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Abstract. Generalized Additive Models (GAMs) are widely used explainable-by-design mod-
els in various applications. GAMs assume that the output can be represented as a sum of
univariate functions, referred to as components. However, this assumption fails in ML prob-
lems where the output depends on multiple features simultaneously. In these cases, GAMs fail
to capture the interaction terms of the underlying function, leading to subpar accuracy. To
(partially) address this issue, we propose Regionally Additive Models (RAMs), a novel class
of explainable-by-design models. RAMs identify subregions within the feature space where
interactions are minimized. Within these regions, it is more accurate to express the output
as a sum of univariate functions (components). Consequently, RAMs fit one component per
subregion of each feature instead of one component per feature. This approach yields a more
expressive model compared to GAMs while retaining interpretability. The RAM framework
consists of three steps. Firstly, we train a black-box model. Secondly, using Regional Effect
Plots, we identify subregions where the black-box model exhibits near-local additivity. Lastly,
we fit a GAM component for each identified subregion. We validate the effectiveness of RAMs
through experiments on both synthetic and real-world datasets. The results confirm that
RAMs offer improved expressiveness compared to GAMs while maintaining interpretability.
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1 Introduction

Generalized Additive Models (GAMs) [Hastie and Tibshirani, 1987] are a popular class of explain-
able by design (x-by-design) models [Rudin, 2019, Ghassemi et al., 2021]. Their popularity stems
from their inherent interpretability. GAMs represent an aggregation of univariate functions, where
the overall model can be expressed as f(x) = c+

∑D
s=1 fs(xs). Due to this structure, each individ-

ual univariate function (component) can be visualized and interpreted independently. Consequently,
understanding the behavior of the overall model simply requires visualizing all components, each
with a one-dimensional plot.

However, GAMs have limitations especially in cases where the outcome depends on multiple
features simultaneously, i.e., when the unknown predictive function includes terms that combine
multiple features. Therefore, there are a lot of methods [Enouen and Liu, 2022, Xu et al., 2023,
Lou et al., 2013, Agarwal et al., 2021, Chang et al., 2021] that extend the traditional GAMs in
multiple directions. The most famous direction involves selecting the most important higher-order
interactions. GA2Ms [Lou et al., 2013] first introduced this line of research extending the tradi-
tional GAMs by adding pairwise interactions in their formulation, i.e., f(x) = c +

∑D
s=1 fs(xs) +
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s=1

∑
s1 ̸=s2

fs1s2(xs1 , xs2). GA2Ms are also x-by-design, because the user can visualize both the
first-order (1D plots) and second-order ((2D plots)) components. As the number of features in-
creases, the number of second-order interactions grows exponentially, making it impractical for
users to interpret a large number of two-dimensional plots. Therefore, methods like GA2Ms target
on automatically selecting the most significant interaction terms.

Both GAMs and GA2Ms have limitations in modeling interactions of more than two features,
and. The main reason behind this limitation is that it is difficult to visualize three or more features
on a single plot. Therefore, an approach like that would violate the x-by-design principle.

To address this limitation, we propose a new class of x-by-design models called Regionally
Additive Models (RAMs). Since in the general case, it is infeasible to visualize terms with more
than two variables, RAMs focus on learning terms with structure: f(xs1 |1xc1

,1xc2
, · · · ) for first-

degree interactions and f(xs1 , xs2 |1xc1
,1xc2

, · · · ) for second-degree interactions. The symbol 1xc1

denotes the condition that the feature xc1 takes a specific value or belongs to a specific range.
To better grasp the idea, consider a prediction task where the outcome depends, among others,

on a combination f(x1, x2, x3) of three features: x1 ∈ [20, 80] (age), x2 ∈ [0, 40] (years in work),
and x3 ∈ {True, False} (married). Both GAM and GA2M would fail to accurately learn this term
of the underlying predictive function. However, the three-feature effect can be decomposed in two
sets of second-degree conditional terms based on the marital status: f1(x1, x2|x3 = True) and
f2(x1, x2|x3 = False). In this way, RAM can accurately represent f through learning two second-
degree conditional terms, one for each marital status. Furthermore, the two sets of terms can be
visualized and interpreted as using two-dimensional plots. It is worth noting that the conditional
terms can also include numerical features. For example, it could be more accurate to learn instead
a set of four first-degree terms, conditioned on the marital status and the years in work: f1(x1|x2 <
10, x3 = True), f2(x1|x2 ≥ 10, x3 = True), f3(x1|x2 < 10, x3 = False), and f4(x1|x2 ≥ 10, x3 =
False), which can be visualized and interpreted as four one-dimensional plots.

To adhere to the x-by-design principle, RAMs should be able to automatically identify the most
significant conditional terms. As the number of these terms increases, it becomes difficult for users
to retain and interpret numerous plots associated with each feature or pair of features. Therefore,
RAMs use Regional Effect Plots [Herbinger et al., 2023] to identify a small set of conditional terms
that have the greatest impact in minimizing feature interactions. The RAM framework consists of
three key steps. First, a black-box model is fitted to capture all high-order interactions. Then, the
subregions where the black-box model exhibits near-local additivity are identified using Regional
Effect Plots. Finally, a GAM component is fit to each identified subregion.

The main contributions of this paper are as follows:

– We formulate a new class of x-by-design models called Regionally Additive Models (RAMs).
– We propose a generic framework for learning RAMs and we propose a novel method for identi-

fying the most significant conditional terms.
– We demonstrate the effectiveness of RAMs in modeling high-order interactions on a synthetic

toy example and two real-world datasets.

2 Motivation

Consider the black-box function f(x) = 8x21x1>01x3=0 with x1, x2 ∼ U(−1, 1) and x3 ∼ Bernoulli(0, 1).
Although very simple, GAM and GA2M would fail to learn this mapping due to the the three-
features interaction term. As we see in Figure 1a, a GAM misleadingly learns that f̂(x) ≈ 2x2,
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because in 1
4 of the cases (x1 > 0 and x3 = 0) the impact of x2 to the output is 8x2, and in the

rest 3
4 of the cases the impact of x2 to the output is 0. However, if splitting the input space in two

subregions we observe that f is additive in each one (regionally additive):

f(x) =

{
8x2 if x1 > 0 and x3 = 1

0 otherwise
(1)

Therefore, if we knew the appropriate subregions, namely, R21 = {x1 > 0 and x3 = 0} and R22 =
{x1 ≤ 0 or x3 = 1}, we could split the impact of x2 appropriately and fit the following model to
the data:

fRAM(x) = f1(x1) + f21(x2)1(x1,x3)∈R21
+ f22(x2)1(x1,x3)∈R22

+ f3(x3) (2)

Equation (2) represents a Regionally Additive Model (RAM), which is simply a GAM fitted on
each subregion of the feature space. Importantly, RAM’s enhanced expressiveness does not come
at the expense of interpretability. As we observe in Figures 1b and 1c, we can still visualize and
comprehend each univariate function in isolation, exactly as we would do with a GAM, with the
only difference being that we have to consider the subregions where each univariate function is
active, The key challenge of RAMs is to appropriately identify the subregions where the black-box
function is (close to) regionally additive. For this purpose, as we will see in Section 4.2, we propose
a novel algorithm that is based on the idea of regional effect plots.
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(c) f2(x2)1x1≤0 or x3 ̸=1

Fig. 1: The left image showcases the global GAM which erroneously learns an approximation of
f(x) ≈ 2x2. In contrast, the middle and right images demonstrate the RAM’s ability to identify
two distinct subregions where f exhibits regional additivity. By fitting a GAM to each subregion,
the RAM accurately captures the true function f while retaining interpretability.

3 RAM formulation

Notation. Let X ∈ Rd be the d-dimensional feature space, Y the target space and f(·) : X → Y the
black-box function. We use index s ∈ {1, . . . , d} for the feature of interest and /s = {1, . . . , D} − s
for the rest. For convenience, we use (xs,x/s) to refer to (x1, · · · , xs, · · · , xD) and, equivalently,
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(Xs, X/s) instead of (X1, · · · , Xs, · · · , XD) when we refer to random variables. The training set
D = {(xi, yi)}Ni=1 is sampled i.i.d. from the distribution PX,Y .

The RAM consists of a three-step pipeline; (a) fit a black-box model (Section 4.1), (b) identify
subregions with minimal interactions (Section 4.2) and (c) fit a GAM component to each subregion
(Section 4.3).

In step (b), we use regional effect methods [Herbinger et al., 2023, 2022] to identify the regions
where the black-box function is (close to) regionally additive. Regional effect methods yield for each
individual feature s, a set of Ts non-overlapping regions, denoted as {Rst}Ts

t=1 where Rst ⊆ X/s.
Note that, the number of non-overlapping regions can be different for each feature (Ts), the regions
{Rst}Ts

t=1 are disjoint and their union covers the entire feature space X/s. The primary objective is
to identify regions in which the impact of the s-th feature on the output is relatively independent
of the values of the other features x/s. To better grasp this objective, if we decompose the impact
of the s-th feature on the output y into two terms: fs(xs,x/s) = fs,ind(xs) + fs,int(xs,x/s), where
fs,ind(·) represents the independent effect and fs,int(·) represents the interaction effect, the objective
is to identify regions {Rst}Ts

t=1 such that the interaction effect is minimized. Regionally Additive
Models (RAM) formulate the mapping X → Y as:

fRAM(x) = c+

D∑
s=1

Ts∑
t=1

fst(xs)1x/s∈Rst
, x ∈ X (3)

In the above formulation, fst(·) is the component of the s-th feature which is active on the t-th
region. RAM can be viewed as a GAM with Ts components per feature where each component is
applied to a specific region Rst. To facilitate this interpretation, we can define an enhanced feature
space X RAM defined as:

X RAM = {xst|s ∈ {1, . . . , D}, t ∈ {1, . . . , Ts}}

xsk =

{
xs, if x/s ∈ Rsk

0, otherwise
(4)

and then define RAM as a typical GAM on the extended feature space X RAM:

fRAM(x) = c+
∑
s,t

fst(xst) x ∈ X RAM (5)

Equations 3 and 5 are equivalent. To better understand of the formulations, consider the toy example
described in Section 2. To minimize the impact of feature interactions, we need to divide feature
x2 into two subregions, R21 = {x1 > 0 and x3 = 1} and R22 = {x1 ≤ 0 or x3 = 0}. Using Eq. 3,
RAM formulation is: fRAM(x) = f1(x1) + f21(x2)1x1>0 and x3=1 + f22(x2)1x1≤0 or x3=0 + f3(x3).
Using Eq. 4, we should first define the augmented feature space X RAM = (x1, x21, x22, x3), where
x21 = x21x1>0 and x3=1 and x22 = x21x1≤0 or x3=0 and then RAM formulation is: fRAM(x) = f1(x1)+
f21(x21) + f22(x22) + f3(x3).

4 RAM framework

4.1 First step: Fit a black-box function

In the initial step of the pipeline, we fit a black-box function f(·) to the training set D = {(xi, yi)}Ni=1

to accurately learn the underlying mapping f(·) : X → Y. While any black-box function can
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theoretically be employed in this stage, for utilizing the DALE approximation, as we will show in the
next step, it is necessary to select a differentiable function. Recent advancements have demonstrated
that differentiable Deep Learning models, specifically designed for tabular data [Arik and Pfister,
2021], are capable of achieving state-of-the-art performance, making them a suitable choice for this
step.

4.2 Second step: Find subregions

To identify the regions of the input space where the impact of feature interactions is reduced, we
have developed a regional effect method influenced by the research conducted by Herbinger et al.
[2023] and Gkolemis et al. [2023a]. Herbinger et al. [2023] introduced a versatile framework for
detecting such regions, where one of the proposed methods is the Accumulated Local Effects [Apley
and Zhu, 2020]. We have adopted their approach with two notable modifications. First, instead
of using the ALE plot, we employ the Differential ALE (DALE) method introduced by Gkolemis
et al. [2023a], which provides considerable computational advantages when the underlying black-
box function is differentiable. Second, we utilize variable-size bins, instead of the fixed-size ones in
DALE, because the result in a more accurate approximation, as show by Gkolemis et al. [2023b].

DALE DALE gets as input the black-box function f(·) and the dataset D = {(xi, yi)}Ni=1, and
returns the effect (impact) of the s-th feature s on the output y:

f̂DALE(xs) = ∆x

kx∑
k=1

1

|Sk|
∑

i:x(i)∈Sk

∂f

∂xs
(xi)

︸ ︷︷ ︸
µ̂(zk−1,zk)

) (6)

For more details on the DALE method, please refer to the original paper [Gkolemis et al., 2023a].
In the above equation, kx is the index of the bin such that zkx−1 ≤ xs < zkx and Sk is the set
of the instances of the k-th bin, i.e. Sk = {xi : zk−1 ≤ x

(i)
s < zk}. In short, DALE computes the

average effect (impact) of the feature xs on the output, by, first, dividing the feature space into
K equally-sized bins, i.e., z0, . . . , zK second, computing the average effect in each bin µ̂(zk−1, zk)
(bin-effect) as the average of the instance-level effects inside the bin, and, finally, aggregating the
bin-level effects.

DALE for feature interactions In cases where there are strong interactions between the features,
the instance-level effects inside each bin deviate from the average bin-effect (bin-deviation). We can
measure such deviation using the standard deviation of the instance-level effects inside each bin:

σ̂2(zk−1, zk) =
1

|Sk| − 1

∑
i:xi∈Sk

(
∂f

∂xs
(xi)− µ̂(zk−1, zk)

)2

(7)

The bin-deviation is a measure of the interaction between the feature xs and the rest of the features
inside the k-th bin. Therefore, we can measure the global interaction between the feature xs and
the rest of the features along the whole s-th dimension with the aggregated bin-deviation:

Hs =

√√√√ kx∑
k=1

(zk − zk−1)2σ̂2(zk−1, zk) (8)
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Eq. (8) outputs values in the range [0,∞) with zero indicating that xs does not interact with any
other feature, i.e., the underlying black box function can be written as f(x) = fs(xs)+ f/s(x/s). In
all other cases, Hs is greater than zero and the higher the value, the stronger the interaction.

A final detail, is that in order to have a more robust estimation of the bin-effect and the bin-
deviation, we use variable-size bins instead of the fixed-size ones in DALE. In particular, we start
with a dense fixed-size grid of bins and we iteratively merge the neighboring bins with similar bin-
effect and bin-deviation until all bins have at least a minimum number of instances. In this way, we
can have a more accurate approximation of the bin-effect and the bin-deviation.

Subregions as an optimization problem In the same way that we can estimate the feature effect
(Eq. (6)) and the feature interactions (Eq. (8)) for the s-th feature in the whole input space, we
can also estimate the effect and the interactions in a subregion of the input space Rst ⊂ X . We
denote the equivalent regional qunatities as f̂DALE

st (xs) and Hst. fDALE
Rst

(xs) and HRst are defined
exactly as in Eq. (6) and Eq. (8) respectively, with the only difference that instead of using the
whole dataset D, to compute the regional bin-effect µ̂st(zk−1, zk) and the regional bin-deviation
σ̂2
st(zk−1, zk), we use Dst which includes only the instances that belong to the subregion Rst, i.e.,

Dst = {xi : xi
s ∈ Sk ∧ xc

i ∈ Rst}. Therefore, in order to minimize the interactions of a particular
feature s we search for a set of regions {Rst}Ts

t=1, that minimizes the following objective:

minimize
{Rst}Ts

t=1

Ls =

Ts∑
t=1

|Dst|
|D|

Hst

subject to
T⋃

t=1

Rst = X

Rst ∩Rsτ = ∅, ∀t ̸= τ

(9)

In Eq. (9), the objective function is the weighted sum of the regional interactions Hst, where the
weights are the number of instances in each subregion. In this way, we give more importance to the
subregions that contain more instances. The first constraint ensures that the subregions cover the
whole input space and the second constraint ensures that the subregions are disjoint.

Proposed solution The core of the method is outlined in Algorithm 1. First, we fit a differentiable
black box model to the data (Step 1) and we copute the Jacobian matrix w.r.t. the input features
(Step 2). Then we search for a set of subregions by minimizing the objective of Eq. (9) for each
feature s independently (Steps 3-4-5). Based on the optimal subregions, we define the extended
feature space (Step 6) and we fit a GAM in the extended feature space (Step 7).

For solving Eq. (9), we have developed a tree-based algorithm based on the approach proposed
by [Herbinger et al., 2023], which we describe in detail in Algorithm 2. To describe the algorithm,
we define some additional notation: Rl

s is the set of optimal subregion of the s-th feature at level l
of the tree. Since at each level of the tree we divide the input space into two subregions, at level l we
have 2l subregions, i.e., Rl

s = {Rst}2
l

t=1. Equivalently, Ll
s is the optimal objective value of Eq. (9)

at level l of the tree. Although the algorithm can search for an abritrary number of subregions per
feature, in order to preserve the smooth interpretation of the method, we limit the maximum depth
of the tree to L = 3 levels, which stands for a maximum of T = 2L = 8 subregions per feature.
In general, the user can control the trade-off between the interpretability and the accuracy of the
method by changing the maximum depth of the tree. Note that with three splits, we already have
an interaction term of four (f(xs|1xc1

,1xc2
,1xc3

) or five (f(xs1 , xs2 |1xc1
,1xc2

,1xc3
) features.
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To describe how the algorithm finds the optimal splits at each level l, let’s consider the illus-
trative example of Section 2. For feature s = 2, the algorithm starts with /s = {1, 3} as candidate
split-features for the first level of the tree. For each candidate split-feature, the algorithm deter-
mines the candidate split positions. Since x1 is a continuous feature, the candidate splits postions
are a linearly spaced grid of P points within the range of the feature, i.e. [−1, 1], where P is a
hyperparameter of the algorithm, set to 10 in the experiments. Therefore, the candidate positions
are p ∈ {−1,−0.8,−0.6, . . . , 0.8, 1} each on defining two subregions, R21 = {(x1, x3) : x1 ≤ p} and
R22 = {(x1, x3) : x1 > p}. As for x3, being a categorical feature, the candidate split points are
its unique values, i.e., {0, 1}, and the corresponding subregions are R21 = {(x1, x3) : x3 = 0} and
R22 = {(x1, x3) : x3 ̸= 0}. Each candidate position, creates a corresponding dataset [D21,D22],
and the algorithm computes the weighted level of interactions H21 and H22 for each dataset. After
iterating over all features and all candidate positions for each feature, it selects the split point that
minimizes the weighted level of interactions. In the illustrative example, the optimal first-level split
is based on x3 and the optimal split point is p = 0. The algorithm next proceeds to the second
level, where the only candidate feature is x3. In this step, the first split is considered fixed so the
optimal second split is applied to the subregions R21 and R22, creating four subregions in total.
The algorithm continues in a similar manner, until it reaches the maximum depth T or the drop in
the weighted level of interactions is below a threshold ϵ (set to 20% drop in the experiments).

Algorithm 1: Regionally Additive Model (RAM) training

Input : A dataset (X, y) and a maximum level T
Output: A trained RAM model f RAM

1 Train a differentiable black box model f using (X, y);
2 Compute the Jacobian w.r.t. features x, J = ∇xf(x) ;
3 for s ∈ {1, . . . , D} do
4 {Rst}Ts

t=1 = DetectSubregions(X, J , T , s);
5 end
6 Create the extended feature space X RAM using all Rst, as in Eq. (4) ;
7 Fit a GAM in X RAM ; // i.e., train each fst using only data in Rst

8 return f RAM(x) = c+
∑

s,t fst(xst), x ∈ X RAM

Computational Complexity Algorithm 2 has a computational complexity of O(D − 1 · L ·N) as it
iterates over all features, query positions, and performs indexing operations on the data (splitting
the dataset and computing the level of interactions). Algorithm 2 is applied to each feature s
independently, and so computational complexity of the entire algorithm is O(D · (D − 1) · L ·N).
However, in practice, P and T are small numbers. Therefore, the computational complexity of the
proposed method simplifies to O(D2 ·N), making it suitable for large datasets, heavy models, and
reasonably high-dimensional data. The key point is that the use of DALE eliminates the need to
compute the Jacobian matrix for each split, which is the most computationally expensive step. This
is because the Jacobian matrix is computed only once for the entire dataset, and then it is used
as a lookup table for computing the level of interactions for each split. This makes the proposed
method applicable to heavy models.
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Algorithm 2: DetectSubregions

Input : Dataset X, Gradients J , Maximum depth T , Feature s

Output: Subregions {Rst}Ts
t=1, where Ts ≤ 2T

1 H0
s ; // Compute the level of interactions before any split

2 Ts = 0 ; // Initialize the number of splits for feature s
3 for l = 1 to L do
4 if Hl−1

s = 0 then
5 break;
6 end

/* Find best split feature cls at point pls, leading to loss Hl
s using regions of

previous level */
7 Find Hst, c, p of the optimal split based on Rl

s ;

8 if 1− Hl
s

Hl−1
s

> ϵ then
9 break;

10 end
11 Ts = 2l ; // Update the number of splits for feature s

12 end
13 return {Rst|s ∈ {1, . . . , D} , t ∈ {1, . . . , Ts}}

4.3 Third step: Fit a GAM in each subregion

Once the subregions are detected, any Generalized Additive Model (GAM) family can be fitted to the
augmented input space X RAM. Recently, several methods have been proposed to extend GAMs and
enhance their expressiveness. These methods can be categorized into two main research directions.
The first direction targets on representing the main components of a GAM {fi(xi)} using novel
models. For example, [Agarwal et al., 2021] introduced an approach that employs an end-to-end
neural network to learn the main components. The second direction aims to extend GAMs to
model feature interactions. Examples of such extensions include Explainable Boosting Machines
(EBMs) [Lou et al., 2013] or Node-GAMs [Chang et al., 2021]. These models are generalized additive
models that incorporate pairwise interaction terms. It is worth noticing, that the RAM framework
and can be used on top of both these research directions to further enhance the expressiveness
of the models while maintaining their interpretability. In our experiments, we use the Explainable
Boosting Machines (EBMs).

5 Experiments

We evaluate the proposed approach on two typical tabular datasets: the Bike-Sharing Dataset [Fanaee-
T, 2013] and the California Housing Dataset [Pace and Barry, 1997].

Bike-Sharing Dataset The Bike-Sharing dataset contains the hourly bike rentals in the state of
Washington DC over the period 2011 and 2012. The dataset contains a total of 14 features, out of
which 11 are selected as relevant for the purpose of prediction. The majority of these features involve
measurements related to environmental conditions, such as Xmonth, Xhour, Xtemperature, Xhumidity and
Xwindspeed. Additionally, certain features provide information about the type of day, for example,
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Table 1: The table compares the Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE) of DNN, GAM, RAM, GA2M, and RA2M (representing 2nd order interactions), on two
datasets: Bike-Sharing and California Housing. Lower values indicate better performance. RAM
consistently outperforms GAM and approaches DNN performance.

Black-box x-by-design
all orders 1st order 2nd order
DNN GAM RAM GA2M RA2M

Bike Sharing (MAE) 0.254 0.549 0.430 0.298 0.278
Bike Sharing (RMSE) 0.389 0.734 0.563 0.438 0.412
California Housing (MAE) 0.373 0.600 0.553 0.554 0.533
California Housing (RMSE) 0.533 0.819 0.754 0.774 0.739

whether it is a working day (Xworkingday) or not. The target value Ycount is the bike rentals per hour,
which has mean value µcount = 189 and standard deviation σcount = 181.

As a black-box model, we train for 60 epochs a fully-connected Neural Network with 6 hidden
layers, using the Adam optimizer with a learning rate of 0.001. The model attains a root mean
squared error of 0.39 · 181 ≈ 70 counts on the test set. Subsequently, we extract the subregions,
searching for splits up to a maximum spliting depth of T = 3. Following the postprocessing step,
we find that the only split that substantially reduces the level of interactions within the subregions
is based on the feature Xhour. This feature is divided into two subgroups: Xhour|1Xworkingday ̸=1 and
Xhour1Xworkingday=1

.
Figure 2 clearly illustrates that the impact of the hour of the day on bike rentals varies signifi-

cantly depending on whether it is a working day or a non-working day. Specifically, during working
days, there is higher demand for bike rentals in the morning and afternoon hours, which aligns with
the typical commuting times (Figure 2b). On the other hand, during non-working days, bike rentals
peak in the afternoon as individuals engage in leisure activities (Figure 2c). The proposed RAM
method effectively captures and detects this interaction by establishing two distinct subregions,
each corresponding to working days and non-working days, respectively. Subsequently, the EBM
that is fitted to each subregion, successfully learns these patterns, achieving a root mean squared
error of approximately 0.56 · 181 ≈ 101 counts on the test set. It is noteworthy that RAM not only
preserves the interpretability of the model, but it also enhances the interpretation of the underlying
modeling process. By identifying and highlighting the interaction between the hour of the day and
the day type, RAM provides valuable insights into the relationship between these variables and their
influence on bike rentals. In contrast, the GAM model 2a is not able to capture this interaction and
achieves a root mean squared error of 0.73 · 181 ≈ 132 counts on the test set. Finally, in table 1, we
also observe that the RA2M, i.e., RAM with second-order interactions, outperforms the equivalent
GA2M model in terms of predictive performance. Specifically, the RA2M model achieves a root
mean squared error of 0.41 · 181 ≈ 74 counts, while the GA2M model of 0.44 · 181 ≈ 80 counts on
the test set. It is worth noticing that the RA2M model’s accuracy is comparable to the black-box
model’s accuracy.

California Housing Dataset The California Housing dataset consists of approximately 20, 000 of
housing blocks situated in California. Each housing block is described by eight numerical fea-
tures, namely, Xlat, Xlong, Xmedian_age, Xtotal_rooms, Xtotal_bedrooms, Xpopulation, Xhouseholds, and
Xmedian_income. The target variable, Yvalue, is the median house value in dollars for each block. The
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Fig. 2: Comparison of different models’ predictions for bike rentals based on the hour of the day.
Subfigure (a) depicts the generalized additive model (GAM), while subfigures (b) and (c) illustrate
the RAM model’s predictions for different day types: non-working days f(Xhour)1Xworkingday ̸=1 and
working days f(Xhour)1Xworkingday=1, respectively. The RAM model successfully captures the interac-
tion between the hour of the day and the day type, leading to improved predictions and enhanced
interpretability.

target value ranges in the interval [15, 500] ·103, with a mean value of µY ≈ 201 ·103 and a standard
deviation of σY ≈ 110 · 103.

As a black-box model, we train for 45 epochs a fully-connected Neural Network with 6 hidden
layers, using the Adam optimizer with a learning rate of 0.001. The model achieves a root mean
square error (RMSE) of about 58K dollars on the test set. Subsequently, we perform subregion
extraction by searching for splits up to a maximum depth of T = 3. After the postprocessing step,
we discover that several splits significantly reduce the level of interactions, resulting in an expanded
input space consisting of 16 features, as we show in table 2. Out of them, we randomly select and
illustrate in Figure 3 the effect of the feature Xlong. As we observe, for the house blocks located
in the southern part of California (Xlat ≤ 34.9), the house value decreases in an almost linear
fashion as we move eastward (Xlong increases). In contrast, for the house blocks located in the
northern part of California (Xlat > 34.9), the house value performs a rapid (non-linear) decrease
as we move eastward (Xlong increases). We also observe that although the EBM fitted to each
subregion captures the general trend, it does not align perfectly with the regional effect. As in the
Bike-Sharing Example, the RMSE of the RAM model, i.e. 0.75 ·110 ≈ 82.5K dollars on the test set,
is lower than the one of the GAM model, i.e.0.82 · 110 ≈ 90K dollars. These results indicate that
the RAM model provides superior predictions compared to the GAM model. The same conclusion
holds is when comparing the RA2M and the GA2M models, where the former achieves a RMSE of
0.74 · 110 ≈ 81K dollars, while the latter of 0.77 · 110 ≈ 85K dollars.

6 Conclusion and Future Work

In this paper we have introduced the Regional Additive Models (RAM) framework, a novel ap-
proach for learning accurate x-by-design models from data. RAMs operate by decomposing the
data into subregions, where the relationship between the target variable and the features exhibits
an approximately additive nature. Subsequently, Generalized Additive Models (GAMs) are fitted
to each subregion and combined to create the final model. Our experiments on two standard re-
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Table 2: California Housing: Subregions Detected by RAM
Feature Subregions

Xlong
Xlong1Xlat≤34.9

Xlong1Xlat>34.9

Xlat
Xlat1Xlong≤−120.31

Xlat1Xlong>−120.31

Xtotal_rooms
Xtotal_rooms1Xtotal_bedrooms≤449.37

Xtotal_rooms1Xtotal_bedrooms>449.37

Xtotal_bedrooms

Xtotal_bedrooms1Xhouseholds≤4111Xtotal_bedrooms≤647

Xtotal_bedrooms1Xhouseholds≤4111Xtotal_bedrooms>647

Xtotal_bedrooms1Xhouseholds>4111Xtotal_bedrooms≤647

Xtotal_bedrooms1Xhouseholds>4111Xtotal_bedrooms>647

Xpopulation
Xpopulation1Xhouseholds≤411.5

Xpopulation1Xhouseholds>411.5

Xhouseholds
Xhouseholds1Xtotal_bedrooms≤630.57

Xhouseholds1Xtotal_bedrooms>630.57
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Fig. 3: Comparison of different predictions for housing prices in California based on the lon-
gitude. Subfigure (a) showcases the generalized additive model (GAM), while subfigures (b)
and (c) demonstrate the RAM components for different latitude ranges: f(Xlong)1Xlat≤34.89 and
f(Xlong)1Xlat>34.89, respectively. We observe, that although the EBM model is able to capture the
overall trend in the data, it also exhibits a large amount of variance.



12 V. Gkolemis et al.

gression datasets have shown promising results, indicating that RAMs can provide more accurate
predictions compared to GAMs while maintaining the same level of interpretability.

Nevertheless, there are still several unresolved questions that require attention and further ex-
perimentation. Firstly, it is essential to systematically evaluate the performance of RAMs on a larger
set of datasets to ensure that the observed improvements are not specific to particular datasets.
Secondly, we need to explore different approaches for each step of the RAM framework. For the ini-
tial step, we should experiment with various black-box models. Regarding the subregion detection
step, we can explore alternative clustering algorithms. Finally, in the last step, we should investigate
different types of GAM models to fit within each subregion.

Another important area of investigation involves exploring the impact of second-order effects
within the RAM framework. While our experimenation demonstrated that even with the current
subregion detection, RA2Ms outperform GA2Ms, it may be the case, that for second-order models
the optimal subregions are not necessarily those that maximize the additive effect of individual
features, but rather those that maximize the additive effect of feature pairs.
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