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Abstract
In the field of Explainable AI (XAI), counterfactual (CF) explana-
tions are one prominent method to interpret a black-box model by
suggesting changes to the input that would alter a prediction. In
real-world applications, the input is predominantly in tabular form
and comprised of mixed data types and complex feature interdepen-
dencies. These unique data characteristics are difficult to model, and
we empirically show that they lead to bias towards specific feature
types when generating CFs. To overcome this issue, we introduce
TABCF, a CF explanation method that leverages a transformer-based
Variational Autoencoder (VAE) tailored for modeling tabular data.
Our approach uses transformers to learn a continuous latent space
and a novel Gumbel-Softmax detokenizer that enables precise cate-
gorical reconstruction while preserving end-to-end differentiability.
Extensive quantitative evaluation on five financial datasets demon-
strates that TABCF does not exhibit bias toward specific feature
types, and outperforms existing methods in producing effective CFs
that align with common CF desiderata.
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1 Introduction
Although Deep Neural Networks (DNN) are highly effective, their
complexitymakes them difficult to explain, hindering their adoption
in crucial fields like healthcare and finance. Explainable AI (XAI)
aims to overcome this by making their decisions interpretable [1].

Figure 1: Overview of the counterfactual generation process.
The bold arrows indicate data flow, and the dashed arrows
indicate backward gradient flow. We iteratively optimize the
latent representation 𝑧, of the counterfactual 𝑥 ′, using three
distinct loss terms.

Counterfactual (CF) explanations are oneway to gain insight into
a black-box model’s decision by offering meaningful changes to the
input that would result in a favorable outcome. Most initial works
find CFs by searching in the input space [22, 28]. More recent stud-
ies leverage generative models, such as Variational Autoencoders
[18] (VAE). These models capture the underlying structure of the
data to generate more realistic and semantically meaningful CFs.
However, most of these methods are developed for the vision do-
main [7, 14], where generative models are particularly effective. In
business applications, especially finance, data most often comes in
tabular form presenting specific challenges like mixed (numerical
and categorical) feature types, inherent imbalances, and complex
feature interdependencies. Existing tabular CF methods handle the
mixed feature space using simple pre/post-processing [2, 9, 17, 25]
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or regularization functions [22]. Our experiments show that such
data handling leads to feature-type bias, for example predominantly
changing numerical features when generating CFs.

To address these challenges, we present TABCF, a CF generation
method that employs a tranformer-based VAE tailored for tabular
data. Our approach maps the mixed input into a unified continuous
latent space, leveraging transformers to capture the rich feature
interdependencies. Similar to other methods [17, 22, 28] we define
CF generation as an optimization problem, and use gradient descent
to navigate the latent space. Importantly, our decoder architecture
enables precise categorical reconstruction via the Gumbel-Softmax
trick [16], while being fully differentiable to ensure optimal gra-
dient flow from the black-box model. Furthermore, we optimize
for important CF desiderata [26], such as validity, but also, prox-
imity to the original instance, and feature sparsity, for producing
more actionable CFs. We compare TABCF’s performance against
baselines in terms of producing valid and actionable CFs for tabular
data, on binary classification problems. Our extensive quantita-
tive evaluation on five financial and census datasets showcases
that TABCF is superior in producing effective CF explanations, and
does not exhibit feature-type bias. Our contributions include: i)
identifying issues in the tabular data handling of existing methods,
which impede optimization and result in feature-type bias, and ii)
introducing TABCF a novel counterfactual generation method that
employs a transformer-based VAE specifically designed for tabular
data to address these limitations.

Our paper is structured as follows.We describe all relevant works
related to counterfactuals and generative models in Section 2, we
introduce our method TABCF in Section 3, defining the transformer-
based VAE and the CF generation process in the latent space. In Sec-
tion 4 we present our experimental evaluation, including datasets,
metrics, and baselines, and in Section 5 we present the results. We
conclude the paper with a discussion and opportunities for future
work in Section 6. We have provided a codebase 1 for reproducing
all experiments.

2 Related Work
Recent literature is abundant with studies on CFs that detail numer-
ous desired properties (desiderata), target different data modalities,
and employ various methodologies [26] and criteria for evalua-
tion [24]. This section provides an overview of the methods most
pertinent to our field of work of tabular CFs.
Counterfactual desiderata. Are desirable properties for effective
CF explanations. The most essential property is validity, ensuring
the proposed changes alter the decision of the black-box model we
aim to explain. The vast majority of works simultaneously optimize
to find the most minimal changes that lead to the desired outcome
[17, 22, 25, 28]. This objective involves the desiderata of proximity
and sparsity, i.e., CFs that are close to the original instance and alter
as few features as possible. Finally, some methods find more robust
CFs that withstand minor perturbations [3], account for predictive
uncertainty [2], causal constraints [17, 23], and plausibility [5].
Counterfactual methods. Wachter et al. [28] first introduced CF
explanations as an optimization problem in input space, aimed at
changing a model’s decision while minimizing the distance to the

1github.com/Panagiotou/TABCF

original instance. This approach inspired various other methods
that assume a differentiable black-box model and use gradient de-
scent to find CFs, either in the input space like DiCE [22] or in
the latent space of a generative model like REVISE and CCHVAE
[17, 25]. Our method falls within the latter category, and therefore
we provide a detailed description of these methods in Section 4.3,
and use them as baselines in our experiments. Other works assume
a model agnostic setting where differentiability is not guaranteed,
e.g. in decision trees. Most methods in this scenario use a heuristic
search, like genetic algorithms [23], or reinforcement learning to
learn a policy for finding CFs [27].
Generative models. Several works rely on generative models to
create CFs. While some methods [6] use Generative Adversarial
Networks (GANs) [11], the majority [2, 9, 17, 25] prefer Variational
Autoencoders (VAEs) [18], for their flexibility and smooth latent
representations. However, most generative models are designed
for computer vision [8, 14] and are difficult to adapt to the unique
characteristics of mixed tabular data [29]. Recently, transformers
have emerged as a potential solution, due to their ability to capture
complex feature interdependencies [12]. Specifically, the TABSYN
[30] method utilizes a transformer-based VAE for synthetic tab-
ular data generation, outperforming existing approaches. To the
best of our knowledge, our method TABCF is the first to use a
transformer-based autoencoding framework for tabular counter-
factual generation.

3 TABCF: Counterfactual explanations for
tabular data

In this section, we introduce our method TABCF. We start with
preliminaries, then we present the architecture of our transformer-
based VAE in Section 3.1 and we describe the CF generation process
in Section 3.2.

We assume a differentiable black-box classifier 𝑓 : X → Y
where X is the input feature space and Y = {0, 1} is the binary
class. For an instance classified in the undesired class 𝑓 (𝑥) = 0,
the goal is to find a CF example that belongs to the target class,
i.e. 𝑓 (𝑥 ′) = 1. Additionally, we assume a mixed input space of |𝑁 |
numerical and |𝐶 | categorical features 𝑥 = [𝑥𝑛𝑢𝑚, 𝑥𝑐𝑎𝑡 ] ∈ R |𝑁 |+|𝐶 | .
We train 𝑓 by pre-processing the data in the usual fashion so that all
numerical features are min-max normalized, and all categorical fea-
tures are one-hot encoded. Therefore, each row is presented as a 𝑘-
dimensional vector 𝑥 = [𝑥𝑛𝑢𝑚1 , 𝑥𝑛𝑢𝑚2 , . . . , 𝑥𝑛𝑢𝑚|𝑁 | , 𝑥

𝑜ℎ
1 , 𝑥𝑜ℎ2 , . . . , 𝑥𝑜ℎ|𝐶 | ],

with 𝑘 = R |𝑁 | +∑ |𝐶 |
𝑖=1𝐶𝑖 , where𝐶𝑖 are the discrete domains of each

categorical feature.

3.1 Transformer-based VAE for tabular data
As previously mentioned, we build on the architecture used in
[30] for synthetic mixed tabular data generation, and adapt it for
CF generation. In particular, we employ learnable tokenizers to
process the input data and transformers to learn the latent space.
To reconstruct precise one-hot samples while maintaining end-to-
end differentiability we propose a Gumbel detokenizer. The entire
training pipeline of the VAE is presented in Figure 2, and is described
in detail hereafter.
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Figure 2: Overview of the Variational Autoencoder training process. Blue indicates the process for numerical, yellow for
categorical features. The detokenizer enables a fully differentiable pipeline for categorical features using the Gumbel-Softmax
function for sample reconstruction.

Feature Tokenizer. To adapt the transformer architecture for tab-
ular data, [12] proposes a Feature Tokenizer as a learnable pre-
processing step that converts features into tokens for the subse-
quent feature-level transformer layers. Specifically, given an input
vector 𝑥 of size 𝑘 ,
𝑥 = [𝑥𝑛𝑢𝑚1 , 𝑥𝑛𝑢𝑚2 , . . . , 𝑥𝑛𝑢𝑚|𝑁 | , 𝑥

𝑜ℎ
1 , 𝑥𝑜ℎ2 , . . . , 𝑥𝑜ℎ|𝐶 | ]

a tokenized vector 𝑥𝑡𝑜𝑘𝑒𝑛 of size 𝑘 × 𝑑 is created
𝑥𝑡𝑜𝑘𝑒𝑛 = [𝑡𝑛𝑢𝑚1 , 𝑡𝑛𝑢𝑚2 , . . . , 𝑡𝑛𝑢𝑚|𝑁 | , 𝑡

𝑐𝑎𝑡
1 , 𝑡𝑐𝑎𝑡2 , . . . , 𝑡𝑐𝑎𝑡|𝐶 | ],

via linear transformation of numerical, and "lookup tables" for each
categorical feature. In detail we have,
𝑡𝑛𝑢𝑚 = 𝑥𝑛𝑢𝑚 ·W𝑛𝑢𝑚 + b𝑛𝑢𝑚 and
𝑡𝑐𝑎𝑡
𝑖

= 𝑥𝑜ℎ
𝑖

·W𝑐𝑎𝑡
𝑖

+ b𝑐𝑎𝑡
𝑖

for 𝑖 ∈ {1, . . . , |𝐶 |}
where each column is a token 𝑡𝑛𝑢𝑚

𝑖
, 𝑡𝑐𝑎𝑡
𝑖

∈ R1×𝑑 . All weights and
biases of the tokenizer, i.e., W𝑛𝑢𝑚, b𝑛𝑢𝑚 ∈ R |𝑁 |×𝑑 and W𝑐𝑎𝑡

𝑖
∈

R𝐶𝑖×𝑑 , b𝑐𝑎𝑡
𝑖

∈ R1×𝑑 are learnable parameters.
The learned column-wise token embeddings are passed to the

transformer-based encoder that captures the rich feature interde-
pendencies to output the mean and log variance. The latent vector
𝑧 = 𝜇 +𝜎 ·𝜖 is obtained via parameterization [18]. The same inverse
procedure is followed for reconstructing the token vector 𝑥𝑡𝑜𝑘𝑒𝑛
through the decoder. To get the final output 𝑥 we use our specialized
Gumbel detokenizer, described hereafter.
Gumbel-Detokenizer. A key requirement for TABCF is a fully
differentiable pipeline that allows for optimizing CF samples in
the latent space through the back-propagation of gradients. Addi-
tionally, it is essential to ensure that the decoded samples adhere
to feature-type constraints. For instance, decoded categorical vec-
tors 𝑥𝑐𝑎𝑡

𝑖
should be one-hot. Considering this need to reconstruct

one-hot data while enabling gradient flow, we introduce a Gumbel
detokenizer that uses the Gumbel-softmax [16] trick to generate
categorical features. In particular the 𝑔𝑢𝑚𝑏𝑒𝑙 (.) function,

𝑔𝑢𝑚𝑏𝑒𝑙 (𝑥𝑖 ) =
𝑒𝑥𝑝 ((𝑙𝑜𝑔(𝑥𝑖 ) + 𝑔𝑖 )/𝜏∑𝐶𝑖

𝑗=1 𝑒𝑥𝑝 ((𝑙𝑜𝑔(𝑥 𝑗 ) + 𝑔 𝑗 )/𝜏
,

where 𝐶𝑖 denotes the number of modes per categorical feature, 𝑔
denotes the probabilistic variable sampled from the Gumbel distribu-
tion, and 𝜏 denotes the temperature hyperparameter. It is important

to note that (for Section 5.2) the 𝑔𝑢𝑚𝑏𝑒𝑙 function outputs the dis-
cretized one-hot samples but uses the soft samples for differentiation.
After decoding we get the reconstructions,

𝑥𝑛𝑢𝑚 = sigmoid(𝑡𝑛𝑢𝑚 · Ŵ𝑛𝑢𝑚 + b̂𝑛𝑢𝑚)

𝑥𝑜ℎ𝑖 = gumbel(𝑡𝑐𝑎𝑡𝑖 · Ŵ𝑐𝑎𝑡
𝑖 + b̂𝑐𝑎𝑡𝑖 ) for 𝑖 ∈ {1, . . . , |𝐶 |}

This ensures that all input constraints are respected for the recon-
structed samples 𝑥 = [𝑥𝑛𝑢𝑚1 , 𝑥𝑛𝑢𝑚2 , . . . , 𝑥𝑛𝑢𝑚|𝑁 | , 𝑥

𝑜ℎ
1 , 𝑥𝑜ℎ2 , . . . , 𝑥𝑜ℎ|𝐶 | ],

i.e. numerical columns are in the range of [0, 1] and that all cate-
gorical vectors follow a one-hot distribution. In conclusion, TABCF
enables gradient-based CF generation in the latent space and in-
herently guarantees tabular feature constraints. In contrast, other
gradient-based methods resort to postprocessing techniques or rely
on additional regularization losses to maintain categorical con-
straints [22, 24]. In our experiments, we show that this leads to
unwanted feature-type bias.
VAE training. We train the transformer-based VAE using the 𝛽-
VAE loss, L = ∥𝑥 − 𝑥 ∥ + 𝛽 · L𝐾𝐿 [13], where L𝐾𝐿 denotes the
discrete Kullback-Leibler divergence between the latent variable
and a standard gaussian. Following [30], we opt for a better re-
construction than a perfectly Gaussian distributed latent space by
gradually decreasing 𝛽 = [𝛽𝑚𝑎𝑥 , 𝛽𝑚𝑖𝑛] during training.

3.2 Counterfactuals in the latent space
After training the transformer-based VAE, we use the latent repre-
sentations to search for CFs by traversing the latent space via gra-
dient steps. We use a loss term comprised of three components de-
signed for Validity, Proximity, and Sparsity (referring to the desider-
ata in Section 2).

More specifically, given an input instance 𝑥0, we obtain the initial
latent representation 𝑧0 = 𝐸𝑛𝑐 (𝑥0) through the encoder. We then
initialize the optimization with 𝑧 = 𝑧0 and take gradient steps
updating 𝑧 with ∇𝑧LCF, minimizing the following loss function:

LCF (𝑧) = hinge_yloss
[
𝑓

(
𝐷𝑒𝑐 (𝑧)

)
, 𝑦 = 1

]
+ 𝜆𝑝𝑟𝑜𝑥_𝑖𝑛𝑝𝑢𝑡 · ∥𝑥0 − 𝐷𝑒𝑐 (𝑧)∥1
+ 𝜆𝑝𝑟𝑜𝑥_𝑙𝑎𝑡𝑒𝑛𝑡 · ∥𝑧0 − 𝑧∥2 (1)
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Validity. The first component computes the difference between
the target class (𝑦 = 1) and the current prediction of the black-
box model 𝑓 (.). The latent vector 𝑧 being optimized, is first passed
through the decoder 𝐷𝑒𝑐 (𝑧). This reconstructed vector is in the
original tabular form, by design of our architecture, and can be di-
rectly used to get the prediction of the model 𝑓 (𝐷𝑒𝑐 (𝑧)). Following
[22], we use the hinge-loss, defined as

hinge_yloss =𝑚𝑎𝑥
[
0, 1 − 𝑙𝑜𝑔𝑖𝑡

(
𝑓 (.)

) ]
which has two functionalities, i) it heavily penalizes predictions that
do not belong to the target class, i.e. when P(𝑓 (𝑥) = 1) < 0.5, and
ii) it returns a penalty when the target class is achieved, i.e. when
P(𝑓 (𝑥) = 1) ≥ 0.5, proportional to the difference P(𝑓 (𝑥) = 1) − 0.5
between the predicted target probability and the decision thresh-
old. The intended effect is pushing instances across the decision
boundary to ensure validity, while optimizing for better trade-off
solutions (i.e. proximity and sparsity) afterward.
Input proximity and sparsity. The second term, ∥𝑥0 − 𝐷𝑒𝑐 (𝑧)∥1
measures the L1 distance of the original instance 𝑥0 and the recon-
structed sample, where 𝜆𝑝𝑟𝑜𝑥_𝑖𝑛𝑝𝑢𝑡 is a weighting hyperparame-
ter. This term serves as a proximity loss in the input space. Using
the L1 norm (instead of e.g. L2) additionally encourages feature
sparsity [31]. It is important to note that although sparsity can be
computed using the L0 norm, i.e. count distance, this operation is
non-differentiable.
Latent proximity. The last term, | |𝑧0 − 𝑧 | |2 measures the L2 dis-
tance to the original latent representation 𝑧0, to encourage proxim-
ity in the latent space, where 𝜆𝑝𝑟𝑜𝑥_𝑙𝑎𝑡𝑒𝑛𝑡 is a weighting hyperpa-
rameter.

Motivated by other works, that either contain the search in a
neighborhood of the latent space [25], or minimize the distance in
the input space [2, 17], we decide to follow a combined approach en-
suring both latent and input proximity. Our ablation study (Section
5.3) empirically demonstrates that this combined method yields su-
perior results in terms of proximity and sparsity. Our optimization
process is illustrated in Figure 1.

4 Experimental evaluation
This section presents the datasets, baselines, metrics, and the gen-
eral setup of our quantitative evaluation.

4.1 Experimental setup
We initialize TABCF by training the VAE for 4.000 epochs, gradually
decreasing 𝛽 from 𝛽𝑚𝑎𝑥 = 10−3 to 𝛽𝑚𝑖𝑛 = 10−5, and use 𝜏 = 1.0 for
the Gumbel distribution. We choose a maximum of 30.000 training
samples for larger datasets to improve comparability. After the
VAE is sufficiently trained, we perform Stochastic Gradient Descent
(SGD) to find CFs for a maximum of 5.000 steps or until the loss
converges and the target class is reached. For loss weighting, we
set 𝜆𝑝𝑟𝑜𝑥_𝑖𝑛𝑝𝑢𝑡 = 1 and 𝜆𝑝𝑟𝑜𝑥_𝑙𝑎𝑡𝑒𝑛𝑡 = 1, as these hyperparame-
ters yield the best overall results. We discuss this further in our
ablation study (Section 5.3). For all baseline competitors we use the
implementations of the CARLA framework [24].

4.2 Real world financial datasets
We choose five real-world financial datasets, with a range of differ-
ent data types, feature counts, and ratios of categorical to numerical
features, to ensure a thorough experimental evaluation. In Table 1
we list the characteristics of each dataset, such as the size of the
training set used in our experiments, the number of numerical and
categorical features, and a description of the binary classification
problem.

Table 1: Dataset characteristics.

Dataset Training
Size

#Features
(Num/Cat) Target Class

Lending
Club 30.000 8/4

Loan status
{fully paid,
charged off}

Give Me
Some Credit 30.000 6/3 SeriousDlqin2yrs

{no, yes}
Bank
Marketing 30.000 7/9 Deposit subscription

{yes, no}
Credit
Default 27.000 14/9 Default payment

{yes, no}
Adult
Census 32.000 4/8 Income

{≥ 50K, < 50𝐾 }

Lending Club. The Lending Club public dataset [15] comprises
detailed information on loans issued by the Lending Club company,
including borrower characteristics, loan specifics, and performance
indicators such as payment status. It serves as a resource for analyz-
ing the financial performance of peer-to-peer loans with payment
status as the target.
Give Me Some Credit. The Give Me Some Credit dataset [25]
contains anonymized records of credit users, focusing on features
such as their debt-to-income ratio, monthly income, and number
of open credit lines. The target variable is a delay in payment for
more than 90 days over the last two years.
Bank Marketing. The Bank Marketing dataset [10] contains infor-
mation from amarketing campaign by a Portuguese bank, including
client details, campaign contact information, and the outcome of
each contact. It is used for predictive modeling to determine the
likelihood of clients subscribing to a term deposit.
Credit Default. The Credit Default dataset [10] includes informa-
tion on clients’ credit card behavior, such as payment history, credit
limits, and demographic details. The target is a default in payment.
Adult Census. The Adult dataset [10] contains demographic infor-
mation and income data from the 1994 U.S. Census. The individual’s
income level serves as the target. The prediction is based on features
like age, occupation, and capital gain.

4.3 Baseline competitors
We compare TABCF to related methods on counterfactual gener-
ation that either directly optimize in the input space or employ
generative models to first learn latent representations (see Sec-
tion 2). The descriptions of all methods are listed below.
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4.3.1 Baselines operating in input space.
We compare to two state-of-the-art gradient-based methods that
do not leverage latent representations.
Wachter [28] first mathematically defined CF explanations, using
Stochastic Gradient Descent (SGD) to optimize a loss function.
The objective is twofold, optimizing for the label flip of the black-
box model, while minimizing the distance to the original sample.
However, this method tends to find CFs very close to the decision
boundary [26], and clamps categorical features to their original
values [24, 28].
DiCE [22] extends the previous approach, taking into account more
practical considerations regarding the feature types, such as incor-
porating a regularization loss for enforcing one-hot representations
during optimization (see Section 5.2).

4.3.2 Baselines operating in latent space.
More recent works, similar to our approach, utilize generative
autoencoders to learn latent representations of the data, before
searching for CFs in that latent space. We have identified two such
approaches for VAE-based tabular data CFs.
REVISE [17] employs a VAE of fully connected neural network
layers to learn a structured latent space. As with other gradient-
based approaches [22, 28], a loss function is optimized to change
the predicted class while minimizing the distance to the original
instance. This distance is measured in the reconstructed input,
similar to our input-proximity loss term. Gradient descent updates
the latent representations until the loss converges, after which the
final CFs are returned by the decoder.
CCHVAE [25] similarly uses a conditional VAE for representation
learning. Unlike earlier methods, it does not optimize a loss; rather
CFs are found in the latent space using a model-agnostic search
algorithm. Specifically, multiple points are sampled in the latent
space with a growing-sphere approach, until some decoded sample
matches the CF requirements, i.e., minimal proximity. Although
such heuristic-based methods are more efficient, they do not guar-
antee optimal results and can be more difficult to adapt to new
objectives or constraints.

Although the competitors employ various methods to handle
categorical data, they all share the common practice of discretization
(e.g. rounding) after each optimization step. Our experiments in
Section 5.2 demonstrate that this results in feature-type bias.

4.4 Metrics
We evaluate TABCF and all baselines along several metrics to assess
the effectiveness of each method. To ensure a fair comparison, each
metric is calculated directly in the input space. Additionally, we
evaluate all methods on the same test set, selecting 𝑛 = 1000, pre-
viously unseen, instances that are not part of the target class, i.e.,
𝑋 0
test = {𝑥0

𝑖
| 𝑓 (𝑥0

𝑖
) = 0, 𝑖 = 1, 2, . . . , 𝑛}. Each method generates

a set of valid counterfactuals 𝐶𝐹test = {𝑥 ′
𝑖
| 𝑓 (𝑥 ′

𝑖
) = 1}. Because

CF generation is a difficult non-convex problem [22], it is not guar-
anteed that a valid CF will be found for each instance. Therefore,
the number of valid CFs, 𝑛𝑣𝑎𝑙 = |𝐶𝐹test |, might be less than the
number of test instances, i.e., 𝑛𝑣𝑎𝑙 ≤ 𝑛. We define all metrics in
detail hereafter.
Validity. The validity score is the most important metric, as it
measures the success rate, i.e. the percentage of instances for which

optimization successfully switched the decision of the black-box
classifier to the target class. More formally,

Validity (↑) = 𝑛𝑣𝑎𝑙

𝑛
=

1
𝑛

𝑛∑︁
𝑖=1
I(𝑓 (𝑥 ′𝑖 ) = 1)

Each of the following metrics is calculated only for valid CFs.
Sparsity. The sparsity scores measures the percentage of features
changed to achieve a CF. We specifically differentiate between
categorical and numerical sparsity,

Sparsity Cat (↓) = 1
𝑛𝑣𝑎𝑙

𝑛𝑣𝑎𝑙∑︁
𝑖=1

∥𝑥0𝑐𝑎𝑡 − 𝑥 ′𝑐𝑎𝑡 ∥0
|𝐶 |

Sparsity Num (↓) = 1
𝑛𝑣𝑎𝑙

𝑛𝑣𝑎𝑙∑︁
𝑖=1

∥𝑥0𝑛𝑢𝑚 − 𝑥 ′𝑛𝑢𝑚 ∥0
|𝑁 |

Where the 𝐿0 norm ∥𝑥0 − 𝑥 ′∥0, counts the number of features that
have different values in 𝑥0 compared to 𝑥 ′. The result is normalized
by the total number of features, i.e. |𝑁 | for numerical and for |𝐶 |
categorical.
Proximity. Proximity uses a distance function to measure how
close the CF is to the original instance. It is defined only for numer-
ical features since the categorical sparsity metric essentially plays
the role of the proximity metric for categorical features.

Proximity Num (↓) = 1
𝑛𝑣𝑎𝑙

𝑛𝑣𝑎𝑙∑︁
𝑖=1

∥𝑥0𝑛𝑢𝑚 − 𝑥 ′𝑛𝑢𝑚 ∥1

The numerical features are standard-normalized, and the L1
norm is used to measure the distance.

4.5 Feature importance and utilization
In our feature utilization experiment, we aim to examine the dif-
ferent features altered by each method during CF generation. The
general assumption motivating this study is that features with a
positive impact on the model prediction (target class) are good
candidates for modification, towards a potential label flip. This is
especially true if the positive impact comes with a minimal differ-
ence to the original value. Such features in the XAI domain, are
referred to as important features, and corresponding scores, given a
black-box model, can be estimated via feature importance methods
[19]. We compute feature importance for 𝑋 0

𝑡𝑒𝑠𝑡 for the black-box
model to study whether essential features are primarily subject to
change for TABCF and the competitors.

For this study, we choose Shapley Additive Explanations (SHAP)
[19] as the feature importance baseline. SHAP is a field-tested
method for ML-based modeling in the finance domain [21], even
further for modeling credit scoring systems [4, 20]. SHAP, originat-
ing from cooperative game theory, provides a way to distribute the
payoff among players fairly based on their contributions. When
applied to neural networks to explain feature importance, SHAP
attributes the model’s output to its input features by considering
all possible feature combinations.

5 Results and Discussion
In this section, we discuss the results of our quantitative evaluation.
Thenwe examine how the processing of tabular data by competitors
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can cause feature-type bias. Finally, we present the results of our
ablation study on the hyperparameters of our loss functions.

5.1 Results for all baselines and datasets
We evaluate all methods on the five tabular datasets and report the
average metric values across the test set. Detailed results for each
dataset are presented in Table 3. For a comprehensive overview, we
further average the results across all datasets to rank the methods,
as shown in Table 2.

Table 2: Results averaged over all datasets.

Validity (%) ↑ Sparsity (%) ↓ Proximity ↓ Top 2 ↑
Cat Num Num

Wachter 0.92 - 1.0 4.18 1
DiCE 0.93 0.18 0.85 2.12 12
REVISE 0.54 0.25 0.98 2.44 3
CCHVAE 0.97 0.29 1.0 0.43 12
TABCF (us) 0.99 0.27 0.83 1.17 14

The results in Table 2 demonstrate that our method, TABCF,
outperforms the competition. We achieve an almost perfect validity
score, finding CFs for 99% of the input instances. Furthermore, in
the last column (Top 2), we report the number of times each method
ranks first or second best in the per-dataset results of Table 3. Here,
TABCF stands out, ranking in the top two, for 14 out of a possible
20 times (70%).

Regarding sparsity and proximity metrics, TABCF changes more
categorical features, resulting in 11% worse categorical sparsity
on average, compared to the competitors. However, TABCF uses
15% fewer numerical features, while performing minimal changes
when they are used. In particular, our performance in numerical
proximity ranks second best and is 96% better than competitors on
average. We compute these average percentages by comparing the
individual performances to TABCF.

Overall, compared to the competitors, TABCF finds valid CFs 99%
of the time while making fewer and smaller changes to features on
average. Notably, the sparsity metrics reveal a clear bias among all
competitors toward using numerical features instead of categorical
ones. Specifically, Wachter, REVISE, and CCHVAE alter every single
numerical feature when generating counterfactuals, for nearly all
test instances (Sparsity Num = 1). Similarly, DiCE utilizes the least
categorical features among all methods. We further investigate this
observation in Section 5.2.

5.2 Feature utilization
Our observations indicate that competitors exhibit bias towards
numerical features when identifying CFs, rather than using categor-
ical features. This bias is problematic because an effective method
should use features based solely on their influence on finding CFs,
irrespective of their type.

To measure the importance of features on the model output, we
can use the well-established Shapley explanation method [19] (as
detailed in Section 4.5). For example, in Figure 3, we display the
impact of various features from the Adult dataset on the output of

Table 3: Results per dataset.

Validity (%) ↑ Sparsity (%) ↓ Proximity ↓
Cat Num Num

Lending Club
Wachter 0.95 - 1.0 1.26
DiCE 0.99 0.18 0.85 0.83
REVISE 0.88 0.07 0.99 0.80
CCHVAE 0.95 0.12 1.0 0.46
TABCF 1.0 0.27 0.90 0.49

Give me some credit
Wachter 0.94 - 1.0 10.15
DiCE 0.98 0.19 0.89 3.78
REVISE 0.13 0.44 1.0 7.56
CCHVAE 0.96 0.61 1.0 0.23
TABCF 1.0 0.61 0.86 0.42

Bank marketing
Wachter 0.76 - 1.0 3.87
DiCE 0.87 0.19 0.85 2.49
REVISE 0.51 0.25 0.94 1.86
CCHVAE 0.97 0.23 1.0 0.46
TABCF 1.0 0.35 0.89 3.69

Credit default
Wachter 0.94 - 1.0 4.57
DiCE 0.98 0.31 0.90 0.58
REVISE 0.34 0.29 1.0 1.05
CCHVAE 0.99 0.27 1.0 0.40
TABCF 1.0 0.38 0.99 0.58

Adult
Wachter 0.99 - 1.0 1.06
DiCE 0.85 0.02 0.78 2.93
REVISE 0.84 0.19 0.99 0.97
CCHVAE 0.99 0.23 1.0 0.61
TABCF 0.95 0.33 0.54 0.67

the black-box classifier. The visualization reveals that categorical
features such as education and occupation positively affect the
model’s predictions in some cases. Moreover, certain numerical
features, like age and hours/week, can have a positive impact even
with moderate changes in the feature value (indicated in purple). On
the other hand, the capital gain/loss features only show a positive
impact when their values are maximal (highlighted in pink). Given
that CF methods aim to identify minimal changes with positive
outcomes, we expect these methods to favor categorical features,
like education and occupation, or numerical features like age and
hours/week, when generating CFs for the Adult dataset.

However, we empirically show that this is not the case, by com-
puting the feature utilization of each method on the Adult dataset.
The resulting histogram in Figure 6 reveals that all competitors pri-
marily use numerical features when generating CFs. DiCE exhibits a
predominant imbalance towards numerical features, utilizing them
94% of the time. While the VAE-based methods (REVISE and CCH-
VAE) perform slightly better, they still exhibit a strong bias towards
using the continuous capital gain/loss features. Our method TABCF
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stands out as the only one achieving a balanced use of both categor-
ical and numerical features. Our assumption is that this tendency
is related to how competitors handle categorical features. Specifi-
cally, all baseline implementations discretize categorical columns
after each optimization step [24]. We illustrate why this processing
approach can be problematic, with a real example for DiCE.

Figure 3: SHAP values for 𝑋 0
𝑡𝑒𝑠𝑡 on the Adult dataset. Colored

dots indicate numerical features and grey dots indicate cat-
egorical features. The x-axis displays a positive target class
impact to the right and a negative impact to the left.

The DiCE method calculates a regularization loss, defined as
L𝑟𝑒𝑔 = ∥∑[𝑥𝑜ℎ] − 1∥2, for each one-hot encoded vector during
optimization. This loss term penalizes vectors 𝑥𝑜ℎ that do not sum
to 1. Consequently, a gradient update that alters the distribution
of 𝑥𝑜ℎ results in a positive loss. Additionally, discretization is per-
formed after each optimization step. Figure 4 visualizes the opti-
mization process, showing how the distribution of a one-hot vector
𝑥𝑜ℎ = [𝑐0, 𝑐1, . . . , 𝑐6] evolves over gradient steps. In two scenarios
where a gradient update attempts to change the "hot" value of the
feature, the regularization loss (depicted in the right plot) is trig-
gered. Additionally, the gradient updates are insufficient to change
the feature value, as the subsequent discretization step always se-
lects the largest value among all 𝑐𝑖 to be the "hot" one.

Thus, the regularization loss, together with the discretization
approach used by all competitors, introduces feature-type bias to-
wards continuous features. Our method, TABCF avoids this issue
by utilizing our Gumbel decoder that produces discretized one-hot
reconstructions for querying the black-box model, while using the
soft samples for gradient optimization (refer to Section 3.1).

5.3 Ablation losses
The ablation study includes a five-step weight increase in the range
[0,1] for 𝜆𝑝𝑟𝑜𝑥_𝑙𝑎𝑡𝑒𝑛𝑡 and 𝜆𝑝𝑟𝑜𝑥_𝑖𝑛𝑝𝑢𝑡 . Therefore, we conduct 25
runs in total, measuring the metrics of Validity, numerical Proxim-
ity, and numerical and categorical Sparsity, on each weight combi-
nation, for the Adult dataset.

Figure 4: The left plot visualizes a one-hot vector with seven
categories (𝑐𝑖 on the x-axis) throughout the optimization
process. On the right, the values of the one-hot regularization
loss (used by DiCE) are plotted (x-axis) over the number of
optimization steps (y-axis).

Figure 5: Ablation study for loss hyperparameters on the
Adult dataset, for the Validity, Proximity, and Sparsity met-
rics. The x-axes show increasing values for 𝜆𝑝𝑟𝑜𝑥_𝑙𝑎𝑡𝑒𝑛𝑡 , the
y-axes increasing values for 𝜆𝑝𝑟𝑜𝑥_𝑖𝑛𝑝𝑢𝑡 . A stronger satura-
tion indicates a better score.

As anticipated, we observe the conflicting nature of the validity
desideratum, to proximity and sparsity. This trade-off arises because
the validity loss term aims to push instances toward the target class,
while the proximity loss terms (in the latent and input space), work
to keep the CFs close to the original instance. Hence, sparsity and
proximity metrics show better scores (more saturated in the plot)
for larger values of the hyperparameters, since the loss terms have
more influence. As previously discussed, based on the observations
of this experiment, we select 𝜆𝑝𝑟𝑜𝑥_𝑖𝑛𝑝𝑢𝑡 = 1 and 𝜆𝑝𝑟𝑜𝑥_𝑙𝑎𝑡𝑒𝑛𝑡 = 1
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Figure 6: Histogram plot visualizing feature utilization for all methods on the Adult dataset. Competitors exhibit feature-type
bias, more frequently using numerical features (blue) than categorical features (grey). In contrast, TABCF employs both feature
types with similar frequency.

for weighting both loss terms, in all previous experiments, as these
values provided the best overall trade-off.

6 Conclusion and future work
This paper presents TABCF, a method that leverages a transformer-
based VAE for generating CF explanations for mixed tabular data.
Our differentiable Gumbel-Softmax architecture allows precise re-
construction, overcoming feature-type bias present in previous
approaches. Additionally, TABCF outperforms competitors in gen-
erating valid, proximal, and sparse counterfactuals, thus enhancing
the interpretability of black-box models in real-world applications.

In future work, we would like to address user input constraints,
such as immutable features or causal relationships between fea-
tures, which could be achieved by conditioning the latent space. Fur-
thermore, we plan to investigate the effect of distance-preserving
Lipschitz-continuous VAEs on proximal counterfactual generation.
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