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Abstract. Group work is a prevalent activity in educational settings,
where students are often divided into topic-specific groups based on their
preferences. The grouping should reflect students’ aspirations as much as
possible. Usually, the resulting groups should also be balanced in terms
of protected attributes like gender, as studies suggest that students may
learn better in mixed-gender groups. Moreover, to allow a fair workload
across the groups, the cardinalities of the different groups should be bal-
anced. In this paper, we introduce a multi-fair capacitated (MFC) group-
ing problem that fairly partitions students into non-overlapping groups
while ensuring balanced group cardinalities (with a lower and an upper
bound), and maximizing the diversity of members regarding the protected
attribute. To obtain the MFC grouping, we propose three approaches:
a greedy heuristic approach, a knapsack-based approach using vanilla
maximal knapsack formulation, and an MFC knapsack approach based
on group fairness knapsack formulation. Experimental results on a real
dataset and a semi-synthetic dataset show that our proposed methods
can satisfy students’ preferences and deliver balanced and diverse groups
regarding cardinality and the protected attribute, respectively.

Keywords: Fairness · Grouping · Knapsack · Educational data · Nash
social welfare

1 Introduction

Teamwork plays a vital role in educational activities, as students can work
together to achieve shared learning goals while learning about leadership, higher-
order thinking, and conflict management [6]. A common approach to group stu-
dents into teams is as follows: the instructor provides a list of topics, projects,
tasks, etc. (shortly: topics), according to which the different non-overlapping
groups of students should be formed. The grouping procedure can be performed
randomly or based on students’ preferences [14] typically expressed as a rank-
ing over the provided topics. Or, the instructor just says: “Find yourself into
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groups”; in this case, a grouping is not random and does not consider students’
preferences w.r.t. topics but it is triggered by social connections. The common
case in educational settings is the grouping w.r.t. students’ preferences.

The grouping process should consider various requirements. First, students’
preferences should be taken into account (i.e., student satisfaction). A grouping
is considered satisfactory if it can satisfy the students’ preferences as much as
possible. Second, the groups should be balanced in terms of their cardinalities,
so all students share a similar workload (i.e., group cardinality) because when
groups have unequal sizes, and the minority group is smaller than a critical size,
the minority cohesion widens inequality [17]. Third, the instructor might be
interested in fair-represented groups w.r.t. some protected attributes like gender
or race [8] (i.e., group fairness), as studies suggest that mixed-gender grouping
may have a positive effect on groups’ performance [4].

These requirements have been discussed in the related work but are typically
treated independently. For example, fairness w.r.t. workload distribution and
students’ preferences has been discussed in group assignments [6], assignment
of group members to tasks [14] or students to projects [19]. Student satisfac-
tion is typically assessed as the number of topics staffed [11] or the sum of the
utilities of the topics assigned to students based on the ranking of preferences
chosen by students [12]. The group cardinality can be satisfied by the heuristic
method [15], or the hierarchical clustering approach [9]. However, providing a
grouping solution that simultaneously satisfies all three requirements is hard [19].

To this end, we introduce multi-fair capacitated (MFC) grouping problem
that aims to ensure fairness of the resulting groups in multiple aspects. In par-
ticular, we target fairness in terms of i) maximizing students’ satisfaction, ii)
ensuring fairness in group representation w.r.t. the protected attribute, and
iii) balancing group cardinalities. For the satisfaction aspect, we employ the
Nash social welfare notation [16]; for the fairness w.r.t protected attribute we
use the balance score notion [3]. To solve the MFC problem, we propose three
approaches: i) a greedy heuristic algorithm; ii) a knapsack-based approach that
reformulates the assignment step as a maximal knapsack problem; iii) an MFC
knapsack model based on the group fairness knapsack formulation [18].

2 Related Work

Agrawal et al. [1] proposed the problem of grouping students in a large class w.r.t.
the overall gain of students. Miles et al. [14] investigated the problem of assign-
ment of group members to tasks w.r.t. the workload distribution. Concerning a
diversity of features such as skills, genders, and academic backgrounds, Krass et
al. [8] investigated the problem of assigning students to multiple non-overlapping
groups. However, students’ preferences were not considered. To consider both
efficiency and fairness, Magnanti et al. [12] solved a CPLEX integer programming
formulation with two objectives: maximizing the total utility computed by the
rank of student’s preferences (efficiency) and minimizing the number of students
assigned to the projects which they do not prefer (fairness). Besides, Rezaeinia et
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al. [19] introduced a lexicographic approach to prioritize the goals. The efficiency
objective is computed based on the utility, similar to [12]. A related problem is
the problem of assigning reviewers to papers [7]. Each reviewer can be assigned
to several papers, and each paper can be assigned to several reviewers [7]. How-
ever, in the students grouping problem, we attempt to generate non-overlapping
groups [8], where each student can be assigned to only one group [19].

The knapsack problem formulation has been used for finding good cluster-
ing assignments [9] without students’ preference and the minimum capacity of
a group (cluster) is not considered. Recently, Stahl et al. [20] introduced a fair
knapsack model to balance the price given by the data provider and the sug-
gested price by the customer. Fluschnik et al. [5] proposed three concepts of
fair knapsack (individually best, diverse and fair knapsack) to solve the problem
of choosing a subset of items where the total cost is not greater than a given
budget while taking into account the preferences of the voters. Fairness of the
knapsack is measured by the Nash social welfare (or Nash equilibrium) [16]. The
group fairness definition for the knapsack problem was investigated recently by
Patel et al. [18]. In their study, each item is characterized by a category, their
goal is to select a subset of items such that the total value of the selected items
is maximized, and the total weight does not surpass a given weight while each
category is fairly represented.

3 Problem Definition

Let X = {x1, x2, · · · , xn} be a set of n students, T = {t1, t2, · · · , tm} be a set of
m topics. For an integer n we use [n] to denote the set {1, 2, · · · , n}. Each student
can choose h topics as their preference (h � m). The students’ preferences are
stored in matrix wishes. Row wishesi contains the list of h topics preferred by
student i. We use a matrix V to record the student’s level of interest in the topics.
The preference of topic tj chosen by student xi is represented by a number vij .
The more preferred topic will have a higher value of vij . Matrix V is computed
as: Vi,wishesio = h/o with o ∈ [h], where o indicates the order of preferences.
Likewise, each topic tj can be chosen by several students. A priority matrix W
consists of values computed based on the registration time, where wij represents
the priority of student xi on topic tj . Students who register earlier will have a
higher value of wij . If the topic tj is not preferred by student xi then vij = 0
and wij = 0.

Let ψ : V ×W → R be the aggregate function of matrices V and W . For each
student xi, we define a welfare value w.r.t. topic tj : welfareij = ψ(vij , wij). In
detail, ψ(vij , wij) = αvij + βwij , where α and β are the parameters indicating
the weight of each component. Figure 1 illustrates a dataset with 5 students and
4 topics. The matrix welfare is computed with α = 1 and β = 1 (preferences
and registration time are equally considered).

The goal of a grouping problem is to distribute n students into k disjoint
groups G = {G1, G2, · · · , Gk}, (k ≤ m), that maximizes the students’ preferences
w.r.t. the registration time, formulated by the objective function:
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Fig. 1. A dataset with matrices wishes, V , W and welfare.

L(X,G) =
k∏

r=1

(1 +
n∑

i=1

welfareijr × yijr ) (1)

In other words, the goal is to maximize the product of the total welfare
obtained from each group Gr. In Eq. 1, a set of indexes J = {j1, j2, · · · , jk}
of k selected topics is defined as J = {j|xi ∈ Gr, welfareij > 0}, ∀r ∈ [k].
Variable yijr is the flag of xi; yijr = 1 if xi is assigned to the group of topic tjr ,
otherwise yijr = 0. Equation 1 is the representation of the Nash social welfare [16]
function1. Therefore, we can call a grouping satisfactory if it maximizes the
product in the objective function L(X,G). Furthermore, we add one to the sum∑n

i=1 welfareijr × yijr to avoid the phenomenon that the sum of welfare in a
certain group might be zero.

Fairness of Grouping w.r.t. a Protected Attribute: Assume that each
student is characterized by a binary protected attribute P = {0, 1}, where 0 is the
protected group (e.g., gender = female) and 1 is the non-protected group (e.g.,
gender = male). ϕ : X → P is the demographic category to which the student
belongs. Fairness of a grouping G w.r.t. protected attribute [3] is computed as:

balance(G) = min
∀Gr∈G

balance(Gr) (2)

where fairness of a group Gr is the minimum ratio between two categories:

balance(Gr)∀Gr∈G = min
( |{x ∈ Gr | ϕ(x) = 0}|

|{x ∈ Gr | ϕ(x) = 1}| ,
|{x ∈ Gr | ϕ(x) = 1}|
|{x ∈ Gr | ϕ(x) = 0}|

)
(3)

Capacitated Grouping: Inspired by the capacitated clustering prob-
lem [15], we call a grouping capacitated if the cardinality of each group Gr,
i.e., |Gr|, is between a given lower bound Cl ≥ 0 and an upper bound Cu ≥ Cl.

Definition 1. MFC grouping problem. We describe the MFC problem as
finding a grouping G = {G1, G2, · · · , Gk} that distributes a set of students X
into k groups corresponding to k topics, and satisfies the following requirements:
1) The assignment is fair, i.e., maximizing students’ satisfaction (Eq. 1);
2) The balance of each group Gr is maximized, i.e., the fairness constraint w.r.t.
the protected attribute (Eq. 2);
3) The cardinality of each group Gr ∈ G is bounded within [Cl, Cu].
1 The Nash social welfare was defined as

∏
vi∈V (1 +

∑
a∈S ui(a)) [5] (the typical for-

mula is
∏

vi∈V

∑
a∈S ui(a), where vi is a voter in a set of voters V , a is an item of

the knapsack S, and ui(a) represents the extent to which vi enjoys a. The knapsack
S is fair if that product is maximized.
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4 Methodology for the MFC Grouping Problem

To solve the MFC grouping problem, we first propose a greedy heuristic algo-
rithm (Sect. 4.1); then we formulate the assignment phase as a vanilla maximal
knapsack (Sect. 4.2) or a group fairness knapsack problem (Sect. 4.3).

4.1 A Greedy Heuristic Approach

We apply a 2-phase greedy strategy (Algorithm 1). Step 1: we maximize the
students’ preferences by assigning them to their most preferred topic. If a topic
is preferred by many students we select the student who has the highest welfare
value (lines 4, 5). Step 2: we adjust the assignment to satisfy the requirements
by GroupAdjustment function (Algorithm 2). The number of students w.r.t.
protected attribute (pl0, p

u
0 , pl1, p

u
1 ) are computed based on the resulting groups’

cardinalities (Cl, Cu) and the balance score θ (line 2). If there exists ungrouped
students, we try to assign them to the existing groups (lines 3 - 6). If all groups
are full, we choose the most prevalent topic preferred by the remaining ungrouped
students and assign them to such a topic (lines 7 - 11). We disband groups
containing too few students and assign those ungrouped students to other groups
until all groups have the desired capacity (lines 13 - 18).

Complexity: Step 1 consumes O(n × h) and step 2 costs O(Cl × n × m) as
the algorithm has to deal with every group having cardinality less than Cl. As
Cl � n and Cu � n, the complexity of the greedy heuristic model is O(n × m).

Algorithm 1: Greedy heuristic algorithm
Input: X: a set of students; n: #students; h: #preferences; m: #topics; Cl, Cu:

capacities ; matrices wishesn×h, Vn×m, Wn×m; θ: balance score
Output: A grouping with k groups

1 groups ← ∅; welfare ← ψ(V, W );//Step 1: Assign students to groups;
2 for i ← 1 to n do
3 for j ← 1 to h do
4 if (topic wishesij is the most preferred topic of student i) and

(welfarei,wishij is the highest value among students choosing topic

wishesij) and (len(groups[wishesij ] < Cl)) then
5 groups[wishesij ].append(i);

6 GroupAdjustment(groups) //Step 2: Adjustment;

7 return groups;

4.2 A Knapsack-Based Approach

The assignment of the greedy heuristic approach can be detrimental to students’
satisfaction because there may be some students who have no more topics to be
assigned. Therefore, we propose an approach to select the most suitable students
for each topic by a maximal knapsack problem [13]. Let capacity be a cardinality
array with capacityi = 1,∀i ∈ [n]; welfareij = ψ(vij , wij) and the indexes of k
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Algorithm 2: Group adjustment algorithm
Input: groups: a set of groups; n: #students; h: #preferences; m: #topics;

Cl, Cu: capacities; θ: balance score
Output: An adjusted grouping

1 Function GroupAdjustment(groups):

2 pl
0 ←

⌈
Cl

1+θ
θ

⌉

; pu
0 ←

⌈
Cu

1+θ
θ

⌉

; pl
1 ← Cl − pl

0; p
u
1 ← Cu − pu

0 + 1 ;

3 for i ← 1 to n do
4 for q ← 1 to m do

5 if (i /∈ groups[q]) and len(groups[q] < Cl) and ((n students 0 < pl
0)

or (n students 1 < pl
1)) then

6 groups[q].append(i);

7 while len(unassigned students) > 0 do
8 id ← the most prevalent topic preferred by remaining students;
9 for i ∈ unassigned students do

10 if len(groups[id]) < Cu and ((n students 0 < pu
0 ) or

(n students 1 < pu
1 )) then

11 groups[id].append(i);

12 n items ← 1;

13 while (cardinalities of all groups /∈ [Cl, Cu]) do

14 if n items < Cl then
15 Resolve the groups with cardinality n items;
16 if (n students 0 < pu

0 ) or (n students 1 < pu
1 ) then

17 Assign ungrouped students to the remaining groups having
cardinality < Cu;

18 n items + +;

19 return groups;

topics J = {j1, j2, · · · , jk} will be chosen for the resulting groups. For each topic
tjr ∈ T , ∀r ∈ [k], i.e., r is the index of the selected knapsack, the goal is to select
a subset of students (Gr), such that:

maximize
n∑

i=1

welfareijr × yijrs.t.

{∑n
i=1 capacityi × yijr ≤ Cu or∑n
i=1 capacityi × yijr ≤ Cl

(4)

where yijr = 1 if xi is assigned to the group of topic tjr , otherwise yijr = 0.
In other words, for each selected topic, we find a set of students that max-

imizes the total welfare, while the total capacity, is within the given bounds.
The pseudo-code is described in Algorithm 3 with two steps. Step 1: we find the
most suitable candidates among the unassigned students by the solution of a
maximal knapsack problem [13] for each topic. We use dynamic programming to
solve the maximal knapsack problem (Eq. 4). Step 2 is presented in Algorithm 2
which performs a fine-tuning of the assignment.

Complexity: In step 1, the complexity is O(m×n×Cu) since it costs O(n×Cu)
for each topic to solve the knapsack problem. The running time of step 2 is
O(Cl × n × m). Therefore, the complexity is O(n × m).
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Algorithm 3: Knapsack-based algorithm
Input: X: a set of students; n: #students; h: #preferences; m: #topics; Cl, Cu:

capacities; matrices wishesn×h; Vn×m; Wn×m.
Output: A grouping with k groups

1 groups ← ∅ //Step 1: Assign students to groups ;
2 welfare ← ψ(V, W ) ;
3 for id ← 1 to m do
4 capacity ← get capacity(unassigned students);
5 values ← get welfare(unassigned students, welfare);
6 n items ← len(unassigned students);
7 if n items > 0 then

8 if n mod Cl = 0 then

9 selected students ← knapsack(values, capacity, n, Cl);
10 else
11 selected students ← knapsack(values, capacity, n, Cu);
12 groups[id] ← selected students;

13 GroupAdjustment(groups) //Step 2: Adjustment;

14 return groups;

4.3 An MFC Knapsack Approach

In the knapsack-based approach, the fairness constraint w.r.t. the protected
attribute is not directly considered in the knapsack formulation. Inspired by
the knapsack problem with group fairness constraints of Patel et al. [18], we
propose an MFC knapsack algorithm to find the group of suitable students,
which satisfies the MFC problem’ requirements. The goal of the MFC knapsack
is to select a subset of student (Gr), such that:

maximize
n∑

i=1

welfareijr × yijrs.t.

⎧
⎪⎨

⎪⎩

∑n
i=1 capacityi × yijr ≤ Cu or∑n
i=1 capacityi × yijr ≤ Cl

balance(Gr) is maximized
(5)

where yijr = 1 if xi is assigned to the group of topic tjr , otherwise yijr = 0.
We use dynamic programming to solve the MFC knapsack problem (Algo-

rithm 4). The input parameters include a set of unassigned students S ⊆ X.
A dynamic programming table A(p, s, w) is used to record the total welfare of
the first s students in the set S with capacity w on group p, ∀p ∈ {0, 1}, e.g.,
{male, female} w.r.t. protected attribute (line 3, 4). Then, we construct table
B(p,w) to find the total welfare with capacity w w.r.t. the protected attribute.
The number of students in the protected group and the non-protected group is
computed based on a given balance score θ (line 6). We apply a two-phase app-
roach to solve the MFC grouping problem. Step 1, we assign students to groups
based on the MFC knapsack’s solution. We replace the knapsack function in
Algorithm 3 with the new MFC knapsack function (Algorithm 4). Step 2, we
use the group adjustment algorithm (Algorithm 2) to fine-tune the assignment.
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Complexity: The MFC knapsack takes O(n × Cu) for each topic. To solve
the MFC problem, step 1 consumes O(m×n×Cu), and step 2 costs O(Cl×n×m).
Therefore, the complexity of the MFC knapsack approach is O(n × m).

Algorithm 4: MFC knapsack algorithm
Input: S = {x1, x2, . . . , xz}: a set of unassigned students; Cl, Cu: capacities;

welfaren×m: a welfare matrix; θ: balance score
Output: An optimal total welfare value

1 avg =

∑n
i=1 welfareijr

(Cl + Cu)/2
;

2 Let A(p, s, w), ∀p ∈ {0, 1}, be the total welfare of the first s students in the set
S with capacity w on group p ;

3 Initialize A(p, 0, w) ← 0; A(p, s, 0) ← 0 ;
4 A(p, s, w) ← max{A(p, s − 1, w), A(p, s − 1, w − 1) +

∑s
i=1 welfareijr} ;

5 Let B(p, w) be the total welfare of group p with capacity w;

6 pl
0 ←

⌈
Cl

1+θ
θ

⌉

; pu
0 ←

⌈
Cu

1+θ
θ

⌉

; S0 ← {x ∈ S|ϕ(x) = 0}; S1 ← {x ∈ S|ϕ(x) = 1} ;

7 B(0, w) ← max{A(0, |S0|, w)|pl
0 ≤ w ≤ pu

0} ;

8 B(1, w) ← max{B(0, w′) + A(1, |S1|, w − w′)|Cl − pl
0 ≤ w − w′ ≤ Cu − pu

0 , pl
0 ≤

w′ ≤ pu
0 , and w′

w−w′ ≥ θ} ;

9 return argmax{B(1, w)|min{B(1, w) − avg}};

5 Evaluation

5.1 Datasets

We evaluate our proposed methods on two variations of the student performance
dataset [10] and a real data science dataset collected at our institute (Table 1).

Real Data Science Dataset. This dataset is collected in a seminar on data
science at our institute. Students have to register 3 desired topics out of 16
topics. The advisor assigns students into groups based on their preferences and
the registration time. The data contain demographic information of students
(ID, Name, Gender) with their preferences (wish1, wish2, wish3 ), registration
time (Time) and priority matrix W represented by 16 attributes (T1, . . . , T16 ).

Student Performance Dataset2. The dataset consists of demographic, includ-
ing the protected attribute gender which is used in the evaluation, school-related
attributes and grades of students in Mathematics and Portuguese subjects of two
Portuguese schools in 2005 - 2006. Because there is no given information about
the topics and preferences of students in the original dataset, we create a semi-
synthetic version by generating preferences and topics. For each student, we
randomly generate h different preferred topics. Then, for each topic, we list the
students who select the topic and randomly generate (different) priorities and
store them in m attributes (matrix W ). Hence, the semi-synthetic version has
(h + m) new attributes apart from the original attributes.
2 https://archive.ics.uci.edu/ml/datasets/Student+Performance.

https://archive.ics.uci.edu/ml/datasets/Student+Performance
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Table 1. An overview of the datasets.

Dataset #instances #attributes Protected attribute Balance score

Real data science 24 23 Gender (F: 8, M: 16) 0.5

Student - Mathematics 395 33 Gender (F: 208, M: 187) 0.899

Student - Portuguese 649 33 Gender (F: 383; M: 266) 0.695

5.2 Experimental Setup

Parameter Selection. We set the number of wishes h = 3 for the student
performance dataset in order to be consistent with the real data science dataset.
The number of topics, m = 200 and m = 325, are set for the student performance
dataset - Mathematics and Portuguese subjects, respectively, to ensure that each
group has at least 2 students. Besides, we set the parameters α = 1.0 and β = 1.0,
i.e., each component has the same weight. The balance scores θ are computed
based on the datasets (Table 1). Furthermore, since the real data science dataset
is very small, our methods are evaluated with the lower bound Cl in the range of
(2, . . . , 8). Regarding the student performance dataset, we set Cl = (2, . . . , 18),
as the average number of students per group should not exceed 20 [21]. The
upper bound Cu is set as Cu = Cl + 1 for all datasets.

Baseline. The CPLEX integer programming model which considers both
efficiency and fairness [12].

Evaluation Measures. We report the results on the following measures:
- Nash Social Welfare. The Nash social welfare is computed by Eq. 1.

However, the number of groups (k) is determined during the group assignment
process, i.e., k is different for the same set Cl, Cu, for each method. Hence, we
normalize the Nash social welfare of the final grouping by Nash = logkL(X,G).

- Balance. The fairness in terms of the protected attribute (Eq. 2).
- Satisfaction Level. It is computed by the ratio of the number of satisfied

students, i.e., the students are assigned to their preferred topic, out of the total

number of students: Satisfaction =
| {i|wishesip = k, i ∈ groupsk, p ∈ [h]} |

n
.

5.3 Experimental Results

Real Data Science Dataset. In Fig. 2, we present the performance of proposed
methods on various evaluation measures. The MFC knapsack method is better
in terms of the Nash social welfare and satisfaction level (Fig. 2-a, c). In terms
of fairness w.r.t. protected attribute, the MFC knapsack method outperforms
others when a group has at least 4 people (Fig. 2-b). CPLEX fails to assign
students while maintaining only a constant number of groups (Fig. 2-d).

Student Performance - Mathematics Dataset. The knapsack-based app-
roach outperforms others regarding Nash social welfare and satisfaction level in
most experiments (Fig. 3-a, c). The satisfaction level tends to decrease because
students have only a limited number of preferences (3 topics). When the group’s
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Fig. 2. Performance of methods on the real data science dataset.

cardinality increases, the desired topics become more diverse, and it is chal-
lenging to satisfy most students. In terms of fairness w.r.t. protected attribute
(gender), the knapsack-based and MFC knapsack methods tend to achieve a
higher balance score in comparison to the heuristic method (Fig. 3-b). When
groups’ cardinality is less than 4, the greedy heuristic and MFC knapsack meth-
ods tend to create more groups than the knapsack-based method (Fig. 3-d). The
CPLEX method cannot return a solution when the groups’ cardinality is less
than 9 and it also fails since it is not possible to assign all students to groups.

Fig. 3. Performance of methods on the student performance - Mathematics dataset.

Student Performance - Portuguese Dataset. The knapsack-based method
once again demonstrates the ability to create groups with higher Nash social
welfare and satisfaction level than others in many cases (Fig. 4-a and Fig. 4-
c). Regarding fairness w.r.t. gender, a higher and more stable balance score is
observed in the grouping generated by the MFC knapsack model (Fig. 4-b). The
main reason for this phenomenon can be attributed to the model’s emphasis
on maximizing the balance constraint w.r.t. protected attribute. Besides, the
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Fig. 4. Performance of methods on the student performance - Portuguese dataset.

Fig. 5. Impact of α, β parameters on the knapsack-based model (student performance
- Mathematics dataset).

MFC knapsack and greedy heuristic models divide students into more groups
(Fig. 4-d) while the CPLEX also cannot assign all students to groups.

Impact of Parameters. The influence of α, β parameters is illustrated in Fig 5.
The knapsack-based model shows the best performance with the combination of
α = 1.0 and β = 1.0.

Summary of Results. In general, the knapsack-based approach outperforms
other models regarding Nash social welfare and satisfaction level. The MFC
knapsack method shows its preeminence in terms of fairness w.r.t. gender in
many cases, especially when the resulting groups have more members. However,
in some cases, the knapsack-based approach tends to create fewer groups than
the greedy heuristic method, i.e., the groups’ cardinality is higher, which has
both advantages and disadvantages. On the one hand, the larger groups can
produce more ideas in brainstorming and discussions [2]. On the other hand, the
group’s performance may decline with the increase in the group’s size [22].
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6 Conclusions and Outlook

In this work, we introduced the MFC grouping problem that ensures fairness
in multiple aspects: i) in terms of student satisfaction and ii) regarding the
protected attribute and maintaining the groups’ cardinality within the given
bounds. We proposed three methods: the greedy heuristic approach that priori-
tizes the students’ preferences in the assignment; the knapsack-based approach
with the assignment step is formulated as a maximal knapsack problem; the
MFC knapsack method considers fairness, cardinality, and students’ preferences
in the MFC knapsack formulation. The experiments show that our methods are
effective regarding student satisfaction and fairness w.r.t. the protected attribute
while maintaining cardinality within the given bounds. In the future, we plan
to extend our approach to more than one protected attribute, as well as to fur-
ther investigate the groups’ characteristics w.r.t. students’ abilities, and other
definitions with different aspects of fairness in the educational settings.

Acknowledgements. The work of the first author is supported by the Ministry of
Science and Culture of Lower Saxony, Germany, within the Ph.D. program “LernMINT:
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