consisting of a list of
tokens (words) in sequential order x = {w0, w1, ..., wn}, we
define a wrong reason for wrong decisions in (1) as a feature
w∗ whose average contribution φ̄(w∗) to the misclassified
instances is greater than a given threshold τ ,

φ̄(w∗)ŷ 6=y = Eŷ 6=y[φ(w∗)] > τ (1)

where φ(·) denotes the function of deriving feature impor-
tance, ŷ denotes the prediction on an instance containing the
wrong reason w∗, and y denotes the ground truth of the
corresponding instance.

For the sake of simplicity, we here assume the given model
M to be a binary classifier with the output value ranging
from 0 to 1, where an output close to 1 indicates the positive
class (ŷ = 1) and vice versa. The contribution of a feature
to the prediction can be measured using feature importance
score (also known as feature attribution) which is the output of
explanation methods. We choose a state-of-the-art explanation
method named Sampling and Occlusion (SOC) [12] for our
debiasing framework, which defines feature importance as:

φ(w∗) = EXδ [M(x)−M(x\w∗)]

where Xδ denotes the context of the relevant input x. The
context consists of the neighboring instances derived from the
input x by randomly masking words with padding tokens. The
contribution of the feature w∗ is measured by the expected
impact of excluding the target feature from all variants in the
given context. With the contribution defined, an intuitive solu-
tion for identifying wrong reasons would be finding features
whose importance scores are highly correlated to the occur-
rence of misclassifications. But this is unrealistic at runtime
as computations for explaining all inputs are unaffordable. To
this end, we propose in the next subsection a loosened proxy
of attribution for filtering out the suspicious features, which
allows us to conduct the detection in real-time.

It has to be mentioned that other popular explanation
methods (e.g., SHAP [18]), which is differentiable, could also
be adopted, but SOC is in favor for the efficiency reason. It can
concentrate on the filtered out features rather than the whole
input and thus helps reduce the computational complexity.

B. False positive proportion as a proxy of feature attribution

It is more urgent to solve bias that leads to misclassification
as hateful than the other way around. Hence, we focus on the
false positive instances2. But the same theory also applies to
the opposite case. For the false positive decision made on the
input x, a feature which is mainly responsible for the predic-
tion possesses the average importance score φ̄(w∗)FP > τ .
Although finding words with high attribution values which
frequently appear in false positive instances could be an ideal
way to determine the potentially misused features, computa-
tions carried by explanation methods are usually expensive
[24]. It becomes unbearable if such computations have to
be carried throughout the whole vocabulary since the size of
vocabulary in up-to-date NLP models can easily go up to the
order of tens of thousands [6]. Therefore, we use the false
positive proportion as an efficient proxy for the detection of the
aforementioned wrong reasons supported by the Proposition 1.
The false positive proportion of a feature FPPw is defined in
(2).

FPPw =
FPw

FPw + FNw + TPw + TNw
(2)

Note that the FPP is slightly different from the false positive
rate by definition. It is the ratio of false positive samples
among all relevant samples rather than the relevant negatives.

Proposition 1. For a wrong reason w∗ where φ(w∗) > τ , its
false positive proportion satisfies FPPw∗ > τ .

Proof. Given a feature w∗ and the set of false positive in-
stances FPw∗ possessing the feature w∗, if w∗ is responsible
for the misclassification, we have:

φ̄(w∗)FPw∗ = EFPw∗ [φ(w∗)]

= EFPw∗ [EXδ [M(x′)−M(x′\w∗)]]
= EFPw∗ [M(x)−M(x\w∗)]
= EFPw∗ [M(x)]− EFPw∗ [M(x\w∗)] > τ

⇐⇒ EFPw∗ [M(x)] > EFPw∗ [M(x\w∗)] + τ

where x′ indicates an instance from the context Xδ and x
denotes a text that belongs to the set FPw∗ . Here we assume
that the average impact of simply masking out w∗ from all
x ∈ FPw∗ is equal to the mean of the feature importance,
which is derived from the expected impact of excluding w∗

in the given context Xδ . The greater expected model outcome
implies that the given text containing the word w∗ is more
likely to be classified as positive, and thus:

=⇒ Pr(x ∈ FPw∗ |w∗) > Pr(x ∈ FPw∗ |w̄∗) + τ

⇐⇒ Pr(x ∈ FPw∗ |w∗) > τ

⇐⇒ Pr(x ∈ FPw∗ , w∗)

Pr(w∗)
> τ

⇐⇒ FPw∗/|D|
(FPw∗ + FNw∗ + TPw∗ + TNw∗)/|D|

> τ

⇐⇒ FPPw∗ > τ

2Instances ought to be negative but misclassified as positive.



where the symbol w̄∗ indicates that the feature w∗ is masked
out.

For better efficiency of the proxy, we choose another thresh-
old η (η ≥ τ ) for the false positive proportion FPPw∗ as a
complement of the neglected term Pr(x ∈ FP |w̄∗) on the
right side of the inequation during the proof. However, words
with FPPs satisfying FPPw > η are not directly applicable
for the debiasing purpose since the reverse of Proposition 1
does not hold as stated in Proposition 2.

Proposition 2. For a word ẇ, the significance of its false
positive proportion (FPPẇ > τ ) does not imply that it is a
considerable reason for the wrong predictions.

Proof. Given a word w as a wrong reason, if there exists
another word ẇ which has unconditional high co-occurrence
with w (e.g., for semantic/syntactic reasons), it means:

Pr(w) = Pr(w, ẇ) = Pr(ẇ) (3)
Pr(w|x ∈ FP ) = Pr(w, ẇ|x ∈ FP ) = Pr(ẇ|x ∈ FP ) (4)

The statement about the significant false positive proportion
holds for ẇ without any constraints on its importance score
φ(ẇ).

Pr(x ∈ FP |ẇ) =
Pr(ẇ|x ∈ FP )

Pr(ẇ)
· Pr(x ∈ FP )

(3)
=

Pr(ẇ|x ∈ FP )

Pr(w)
· Pr(x ∈ FP )

(4)
=

Pr(w|x ∈ FP )

Pr(w)
· Pr(x ∈ FP )

= Pr(x ∈ FP |w) > τ

⇐⇒ FPPẇ > τ

Proposition 2 indicates that the false positive proportion is
a loosened proxy of the feature attribution, which requires an
in-depth analysis of the identified words to condense the word
list before it serves for the debiasing task.

Computation of the FPP can be done in linear time (depen-
dent on the size of the dataset) as model predictions are avail-
able during training time. Hence, its computation is much more
efficient than exhaustively performing the chosen explanation
method for feature attribution. According to Proposition 1, we
apply FPP as a proxy to filter out the potentially biased words
and then utilize the SOC explainer to exclude features with
limited contributions from the final list following Proposition
2. Note that obtaining feature importance is practical after the
filtering as the number of words under investigation is about
0.2% of the vocabulary size.

C. Misuse detection

For the trade-off between accuracy and fairness, we intend
to debias a model with minimal external restrictions applied.
A model is updating itself for the given task during training.
Misconduct of the model at the current step could be self-
corrected after finishing further training steps. Accordingly,

the misuse detector in the debiasing framework is designed
to examine FPPs of features periodically during the training
phase instead of completing the detection at once. MiD inte-
grates a sliding window with size l recording the most recent
feature statistics. Only features with at least k records in the
sliding window, whose FPP exceeds the user-defined threshold
η, namely FPPw > η, will be added to the candidate list.
Fig. 2 demonstrates an example of the candidate list absorbing
and rejecting the features according to their FPPs.

Fig. 2: Absorbing and excluding potentially biased features
through FPP

Words filtered out by FPP are candidates of debiasing
targets. And because of Proposition 2, investigation on their
feature importance scores is mandatory. Only candidates with
an importance score assigned by SOC greater than the given
threshold τ will be inserted into the debiasing list W . The
finalized debiasing list W will contribute to the correction of
the model.

IV. STAGED TRAINING

Based on MiD proposed in previous subsection, we intro-
duce a staged training process for automatic debiasing in this
section. The training process consists of three stages: i) vanilla,
ii) correction, and iii) stabilization, which are listed following
their orders in the training process. The training process enters
the next stage when n training iterations are completed.

At the vanilla stage, no restrictions are applied to the
training target. The misuse detector is recording statistics
of suspicious features periodically (as entries in the sliding
window) in parallel for the construction of the debiasing list
W . Words inserted into W remain in the list even if their
importance scores drop below the threshold τ . The debiasing
list W is thus continually growing until the vanilla stage
ends. The correction stage follows the end of the vanilla.
Misconduct of the model is corrected at this stage with
restrictions being applied to the target model based on the
debiasing list W . To implement the restrictions, the objective
function is updated with a regularized explanation term added
to the classification objective L as follows:

LE = L+ λ
∑
w∈W

|ŷ − y| · φ(w)2

The second term is the regularization term with the strength
controlled by a hyperparameter λ. Since our focus is solv-
ing wrong for wrong reasons, penalties are laid solely on
misclassified instances containing features listed in W . The
debiasing list remains static at this stage regardless of the



possible changes of either feature attribution or FPP. After the
correction, the debiasing list is resolved. And finally, as the
stabilization stage, the model is trained without restrictions
for another n steps.

The first two stages are critical in the training process.
Unlike the other debiasing methods for text classifiers, which
define the debiasing list manually ahead of the training, we
first train the target model for n steps and actively search for
the discriminated words. It encourages the debiasing frame-
work to be more responsive to the actual model behaviors,
which could be affected by trivial changes (e.g., varying
random seeds [37]) in the training settings. The variable nature
of the training process is another reason why a pre-defined
debiasing list should be less favored than maintaining a list
at runtime. We apply the extracted knowledge to enforce the
correction at the second stage. Though it is not mandatory, the
stabilization step is arranged to enable the model to optimize
itself but at the risk of reappearing recovered bias.

V. EXPERIMENTS

We designed comprehensive experiments to study the per-
formance of the proposed debiasing framework. Firstly, we an-
alyze the outputs of MiD in a qualitative manner (Section V-B).
Secondly, we compare the model which is trained using the
staged debiasing framework to its competitors (Section V-C).
Last but not least, an investigation to uncover the indirect
impacts of debiasing is conducted. And we discuss the overall
coverage of MiD on the manual list considering both direct
and indirect debiasing impacts (Section V-D). The concrete
experimental settings are discussed in the coming Section V-A.

A. Experiment Details

Dataset: We evaluate our approach on the ”Gab Hate
Corpus” [13] dataset. The dataset contains 27, 655 speeches
sampled from a social network named ”Gab” which is popu-
lated by ”Alt-right” [2] with a high rate of hate speech. There
are 22, 036 instances in the training set with 1941 of them
being labeled as hateful (y = 1) by human annotators and the
remaining as non-hateful (y = 0). The validation set has a
size of 2, 755 with 245 instances as hateful. The test set has
the same size as the validation set and includes 264 positive
instances.

Text classifier: The debiasing target is a text classifier
solving the hate speech detection task given by the afore-
mentioned dataset. We select BERT [15], a state-of-the-art
language model based on the attention mechanism [30], for
our experiments. Although BERT has been utilized for numer-
ous downstream tasks, recent researches demonstrate various
biases (e.g. gender [3], ethnic [1] bias) it could induce. We
fine-tune the pre-trained version that is publicly available in
the transformers library [32].

Hyperparameters: For the misuse detector MiD, the two
thresholds η (for FPP) and τ (for feature importance score)
give the definition of misused terms. A strict definition with
high thresholds will lead to the risk of overlooking biases;

TABLE I: Lists of words for debiasing

Shared by
both lists

muslim muslims islam islamic jew jews jewish gay
white whites black blacks

Only in
MiD

immigrant immigrants left liberal democrats communist
african racist nazi leftist corrupt migrants liberals traitor
homo rap slave terrorist fucking gender

Only in
Manual list

woman women democrat allah lesbian transgender brown
race mexican religion homosexual homosexuality africans

meanwhile, a detector with low thresholds may involve ir-
relevant tokens and thus cause damage to the model’s per-
formance. We here determine η and τ via grid search and
set them to 0.65 and 0.45, respectively. The misuse detector
records FPPs of suspicious features every 50 iteration with the
sliding window size l equals 10 and the requirement of the
minimal count k equals 7. As for the debiasing framework,
the strength of the explanation regularization is 0.1 following
the optimal parameter setting in [14]. The training iteration
is set to 1, 000 equally for each stage, which indicates 3, 000
training iterations in total.

Competitors: We compare the model corrected by the pro-
posed framework to the two models with the same structure but
trained under various circumstances. One is trained under the
vanilla setting with no restrictions. The other is trained with
the debiasing method proposed in [14], which is considered
as a baseline. The baseline employs a manually defined static
debiasing list and the strength of the regularization is the same
as our method (i.e., λ = 0.1). The static debiasing restrictions
take effect during the whole training process, while ours
educates the model for fairness only during the middle stage
(correction). For both the vanilla setting and the baseline, the
models are trained for 3, 000 iterations, which is identical to
the total amount of training iterations in the staged correction.

B. Evaluating misuse detector

We first evaluate the misuse detector as it is the base of the
proposed debiasing framework. The list of potentially biased
words given by MiD during the first stage is presented in
Table I along with the manually selected ones used in the base-
line. The words shared by the two lists are marked as bold and
summarized in the first row. And for words contained in the
manual list, the box plots of the biased feature attribution and
the visualization of corresponding FPPs can be found in Fig. 3.
The automatically constructed debiasing list covered 12 out

of 25 words given in the manual list, which is considered
sensitive and potentially discriminated. For example, sensitive
group identifiers (such as “muslim”, “black”, and “gay”) are
covered by both lists. In addition, MiD successfully identifies
words referring to demographic information, like “immigrant”
and “liberal”, which are overlooked by the human annotators.

At the same time, we are not surprised that potentially
hateful words such as ”nazi” and ”fucking” are also listed.
Unreasonably referring to an individual or a group of people
as “nazi” is truly hateful and should be filtered out before



Fig. 3: Feature attribution of the manually selected words

it gets published in public environments. But the model may
ban proper expressions or discussions (e.g., on histories) if
it becomes over-sensitive to the potential evidence for hate
sentiments. Although the main focus of the work is to miti-
gate biases carried by hate speech classifiers, over-sensitivity
towards potential evidence may also be the wrong reason that
is responsible for wrong decisions. It is also a reason why we
named the proposed method as misuse detector rather than
bias detector.

Furthermore, the box plots of feature attribution in Fig. 3
show that the misuse detector excludes less discriminated
words like “race” and “brown”, which exist in the manual
list, from the automatic one. Despite the truth that human
annotators consider these words discriminated, they play a
neutral role (told by the relatively low feature importance
scores shown in the box plots) during the decision-making
process. In principle, we could include all neutral words in the
debiasing list for models’ fairness. But since the experiment
in Section V-D demonstrates that attribution suppression on
single words would affect their semantic neighbors, we argue
that the debiasing list should be concise for model capacities
by excluding less biased words.

Apart from the merits, the detector overlooks some manu-
ally selected words that are misused, such as “homosexual”
and “transgender”. Illustrated by their considerably lower
FPPs, the main reason for the incompleteness is that these
wrong reasons lead to right predictions. While concentrating
on correcting wrong decisions, we selectively neglect the case
“right for wrong reasons” as discussed in Section III. Nev-
ertheless, we demonstrate in Section V-D that the debiasing
framework lays approving impacts on these words (feature
importance scores dropped over 50%) even though they are
not directly affected.

C. Evaluating debiasing framework

To reveal the impact of the debiasing framework on training
a model, we present in Fig. 4 the training losses under different
circumstances. Having the lines in blue indicate the pure
classification loss (cross-entropy), the orange lines refer to the
penalties regularized by explanations, and the sum of the two
values is the final back-propagated loss. The model is trained
using the same hyperparameters with the only difference in the

random seed for 10 times under each setting, and the reported
losses are the averaged values of the 10 versions. For the
vanilla setting, the penalty introduced by the regularization
term is identical to 0 as no restrictions were applied. And a
decreasing trend can be observed for the loss until around the
1, 500th iteration. The baseline adopted a pre-defined list for
debiasing, which remained in force during the whole process.
As a consequence of the applied restrictions, the regularization
term stays close to 0, which indicates the extremely low
attribution of the debiasing targets. Finally, the loss fluctuates
at a level close to the same value under the vanilla setting with
a similar progressing period.

As for the staged correction method, we separate the
training stages by the vertical dotted line at the 1, 000th
and 2, 000th iterations. The change of the classification loss
is similar to the other two settings at the first stage. The
restrictions for debiasing come into effect when the first stage
ended. Unlike what is shown in the baseline, the penalty
here starts with a very high value at the beginning of the
correction stage as certain misbehaviors of the model have
been detected by MiD during the first 1, 000 iterations. And
the model manages to correct the misuse instantly (less than
100 iterations) following the guidance of the explanations. At
the same time, since the constraints limit the model reasoning
its predictions, we observe a notable increase in terms of
classification loss. But the model adapts to the changes quickly
and starts improving its classification performance again. The
restrictions are resolved when the last stage begins, which
leads to a further decrease in the classification loss. And
surprisingly, the model trained with the staged correction
achieved the lowest classification loss among three. A possible
cause of the observation is that explanations as guidance for
model attribution can improve its performance [35]. Although
we do not bring the full expected feature attribution, excluding
the irrelevant/wrong features may have a similar effect by
reducing the search space.

For a more comprehensive study on the impact of debiasing
approaches on the classification task, we also report the per-
formance of the three versions of the same model in Table II.
And again, the model is trained 10 times with various random
seeds for each setting, and the averaged performance on the
test set followed by the standard deviation is presented. For the
staged correction, we store the best performing model on the
validation set for each stage separately and then evaluate them
with the test set. Models from the MiD-Vanilla stage have the
lowest averaged accuracy on the test set as it is trained only
for 1, 000 iterations. Although they achieve the highest recall
in detecting hateful speeches, the obviously low precision
indicates that many false positive decisions have been made,
which agrees with the high FPPs visualized in Fig. 3. During
the correction stage, the biases of the training targets are
mitigated, which results in the second highest precision. As
a side effect, constraints on the decision making process limit
model performance in terms of recall. It also results in an
average F1 score that is roughly 1.4% lower than the highest
obtained in the vanilla setting. Consistent with the training



Fig. 4: Training loss over iteration with/-out debiasing

TABLE II: Classification performance on the test set

Setting Acc. F1 Precision Recall

Vanilla 87.96 ± 1.22 48.59 ± 1.75 41.47 ± 3.30 59.17 ± 3.13
Baseline 86.85 ± 1.29 44.88 ± 1.26 37.85 ± 2.60 55.83 ± 4.77

MiD-Van. 86.31 ± 0.88 48.45 ± 0.98 38.02 ± 1.68 67.10 ± 3.15
MiD-Cor. 88.93 ± 0.60 47.18 ± 1.51 43.71 ± 2.29 51.73 ± 4.75
MiD-Sta. 89.06 ± 1.42 48.02 ± 1.52 45.08 ± 5.23 52.53 ± 5.36

Accuracy, F1, Precision, Recall (%) are reported on the test set. Van., Cor.,
and Sta. are the abbreviations of the vanilla, correction, and stabilization
stages respectively.

loss, the final models (at the stabilization stage) delivered by
the staged correction reach the highest accuracy among the
competitors. In fact, the performance is improved for all listed
metrics in comparison with the results of the correction stage.
And even though the restrictions have been resolved, the mean
precision increases rather than decreases. On the contrary, the
baseline, which also debiases the training target by suppressing
unwanted attribution, attains a fairly poor performance with
all the figures being lower than the vanilla ones. A possible
explanation for this observation is that the manually defined
debugging list applied during the whole process limits the
convergence of the training targets towards the global optimal.

In Fig. 5a, we show the changes of averaged feature
attribution (FA) and averaged false positive proportion FPP
over iterations for the words extracted by MiD. For a better
comparison between our debiasing framework and the base-
line, we visualize the same statistics for the baseline. We want
to point out that the words behind the figures are not identical
for the two methods as listed in Table I. Records of different

training settings are distinguished by color. The solid and
dotted lines indicate the averaged FA and FPP of the debiasing
targets respectively. A primary observation is the correlation
between FA and FPP, especially for the synchronized drop
at the beginning of the correction stage and the fluctuation
with similar trends since the 1, 500th iteration. The same
observation holds for the plots of the baseline, whose debiasing
list has an overlap with the wrong reasons detected by MiD.
But finding the correlation in the baseline requires a closer
look as the plots are rather flattened. The observed correlation
supports our propositions and the usage of FPP as a proxy
of feature attribution for identifying wrong reasons for wrong
decisions.

The baseline maintained the lower feature attribution for the
selected words during the whole process. Suppression of the
incorrect reasoning contributes to the low FPP (≈ 0.1), which
is only one-third of the averaged FPP (≈ 0.3) of the same
words in a biased model as shown in Fig. 3.

As for the proposed method, the records for the staged
correction do not start at the first iteration, because the misuse
detector requires time to confirm that the model consistently
discriminates against certain features. Corresponding to the
massive regularization penalty at the beginning of the correc-
tion stage, the averaged feature attribution of the automati-
cally detected words is relatively high before the correction
(#iter ≤ 1, 000) in the proposed debiasing framework. And
a sharp decrease of the FA at the start of the correction stage
matches the drop of the regularization term reported in the
training loss. The feature attribution keeps falling during the
correction and becomes competitive at the end of the second
stage to the same value in the baseline. Simultaneously, the
FPP is experiencing a decrease. After entering the stabilization



TABLE III: Shortened debiasing list

muslims islam jews communist racist homo

stage, the FA of the biased words starts recovering because of
the release of the restrictions. In spite of the slight increase
in the FA, the decline of FPP continues. Starting from an
extremely high point of the FPP, our debiasing framework with
the staged correction outperforms the baseline in the middle of
the correction stage and ends up with the FPP approaching 0,
even though it possesses a larger debiasing list. The loosened
restrictions in the staged correction allow the model better
explore the solution space and are considered to be the main
cause of the better performance compared to the baseline.

D. Indirect impacts of correction

Despite the absence of some manually selected words in the
automatically extracted word list, an impressive consistency
between the changes of the feature attribution highlights itself
in Fig. 5b. The figure demonstrates the FPP and FA changes
for two groups of words in the staged debiasing framework:
i) words included in the staged correction process; ii) words
omitted by the detector but contained in the manual list.
While the debiasing process suppresses the feature attribution
of the debiasing targets, the words that are not explicitly
included also get affected. Since the experiment is carried
on the BERT model, which represents similar tokens with
similar embeddings, we believe that correction on single words
also brings the effects to their semantic neighbors as they are
implicitly connected through semantic meanings.

Motivated by the idea, we conduct further experiments to
verify the existence of the indirect impacts. The size of the
debiasing list extracted by MiD with the standard parameters
is fairly large. To prevent the possible cross effects among
multiple features from introducing additional complexity to the
analysis, we reduce the number of debiasing targets by raising
the two thresholds in MiD to tighten the definition of the wrong
reason. By applying the change, the shortened debiasing list
(in Table III) contains 6 words. In addition to the automatically
detected words, from the manual list, we select three words
with high cosine similarities to the multiple terms in the
previous list, namely “muslim”3, “islamic”, and “jewish”. We
also choose the two words “homosexuality” and “black” with
each having medium similarity to one term and one word
“race”, whose embedding is dissimilar to the others. The
correlation matrix of the changes in feature attribution and the
cosine similarities among word embeddings are presented in
Fig. 6. In addition to the listed words The bright square at the
upper left corner of the correlation matrix in Fig. 6a is directly
caused by the correction, all the 6 words relating to the square
are actively suppressed by the debiasing framework. And the
three words with high similarities to at least two tokens show
a strong correlation in terms of feature attribution. For the

3This word is different from the word “muslims” as they are represented
by different tokens in the classification task, the same holds for other terms.

remaining words, the lower correlations agree with the fact
that their embeddings are less similar to the targeting ones. The
finding further confirms that suppressing feature attribution of
words would indirectly affect their semantic neighbors in a
similar way. The more detailed analysis further reveals that
overlaying the indirect effects (e.g., indirect effects originating
from “muslims” and “islam” on “islamic”) could strengthen
the correlation. Considering the semantically similar words
shared by both lists in Table I, we, therefore, argue that
the proposed misuse detector has better coverage (direct and
indirect) on the manual list than it appears to be.

VI. CONCLUSION

In this work, we proposed MiD, a fully automatic misuse
detector with the main purpose of uncovering biases learned by
a text classifier during the training phase. With the deployment
of the detector, the training object is debiased through a staged
correction process. Our experiments show the outstanding cov-
erage of the automatically extracted list on the discriminated
terms. Based on the dynamically constructed debiasing list,
the model trained with the staged correction process achieves
similar performance in terms of fairness to the baseline, which
applies the strict restrictions for debiasing through the whole
training process. Moreover, our debiased model maintains the
competitive classification performance in comparison with the
biased model trained under no constraints.

We also study the indirect impacts of the word-level
correction on the semantically connected words, which are
underexplored in previous work. Having the experimental
results supporting our assumption about the existence of
indirect impacts, we argue that the word list for debiasing
should be minimized by excluding less related tokens to
avoid introducing unexpected effects to the training target.
Additionally, the observation also strengthens the belief that
debiasing is a multi-staged task through the NLP pipeline.
Bias-free embeddings from the preprocessing stage with sen-
sitive group identifiers distant from sentimental words could
reduce the risks of the unintended indirect impacts brought by
bias mitigation at the fine-tuning stage into the model capacity.
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