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Abstract. In the field of explainable Artificial Intelligence (XAI), se-
quential counterfactual (SCF) examples are often used to alter the deci-
sion of a trained classifier by implementing a sequence of modifications
to the input instance. Although certain test-time algorithms aim to opti-
mize for each new instance individually, recently Reinforcement Learning
(RL) methods have been proposed that seek to learn policies for discov-
ering SCFs, thereby enhancing scalability. As is typical in RL, the for-
mulation of the RL problem, including the specification of state space,
actions, and rewards, can often be ambiguous. In this work, we identify
shortcomings in existing methods that can result in policies with unde-
sired properties, such as a bias towards specific actions. We propose to
use the output probabilities of the classifier to create a more informative
reward, to mitigate this effect.

Keywords: Sequential counterfactuals · Reinforcement Learning · Model-
agnostic

1 Introduction

Predictive Machine Learning (ML) models have been used in various fields to
make predictions by generalizing knowledge learned from data. Yet, in recent
years, generating explanations for model decisions has become increasingly im-
portant, shifting interest to the field of explainable AI (XAI) [7]. A popular
category of XAI methods are the so-called “counterfactual explanations” that
offer a ”what-if” analysis of model decisions by identifying the minimal set of
changes or interventions needed to alter the outcome of the model for a given
instance, allowing users to understand the factors that influenced the model’s
decision. Common desiderata for counterfactual explanations, as highlighted by
[4], include proximity (distance) to the original instance, sparsity in terms of
changes made, and the plausibility of the counterfactual instances w.r.t. the
particular problem domain.
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Recently, a specific type of counterfactual explanations, called sequential
counterfactuals (SCFs) has been proposed [14,16,17,13,15,5] that, rather than
making instantaneous or simultaneous modifications to the input, propose a se-
quence of alterations, each building upon the previous one, until the classifier’s
decision changes. Such approaches allow for considering the consequences of cer-
tain changes to other attributes, for instance, increasing the age of an individual
might require an increase in their level of education to maintain consistency or
plausibility. SCF generation algorithms look for the optimal order of changes to
an input instance, to alter the decision of a model.

In the generation of SCFs, certain methods employ search algorithms that
need to initiate optimization for each new instance [14,8], leading to efficiency
problems. On the other hand, feed-forward methods [18,3] leverage Reinforce-
ment Learning (RL) to learn a scalable policy for generating SCFs. The prob-
lem is formulated as a Markov Decision Process (MDP), where states present
the original input instance and its alternations, and actions correspond to all
allowed changes to input features (discrete or continuous). The immediate re-
ward for taking an action depends on the output of the black-box model and on
the distance of the altered instance to its original state (proximity), to ensure
minimal feature changes (action sparsity).

As is typical in RL, the problem formulation plays a crucial role in shaping
the policy that the agent learns. In this study, we focus on analyzing certain
modeling choices, specifically those related to the action space and the shaping
of the reward function, which is influenced by the output of the classifier. We ob-
serve that rewarding the RL agent based solely on the sparse binary decision of
the classifier can result in problematic policies that only modify features highly
correlated with the classifier’s output. While these methods demonstrate satis-
factory performance in terms of action sparsity, satisfiability, and distance, they
prove to be ineffective in practice as they learn to take identical actions for any
given input, leading to what we call feature over-utilization. In extreme cases,
this phenomenon leads to altering a single feature for any given input, thereby
reducing the practicality and diversity of generated counterfactual explanations.
We present an action entropy metric as a means to quantify the extent of feature
over-utilization. Moreover, we propose to overcome this issue by taking contin-
uous actions and implementing a denser reward function when the classifier’s
output probability is available instead of solely relying on the class labels.

The rest of this paper is organized as follows: related work is discussed in
Section 2. In Section 3 we introduce our proposed method. Experimental results
are provided in Section 4. Conclusions and future work are discussed in Section
5.

2 Related Work

In recent years, many XAI techniques have been proposed to solve the problem
of finding SCFs for a pre-trained model. Model-agnostic methods are more gen-
eralizable, as they do not require differentiability or information on the internal
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architecture of the models, but only use the output for decision-making. The ma-
jority are search algorithms that re-optimize for each new given instance, for ex-
ample by searching in the neighborhood [2,1], or by population-based approaches
[14,6]. These algorithms start from a given instance and navigate through trial
and error to find a CF, often optimizing for multiple objectives. In our setting, a
RL policy has to be learned that can be applied as a feed-forward method after
training, on any given instance.

In [18] a Deep Q-Network (DQN) is used to predict discrete feature changes,
which are defined as constant steps. Although the reward function incorporates
classifier probabilities whenever feasible, its effect on the SCF generation is not
discussed. Besides, the use of fixed increments presents issues by assuming all
discrete features to be ordinal and restricting changes in continuous features to
discrete steps only. This is further detailed in Section 3.

To overcome this problem, [3] proposes to use a parametrized DQN (P-DQN)
[19] network, which combines a DQN with a policy gradient method (DDPG)
[11], that can be described as the continuous counterpart of a DQN. Doing
that, P-DQN can choose among all features using the DQN, and predict a more
precise continuous feature change using the DDPG network. Nonetheless, the
reward depends only on the class labels, which leads to over-utilization of some
features as presented in our experiments.

3 Overcoming feature over-utilization through
informative reward design

In this section, we address the issue of action over-utilization that arises when
employing sparse rewards in RL techniques for generating SCFs. To overcome
this issue, we propose the adoption of a denser reward function that employs the
probabilities obtained from the black-box classifier.

3.1 Limitations of existing approaches

DQN: As in [18], a DQN takes discrete steps of (±0.05) for continuous features
that are in the range of [−1, 1], and (±1) for discrete features. This formulation is
problematic because i) some discrete features can be nominal, e.g. Occupations
don’t necessarily have a specific ordering, ii) for continuous features, the step
size is discrete and constant, e.g. working hours ±30min, and iii) the constant
step size of ±0.05 does not take feature interdependencies into account, for ex-
ample, it can translate to ±30min for working hours, but ±2500EUR for capital
gain, depending on the normalization method. The paper mentions that a dense
reward using the black-box probabilities is applied when available. Furthermore,
results report a very low action sparsity (close to 1) and distance (0.04), which
is desired when generating SCFs, as a lesser number of changes, closer to the
original instance, are more interpretable. However, this also means that for all
input instances, CFs are found after changing a single feature just once, as the
distance is almost the step size of 0.05, leading to feature over-utilization and
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scarcity of diverse options. Such an unvarying single-step policy does not provide
useful SCF explanations, and potentially other XAI approaches such as global
feature importance methods [10,12] are more fitting in this case. Due to these
many disadvantages, we do not follow this approach.

P-DQN: As proposed in [3] the P-DQN [19] model is used to perform continu-
ous changes sequentially. Taking an action consists of a high-level feature choice
k (discrete) and the new value of that feature uk (continuous). This assumption
considers all feature changes uk to be continuous, which necessitates discretiza-
tion when handling discrete features. However, P-DQN remains more accurate
and adaptable compared to the DQN method, as it enables continuous changes
for continuous features without the restriction of discrete steps. Analytically, the
action space for P-DQN is defined as:

A =
{
(k, uk) | uk ∈ [−1, 1] k ∈ [K]

}
(1)

Where [K] = {1, 2, ...,K} are the different features. Each time a feature is
changed using an action, the timestep t is incremented. A state st = (xt, bt)
is defined as a tuple of some instance xt concatenated with a binary indicator
vector of previously used actions bt. When taking an action at = (k, uk) the new
state st+1 = (xt+1, bt+1) is created by updating the value of the chosen feature
k as uk, i.e. xt+1[k] = uk, and incrementing the indicator vector bt+1[k] += 1.
Finally, the reward function used in this method [3] is defined as:

Rbin
t =


Pen if st+1 = failure,

Pos if st+1 = success,

0 else.

− β ∗ δ(st+1, s0) (2)

Where Pen is a negative penalty if a failure terminal state is reached, i.e.
violating a feature constraint or re-using the same action, Pos is a large positive
reward if a success terminal state is reached (counterfactual found), δ() is a
distance measure (the l2 norm in our case), and β is a parameter controlling the
weight of the distance measure. It is evident that this reward function is sparse
since it only has access to the binary class labels and not the probabilities.
Therefore we refer to this reward function as Rbin. In Section 4, we demonstrate
that the learned policy using this reward is suboptimal in terms of action variety.

3.2 P-DQN & classifier probability rewards

To construct a more dense reward, we assume that the classifier f(X ) = Y makes
a binary decision Y given an input X based on a probability measure. We denote
the probability of an instance belonging to the target class as P (X ) = P (f(X ) =
target). This way we can redefine the reward function for a non-terminal state
as follows:

Rprob
t = α ∗

(
P (st+1)− P (s0)

)
− β ∗ δ(st+1, s0) (3)
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Where P (st+1)− P (s0) is the difference in target class probability between the
next state and the initial state and α, β are parameters controlling the balance
between the difference of probability and distance respectively. This is beneficial
because the RL agent has immediate feedback on each step regarding the direc-
tion taken in relation to the target class. In contrast, when using the aforemen-
tioned binary reward (Rbin), the agent must explore the space without receiving
any positive feedback until a successful state is reached (found CF). This addi-
tional information on every step results in a more dense reward function, that
not only discourages large changes but also guides towards the target class. We
denote this reward function with Rprob since it incorporates the utilization of
target probabilities.

4 Experiments & Results

In this section, we compare the P-DQN model’s performance when using the
binary reward Rbin and when employing the target class probabilities reward
Rprob.

4.1 Datasets

Motivated by previous approaches we use four tabular datasets in our compara-
tive study. Specifically, the Adult Income, Credit Approval, German Credit, and
German Risk [9]. Each dataset has a binary output label and is comprised of
mixed features. Some datasets also have immutable features (e.g. Race) that are
considered when defining the states but are not taken into account in the action
space.

Table 1. Characteristics of the four public datasets used.

Dataset N. instances Features

N. of Continuous N. of Discrete N. of Immutable

Adult Income 48842 4 3 4
Credit Approval 690 5 10 0
German Credit 1000 5 11 4
German Risk 1000 3 4 2

4.2 Evaluation measures

Based on previous works on SCF generation [3,18,14], we use the metrics of
satisfiability, distance (i.e. proximity), and action sparsity to evaluate the quality
of the generated CF examples. Additionally, we measure the target probability
of the found CF and define a novel entropy metric to evaluate the diversity of
the actions taken by the policy. When an agent has learned to modify only a
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specific feature for any given instance, the entropy metric will be low. Conversely,
policies with higher entropy exhibit a tendency to modify a diverse range of
features depending on the input provided. All metrics are analytically defined
hereafter:

– CF satisfiability = N. of counterfactuals found
N. of test instances , measures the percentage of coun-

terfactuals found, i.e. ended in a success state.
– Action sparsity = N. of features changed to reach a CF (averaged over all

test instances), no repeating actions allowed.
– l2 norm distance of the CF to the original state (averaged over all test

instances)

– entropyH = −
∑
t

∑
k

pk
t log2(p

k
t )

log2(K
2) where pkt = N. of times feature k was changed at step t

N. of total feature changes

We calculate the entropy of an agent by assigning probabilities pkt for ev-
ery feature k to change at each step t. We accomplish this by counting how
many times the agent changed a feature at each step and dividing by the to-
tal number of changes. We normalize dividing by the maximum possible entropy
Hmax = log2(K

2), whereK corresponds to the total number of mutable features,
which is equal to the maximum timesteps, considering that repeating actions are
prohibited.

4.3 Experimental setup

Regarding the reward functions of Eq. 2, 3, the distance metric used is δ = l2
norm, and the hyper-parameters (α, β) = (10, 1) are set empirically to give more
weight to the change of probability, given that distance values can be larger.
We set the large positive reward for a found CF as Pos = α ∗ thr = 5 where
thr = 0.5 is the probability threshold of the classifier, and the large negative
penalty for a failure state, Pen = −2 ∗ Pos = −10. We use 80% of the data
for training across 40.000 environment episodes and 20% for evaluation. Each
experiment is repeated five times with different random seeds. Experimental
results are reported as the average values and standard deviations over all seed
initializations.

4.4 Results

We compare the P-DQN model using the binary reward used in [3], denoted
as Rbin, to our proposed reward Rprob that we define in Section 3. Results are
shown in Table 2.

It is evident that the original approach (P-DQN Rbin) is mostly performing
better in terms of satisfiability, sparsity, and distance. This indicates that it finds
SCFs more consistently (satisfiability) for most test instances while taking fewer
steps to achieve that (action sparsity) and with close proximity to the original
instance. Nevertheless, the entropy of the policy learned by this method is low
for all datasets, i.e. under 63%, compared to our approach where the policy has
higher entropy over 68%.
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It should be emphasized that the objectives of action sparsity and entropy
can be contradicting. In particular, a policy that consistently alters a single fea-
ture strongly correlated with the output target class may exhibit a desired low
sparsity metric but also underperforms with a significantly low entropy value.
This occurs for example for the Adult Income dataset where P-DQN Rbin per-
forms very well at action sparsity but with a huge loss in entropy.

We can further visualize this issue by plotting the Sankey diagrams for both
policies in Figure 1. Sankey diagrams are used to depict the flow of information
between sets of values called nodes.

(a) P-DQN Rbin

(b) P-DQN Rprob

Fig. 1. Sankey diagrams for (a) binary reward and (b) our target probability reward.

In our case, the x-axis corresponds to the distinct timesteps of the agent
during the evaluation episodes. On the y-axis, the first node represents all initial
instances of the test data. For each test instance and at each step, the trained RL
agent can alter a single feature, causing the flow to split into different nodes. This
process continues until a CF is found (green), or a failure state is reached (red).
The final node represents the percentage of CFs found, i.e. the satisfiability. We
can see that our approach finds SCFs by using a much greater variety of actions,
due to the denser reward function that incorporates the target probabilities.
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Table 2. Comparison of both methods on all evaluation metrics and datasets. The
results are presented as the average (with standard deviation) over five random initial-
izations for each experiment.

Dataset Method Satisfiability ↑ Sparsity ↓ distance δ ↓ P () ↑ entropy H ↑
Adult
Income

P-DQN Rbin 1.00 (0.00) 1.18 (0.06) 1.25 (0.04) 0.75 (0.02) 0.29 (0.06)

P-DQN Rprob 0.92 (0.04) 5.35 (0.09) 2.69 (0.23) 0.66 (0.03) 0.82 (0.03)

Credit
Approval

P-DQN Rbin 0.80 (0.40) 1.77 (0.15) 1.25 (0.65) 0.55 (0.21) 0.45 (0.07)

P-DQN Rprob 0.93 (0.02) 8.16 (2.04) 3.94 (0.74) 0.65 (0.05) 0.84 (0.01)

German
Credit

P-DQN Rbin 0.97 (0.05) 1.46 (0.05) 1.39 (0.04) 0.70 (0.02) 0.58 (0.02)

P-DQN Rprob 0.97 (0.01) 1.71 (0.16) 1.47 (0.06) 0.69 (0.02) 0.68 (0.05)

German
Risk

P-DQN Rbin 0.97 (0.03) 1.81 (0.37) 1.52 (0.11) 0.63 (0.02) 0.67 (0.10)

P-DQN Rprob 0.81 (0.33) 2.48 (0.47) 1.57 (0.71) 0.56 (0.09) 0.74 (0.14)

5 Conclusion and Future Work

In this study, we focus on the problem of learning a policy to generate Sequential
Counterfactuals (SCF) using Reinforcement Learning (RL). We identify issues
in related methods that lead to policies over-utilizing features, thus becoming
ineffective in practice by repeatedly taking identical actions for any input. To ad-
dress this issue, we propose taking continuous actions and implementing a denser
reward function that considers the classifier’s output probabilities instead of re-
lying only on class labels. By introducing an action entropy metric, we quantify
the extent of feature over-utilization and demonstrate the effectiveness of our
approach in mitigating this problem. These findings highlight the importance
of carefully designing the problem formulation, reward function, and modeling
choices, particularly when generating SCFs.

For future research, we will focus on generating SCFs for mixed features
without transforming them into a common data type. We aim to construct RL
agents that work in mixed action spaces and explore distance metrics that take
mixed feature interdependencies into account.
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