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Abstract—The generalisation capacity of Multi-Task Learning
(MTL) suffers when unrelated tasks negatively impact each other
by updating shared parameters with conflicting gradients. This
is known as negative transfer and leads to a drop in MTL
accuracy compared to single-task learning (STL). Lately, there
has been a growing focus on the fairness of MTL models, requiring
the optimization of both accuracy and fairness for individual
tasks. Analogously to negative transfer for accuracy, task-specific
fairness considerations might adversely affect the fairness of
other tasks when there is a conflict of fairness loss gradients
between the jointly learned tasks - we refer to this as bias
transfer. To address both negative- and bias-transfer in MTL, we
propose a novel method called FairBranch, which branches the
MTL model by assessing the similarity of learned parameters,
thereby grouping related tasks to alleviate negative transfer.
Moreover, it incorporates fairness loss gradient conflict correction
between adjoining task-group branches to address bias transfer
within these task groups. Our experiments on tabular and visual
MTL problems show that FairBranch outperforms state-of-the-
art MTLs on both fairness and accuracy. Our code is available
on github.com/arjunroyihrpa/FairBranch

Index Terms—multitasking, fairness, negative-transfer, bias-
transfer, task-grouping

I. INTRODUCTION

Multi-Task Learning (MTL) traditionally involves deep neu-
ral networks trained with fully shared representation layers
(parameters) common to all tasks followed by individual task-
specific layers to improve model performance across multiple
tasks [1]. However, when tasks do not align in their optimi-
sation directions, conflicting updates to the shared parameters
may occur, i.e., they may attempt to update the shared pa-
rameters with gradients pulling in conflicting directions [2],
resulting in performance degradation of the MTL model on
specific tasks compared to STL models [3], a phenomenon
commonly known as negative transfer of knowledge [4].

Lately, there has been a growing focus on the fairness
of MTL models [5]–[7], and it is shown that such models
can make biased predictions for specific demographic groups
characterized by a protected attribute, such as gender or
race, across multiple tasks. Fair-MTL methods try to optimize
for both accuracy and fairness [5]–[7], by incorporating, for
example, a fairness loss alongside the accuracy loss for each
task [7], [8]. Analogously to negative transfer for accuracy,
bias transfer may occur in fair-MTL, where task-specific

fairness considerations could negatively affect the fairness of
other tasks, when conflicting fairness loss gradients emerge
among jointly learned tasks.

In our paper, we aim to tackle the intertwined challenges
of negative transfer and bias transfer in Multi-Task Learning
(MTL). Negative transfer in vanilla MTL has been addressed
through various methods, including balancing task-specific
weights [9], [10], gradient conflict correction [2], [11]–[13],
employing branching model architectures [12], [14], [15], and
learning separate models for each task-group [16]. While using
task-specific weights is cost-effective, determining them poses
a significant challenge, especially when considering fairness-
accuracy trade-offs for each task. Moreover, methods solely
relying on balancing task-weights, correcting gradients, or
learning fixed task-group models are constrained by their fixed
architecture [17]. Approaches addressing gradient conflicts
can be computationally slow, as they necessitate computing
and comparing conflicts for every possible task pair in each
epoch, a challenge compounded in fair-MTL due to increased
possibilities of conflict [12]. Notably, state-of-the-art methods
in mitigating negative transfer fail to address fairness conflict
issues, leading to bias transfer. In our experiments on the
ACS-PUMS dataset (Fig. 1), we illustrate the shortcomings
of two prominent MTL methods: TAG [16], which employs
task grouping, and Recon [12], which uses gradient correction.
These results underscore the inability of negative transfer
correction alone to resolve fairness conflicts.

Our proposed solution, FairBranch, addresses both negative
transfer and bias transfer by mitigating negative transfer
through accuracy conflict-aware task grouping and countering
bias transfer through fairness gradient conflict correction. We
create task-group branches based on parameter similarity and
correct fairness conflicts within each branch. This branching
strategy helps mitigate accuracy loss gradient conflicts, as
tasks with similar parameters exhibit similar loss gradient
directions. By limiting fairness conflict correction to within
task-group branches, our method scales effectively to a large
number of tasks.

Our key contributions can be summarised as follows: i)
We introduce the study of bias transfer (negative transfer of
fairness) to enable bias-aware sharing of information among
the tasks in MTL. ii) We propose FairBranch MTL that
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(a) TAG (b) Recon

Fig. 1: Fairness loss gradient conflicts observed in state-of-the-art MTLs addressing negative transfer of accuracy: (a) TAG [16] using
task-grouping and (b) Recon [12] using gradient correction on the ACS-PUMS Census Data 2018.

leverages parameter similarity to branch the network, and
performs fairness loss gradient correction within each branch
to mitigate bias transfer within the task groups. iii) We show
that FairBranch outperforms state-of-the-art MTL methods in
addressing negative and bias transfer.

II. RELATED WORKS

Related work can be categorized into two broad categories:
MTL methods that tackle negative transfer (negative transfer)
and fairness-aware MTL methods.

Various methods have been proposed to address negative
transfer in vanilla MTL, including balancing task-specific
weights [9], [10], gradient conflict correction [2], [11]–[13],
employing branching model architectures [12], [14], [15], and
learning separate models for each task-group [16]. Among
these, methods that utilize task-grouping (e.g., TAG [16] and
FAFS [14]) or are gradient conflict-aware (e.g., PCGrad [18]
and Recon [12]) emerge as direct competitors to our approach.
While task-grouping methods compare evaluated task loss
output to compute groups, our approach groups tasks based on
the learned parameter space, which we show is more effective
in addressing the negative transfer problem. Our strategy for
negative transfer is inspired by PCGrad but resolves conflicts
only within task branches, requiring fewer conflict corrections
and scaling better with a large number of tasks.

Fairness-aware MTL methods can be categorized into in-
processing approaches like L2TFMT [6] and WB-fair [7],
which modify the objective function by incorporating fairness
losses alongside accuracy losses for each task, and post-
processing approaches [5] that learn data-driven distance es-
timators to adjust learned class boundaries. However, none of
these prior works explicitly studied the problem of negative
transfer. Our work falls under the in-processing category of
fairness-aware learning, where we branch the model archi-
tecture based on parameter similarity in task-groups and then
correct fairness conflicts within each task-group to address the
joint problem of negative and bias transfer.

We provide a comparative overview of the various methods
most relevant to our work in Table I. The evaluation dimen-
sions include whether they address negative transfer, consider
fairness, and incorporates dynamic architecture adaptation.
Our method is the only one addressing all dimensions.

TABLE I: A comparative overview of SOTA

Methods Negative Transfer Fairness Dynamic Architecture
FAFS [14] ✓ - ✓
TAG [16] ✓ - -

PCGrad [18] ✓ - -
Recon [12] ✓ - ✓

L2TFMT [6] - ✓ -
WB-fair [5] - ✓ -
FairBranch ✓ ✓ ✓

III. BACKGROUND AND MOTIVATION

A. Background Setup

We assume a dataset D = X × S × Y consisting of
m-dimensional non-protected attributes X ∈ Rm, protected
attribute S ∈ S, and an output part Y = Y1×· · ·×YT referring
to the associated class labels for the output tasks 1, · · · , T .
For simplicity, we assume binary tasks, i.e., Yt ∈ {0, 1},
t = 1, · · · , T ; with 1 representing a positive (e.g., “granted”)
and 0 representing a negative (e.g.,“rejected”) class, and a
binary protected attribute: S = {g, g}, where g and g represent
demographic groups like “female”, and “male”.

Let M be a deep MTL model with (d+1) layers, parameter-
ized by the set θ ∈ Θ of parameters, which includes: d layers
of shared parameters θsh (i.e., weights of layers shared by all
tasks) connected in order of depth from 1 to d, and for every
task t a single layer of task-specific parameters θd+1

t (i.e.,
weights of the task specific layers) connected to the topmost
shared layer θdsh. Formally, we describe the parameters of M
as θ = θ1,··· ,dsh × θd+1

1 × · · · × θd+1
T , where θ1,··· ,dsh indicates

that shared parameters extends from depth 1 to d, we use θbα
to indicate any parameters θα at a certain depth b.

Typically, in fair-MTL for every task t, t = 1, · · · , T , the
goal is to minimize an accuracy loss function Lt(), and a
fairness loss function Ft(). In this work, for Lt() we use the
negative log likelihood, and for Ft() the robust log [6], [19]:

Lt(θ,X) =− Yt logMt(X, θ)− (1− Yt) log(1−Mt(X, θ)))

Ft(θ,X, S) =
∑

y∈{1,0}

max
(
Lt(θ,X | Yt = y, S = g),

Lt(θ,X | Yt = y, S = g)
)

(1)

where Mt(X, θ) is the outcome M on task t based on model
parameters θ. Note that F uses an operator (max) over several
L conditioned on different demographics (g, g), that enables
M to emphasise the demographic group on which it makes
the maximum likelihood error. Further, we denote ∇Lt

θα
, and
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∇Ft

θα
as the gradient for parameter θα w.r.t., loss Lt, and Ft

resp. on task t.
The unfairness of M on task t can be measured based on

the generic framework by [20] as the absolute difference in
predictions between g and g under a given set of conditions
C which govern the type of fairness definition used:

F
(t)
viol(M) =

∑
c∈C

|P (Mt(X)|S = g, c)− P (Mt(X)|S = g, c)|

(2)
In this work, we adopt two popular fairness measures [21]:
Equal Opportunity (EP

(t)
viol(M)) where C : {[Mt(X) = 1|Yt =

1]}, and Equalized Odds (EO
(t)
viol(M)) where C : {[Mt(X) =

1, Yt = 1], [Mt(X) = 0, Yt = 1]}. EP ephasizes fairness in the
positive class, while EO considers fairness across all classes.

B. Negative Transfer and Gradient Conflict
The term negative transfer is akin to the concept of negative

knowledge gain. Knowledge gain (KG) on a task t by any
MTL model M is assessed as the difference in accuracy
between M and a single-task learner (STL) H trained on t:

KG(t) : P (Mt(X) = Yt)− P (H(X) = Yt) (3)

The ideal scenario is to achieve a positive (or at least non-
negative) transfer, i.e., KG(t) ≥ 0 for all tasks. Any failure
to meet this condition is termed as negative transfer, where
KG(t) < 0. Research into conflicting gradients has identified
accuracy conflict as the root cause of the negative transfer
problem [2], [11], [12]. Accuracy conflict between any two
task gradients ∇Lt1

θα
and ∇θα

Lt2 is defined as:

conflict(∇θαLt1 ,∇θαLt2) : ∇θαLt1 ·∇θαLt2 < 0 (4)

It follows from Eq. 4 that accuracy conflict happens when
π
2
< ∡(∇Lt1

θα
,∇Lt2

θα
) < −π

2
.

C. Bias Transfer and Fairness Conflict
Following the idea of knowledge gain (Eq. 3), we define

the concept of discrimination gain (DG) for a given task t as
the difference of fairness violation for any MTL M against an
STL H on task t:

DG(t) : F
(t)
viol(M)− F

(t)
viol(H) (5)

We say a negative gain of fairness aka bias transfer is observed
when DG(t) > 0 for any given t. Notice that contrary to
negative transfer, the condition for bias transfer is attained
when the left part of Eq 5 is positive. This is because ideally
we want the bias of the MTL to be lower than that of STL.

We hypothesize that similar to negative transfer, bias trans-
fer is induced by a gradient conflict, which we term as fairness
conflict, conflict(∇Ft1

θα
,∇Ft2

θα
) : ∇Ft1

θα
·∇Ft2

θα
< 0.

Our aim is to ensure negative transfer free and bias transfer
free learning of an MTL M by ensuring conflict free learning
for both accuracy and fairness. Now, unrolling the gradient
update to a parameter θα for losses L and F of any two tasks
t1 and t2, learned by a vanilla fair-MTL with a learning rate
η, we have:

θα ← θα − η
∑

t∈{t1,t2}

∇θα(Lt + λtFt) = θα − η(∇Lt1
θα

+∇Lt2
θα

)− η(λt1∇
Ft1
θα

+ λt2∇
Ft2
θα

)

(6)

Now, from Eq. 6 we infer that for any two tasks we can tackle
the accuracy conflict and fairness conflict separately.

Fig. 2: A High Level Depiction of Branch Formation

IV. FAIRBRANCH

Our method, FairBranch, addresses both negative transfer
(negative transfer) and unfair transfer (bias transfer). In Al-
gorithm 1, we initialize each task t as a task-group {t}, with
task-specific parameters θt and shared parameters θ1,··· ,dsh of
d layers. TG denotes the collection of all such task-groups.
At each training loop, we compute task gradients ∇Lt

θα
and

λt∇θα
Ft for each task t = 1, · · · , T (line 2). Here, λt is an

intra-task weight addressing accuracy-fairness conflicts, set to
0 when ∇θtLt ·∇θtFt < 0.

We then correct fairness conflicts (FBGrad) in each task
branch (line 3). After updating M’s parameters (line 4),
we check the dc layer for conditions (line 5) and cluster
similar task-groups within TG based on branch parameter
similarities at dc − 1 (line 6). We merge task-groups in each
cluster by forming branch parameters at dc exclusive to the
cluster, minimizing accuracy conflicts and negative transfer.
Finally, we update dc (line 7) and continue training. We detail
the Branching mechanism at current depth dc (Sec. IV-A),
and Fairness-conflict correction mechanism on each branch
parameter in M (Sec.IV-B).

Algorithm 1 The FairBranch algorithm
Input:D = {(xi, si, y

1
i , · · · yT

i )}ni=1, M parameters: θ = θ1,··· ,dsh ×
θd+1
1 × · · · × θd+1

T
Initialisation : current layer depth: dc ← d, e ← 0, TG ←
{{1}, · · · , {T}}

1: Until {Lt} and {Ft} convergence do e← e+ 1
2: compute task gradients ∇Lt

θα
, λt∇Ft

θα
; ∀θα ∈ θ, t = 1, · · ·T

3: FBGrad: apply fairness-conflict correction on branches.
4: Update all θα ∈ θ (c.f., Eq 6)
5: if branch condition is True
6: apply branching mechanism on M
7: dc ← dc − 1
8: End if
9: End Until

Output:fair-Branch MTL M

A. Branching Mechanism

In FairBranch, branching occurs only if two conditions are
met: a) |TG| ≥ 2, indicating multiple groups within TG, and
b) dc > 1, meaning the current depth is not at the input layer.
Once both conditions hold true, branching proceeds with three
ordered steps as follows:
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1) Measuring task-group affinity:: The pairwise affinity
between the task-groups within TG is measured using a
parameter similarity function sim() and a threshold hyper-
parameter τ ∈ (0, 1].

A ← {v|v = sim(θdc+1
α , θdc+1

β ) ≥ τ ;α, β ∈ TG;α ̸= β} (7)

The idea is to cluster together only task-groups pairs that have
similarity higher than or equal to the given threshold. The
similarity function (sim()) that we use in FairBranch is based
on central kernel alignment [22], which has gained recent
popularity in parameter similarity measures [23]–[25] due to
its desired invariant properties [23]. Formally, it is defined as:

sim(θα, θβ) = cka(K(θα),K(θβ)) (8)

where θα, θβ are branch parameters exclusive to task-groups
α and β respectively at the layer depth just one above the
current depth dc, K(θα) = θαθ

⊺
α is a linear kernel function

with θ⊺α as the transpose of θα, and cka is kernel alignment
measure defined as:

cka(Kα,Kβ) =
tr(I(Kα)I(Kβ))√

tr(I(Kα)I(Kα))tr(I(Kβ)I(Kβ))
(9)

where I is a centering function [26], Kα is K(θα), and tr()
denotes trace of the resultant centred matrix.

2) Clustering on affinity: We use the affinities A (Eq. 7) to
cluster the task-groups in TG. Although our algorithm offers
flexibility in the selection of the clustering method, in our
implementation we opted for the Single Linkage Hierarchical
Clustering (SLHC) [27]. We start with an empty cluster C = ∅,
and then recursively include task (or task group) pairs in C,
greedily on the basis of A until A is ∅:

Until A ̸= ∅ : C ← C ∪ {{α̃, β̃}}|α̃, β̃ = argmax
α,β∈TG

A;

A ← A/{{sim(α, β)|α = α̃ ∨ β = β̃;α, β ∈ TG}
(10)

The tasks (or tasks-groups) that are not included in C are added
in TG as a singleton. The main motivation behind finding
such binary task groups is to limit the scope of the number
of possible conflicts (both accuracy and fairness) between
task groups in any given branch, which enables the model
to efficiently scale to a large number of tasks.

TG← Cluster(TG,A) ∪ {{γ}|sim(θγ , θα) /∈ C, γ, α ∈ TG}
(11)

3) Branch formation: Next, we use the updated task-groups
TG (Eq. 11) to form the branches brdc . Branches are a
collection of parameters brdc = {θbrt |θbrt = copy(θdcsh); t =

1, · · · , |TG|}, where every parameter θbrt initiates with a
replica of the shared parameter θdc

sh which is currently being
branched. In M, we replace the parameter θdc

sh with the
parameters collection brdc , and connect each θbrt ∈ brdc with
θd−1
sh below. Based on the above, each θbrt is connected with a

unique parameter pair θdc+1
α , θdc+1

α s.t., (α, β) ∈ p̃, ∃!p̃ ∈ TG.
Fig. 1 depicts a toy example to highlight the architectural
change M undergoes by forming new branches.

B. Fairness Conflict Correction

Denoted by FBGrad, in our FairBranch algorithm this step
is responsible to mitigate bias transfer. This step is highly
motivated from PCGrad update [18] for correcting gradient
conflicts. The key difference here is that for the fairness
gradient correction instead of the adjusting the gradients at

every layer, we look only into the layers that have been
branched. The intuition is to apply fairness correction only
on parameters without any negative transfer, to limit the
scope of cross-task fairness-accuracy conflicts (this problem
is discussed in detail in Sec. V). To execute this step we look
into each of the branch parameters θbbrt ∈ brb and b runs from
d to , dc, and identify the tasks (t1, t2, · · · ) connected to θbbrt .

For each pair (if any) of tasks t1 and t2 connected with any
branch θbr, we check for fairness conflicts between ∇Ft1

θbr
and

∇Ft2

θbr
(c.f. Sec III-B). Iff conflict is found we correct both the

task gradients by FBGrad function w.r.t. one another, where
update of ∇Ft1

θbr
w.r.t ∇Ft2

θbr
is defined as:

FBGrad : ∇Ft1
θbr

= ∇Ft1
θbr
−
∇Ft1

θbr
·∇Ft2

θbr

∥∇Ft2
θbr
∥2
∇Ft2

θbr
(12)

V. THEORETICAL ANALYSIS

A. Why Parameter Similarity?

Let us assume any two tasks t1 and t2, are identified to
form a group by FairBranch. Now, using the Hilbert-Schmidt
Independence criterion [28] and Eq. 7 and 8, we get

sim(θt1 , θt2) ≥ τ =⇒
∥θ⊺t2θt1∥

2

F
∥θ⊺t1θt1∥F∥θ

⊺
t2
θt2∥F

≥ τ (13)

where ∥ · ∥F is the Hilbert-Schmidt norm. Since, we choose
τ > 0, we have tr(θ⊺t2θt1) > 0 i.e. θt1 ·θt2 > 0. Thus, θt1 and
θt2 are moving in similar directions.

Let Lt be a Lipschitz continuous and convex [29] task loss,
and θ

(0)
t = C be the initial parameters for task t. Also let

Lt(j) be the loss, and θt(j) be the parameter for t at j-th
epoch; then after e epochs we have:

θt(e)← θt(e− 1)− η∇Lt(e)

θt(e−1) = θt(0)− η

e∑
j=1

∇Lt(j)

θt(j−1) (14)

Since θt1(0) = θt2(0) = C, geometrically we assume θt1(0)
and θt2(0) to be the common starting point of t1 and t2
(say (0,0) in 2D co-ordinates). Without loss of general-
ity, we can say that

∑e
j=1 ∇θt(j−1)Lt(j) is the resulting

gradient vector of all the gradients observed till epoch e
for task t. Thus, we can infer that

∑e
j=1 ∇θt1 (j−1)Lt1(j) ·∑e

j=1 ∇θt2 (j−1)Lt2(j) > 0 when sim(θt1 , θt2) ≥ τ , i.e. the
resulting gradient movement for both tasks is in a similar
direction. Since, such resulting gradients are accumulated over
multiple batches of the data, it is expected to be stable and give
a strong estimation of the direction of minima. Henceforth,
our intuition is that given a strong similarity (τ → 1), we can
ensure that the direction of minima of two tasks t1 and t2 is
similar when sim(θt1 , θt2) ≥ τ , and thus is expected to move
together without any conflict.

B. Why Only Branch Specific Fairness Correction?

In fair-MTL frameworks, at least two different losses(Lt

and Ft) per task t are accommodated, which can lead to
conflicts when gradients from these losses disagree with each
other in the direction of update. With T tasks, a fair-MTL has
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Fig. 3: Example Showing Effect of Fairness Gradient Correc-
tion on Task-grouped Branches.

the potential for T (2T − 1) conflicts at every θdsh layer. For
instance, with only two tasks t1 and t2, there are T (2T −1) =
6 conflicts, including four inter-task conflicts ((∇L1

,∇L2),
(∇F1

,∇F2
), (∇L1

,∇F2
), (∇L2

,∇F1
)), and two intra-task

conflicts ((∇L1 ,∇L2)). In our algorithm (Sec. IV), we address
intra-task conflicts by imposing a strong condition on λt

and handle inter-task accuracy conflicts ((∇L1
,∇L2

)) in the
created branches by grouping related tasks. Thus, in the
branched layers, applying FBGrad not only resolves fairness
conflicts ((∇F1 ,∇F2)) but also reduces the likelihood of inter-
task fairness-accuracy conflicts ((∇L1 ,∇F2), (∇L2 ,∇F1)) in
most scenarios. Examining potential post-conflict correction
scenarios within branches unveils five possibilities, with four
leading to FBGrad projecting fairness gradients towards zones
free of inter-task fairness-accuracy conflicts. Two illustrative
hypothetical examples, showcased in Fig 3, demonstrate these
scenarios. However, in shared layers, lacking a branch mech-
anism precludes such assurances. Correcting fairness conflicts
in shared layers might inadvertently worsen inter-task fairness-
accuracy conflicts. Our experimental findings will showcase
how fairness conflict correction in task-group branches effec-
tively mitigates negative and biased transfer.

VI. EXPERIMENTS

Datasets: We conduct experiments on two datasets across four
setups. The first two setups use tabular data from the ACS-
PUMS dataset [30], following a protocol of training on one
year and testing on the next [6]. The setups are: i) ACS-
PUMS 18-19, trained on 2018 and tested on 2019 census
data, and ii) ACS-PUMS 19-21, trained on 2019 and tested
on the latest available 2021 census data. We use gender as
the protected attribute in both setups. The next two setups
are based on the CelebA dataset [31], consisting of celebrity
face images. We follow the provided training-test partition.
Adopting an existing fair-MTL protocol [6], we create two
experiment setups: i) CelebA gen with 17 tasks and gender
as the protected attribute, and ii) CelebA age with 31 tasks
and age as the protected attribute. Competitors: We compare
FairBranch with six state-of-the-art MTL methods. The MTL
competitors are selected from every direction that our work
covers:

• Task-grouping: i) FAFS [14], and ii) TAG [16].
• Conflict-aware: iii) PCGrad [2], and iv) Recon [12].
• Fairness-aware: v) L2TFMT [6] and vi) WB-fair [5].

TABLE II: Comparative Results: K̄G (Higher is better) for Accu-
racy (Negative Values indicates Negative Transfer), and D̄G (Lower
is better) for Fairness (Positive Values indicates Bias Transfer). Best
Values in Gray Cell, Second Best underlined.

Model Metric ACS-PUMS CelebA
18-19 19-21 gen age

Ta
sk

-g
ro

up
in

g

FAFS
K̄G 0.028 0.012 -0.011 -0.024

D̄G
EP
EO

0.009 0.019 0.015 0.017
0.013 0.020 0.019 0.026

TAG
K̄G 0.022 0.064 -0.012 -0.010

D̄G
EP
EO

0.008 0.015 0.015 0.013
0.014 0.022 0.010 0.017

C
on

fli
ct

aw
ar

e

PCGrad
K̄G 0.015 0.025 0.035 0.025

D̄G
EP
EO

0.004 0.006 0.007 0.009
0.006 0.006 0.008 0.004

Recon
K̄G 0.025 0.017 0.026 0.028

D̄G
EP
EO

0.015 0.014 -0.001 0.005
0.040 0.036 0.001 0.009

Fa
ir

ne
ss

aw
ar

e

L2TFMT
K̄G 0.024 -0.005 -0.022 -0.020

D̄G
EP
EO

0.001 0.001 -0.002 0.0
0.002 0.003 0.001 0.003

WB-fair
K̄G -0.016 0.002 -0.051 -0.080

D̄G
EP
EO

0.001 0.004 0.001 0.002
0.002 0.006 0.003 0.007

O
ur FairBranch

K̄G 0.036 0.032 0.036 0.006

D̄G
EP
EO

-0.001 0.0 -0.004 -0.001
0.0 0.0 -0.003 0.0

We implement the methods in their vanilla form1.
Evaluation Measures: For comparative overall evaluation in
Sec. VI-A, we report the average knowledge gain K̄G =
1
T

∑
t KG(t) (Eq. 3) for negative transfer, and average dis-

crimination gain D̄G = 1
T

∑
t DG(t) (Eq. 5) for bias transfer.

Then, to obtain in-depth per-task performance comparison of
the models, we plot the negative and bias transfer distribution
over the tasks. For qualitative analysis of FairBranch in
tackling negative and bias transfer, in Sec. VI-B we present the
distribution of fairness conflicts and accuracy conflicts of the
learned gradients observed between the tasks while training.
To understand which tasks have the most conflicts over the
training, we plot the cross-task conflict heat-maps.
Hyperparameters: For tabular setups, we use τ = 0.7, we
split the training data into 70:30 training:validation, stratified
across all census states. For computer vision setups, we use
τ = 0.8, and the predefined training:validation:test split [31].

A. Comparative Results

FairBranch outperforms the competitors on average
knowledge and discrimination gain. Table II presents the
K̄G and D̄G values of various MTLs across different data
setups. Notably, FairBranch achieves the best outcome in 10
instances and the second best in one out of 12 occasions.

1No fairness correction for FAFS, TAG, PCGrad, and Recon.
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(a) ACS-PUMS 18-19 (b) ACS-PUMS 19-21

(c) CelebA gen (d) CelebA age

Fig. 4: Comparison on Knowledge Gain (KG) and Discrimination Gain (DG) Distribution: Each box provides comparison on a given Metric
Labelled on Top. In boxes every triangle depicts Difference between an MTL with Task Specific STLs. Red Triangles indicates Negative/Bias
Transfer and Green indicates Positive/Unbiased Gain. Positive Difference for Accuracy, Negative for Fairness are better.

It is only outperformed by TAG for K̄G on ACS-PUMS 19-
21 and by Recon on CelebA age. Importantly, FairBranch
consistently achieves positive (K̄G > 0) average knowledge
gain, addressing negative transfer, and non-positive (D̄G ≤ 0)
average discrimination gain, tackling bias transfer. Among
the competitors, fairness-aware MTLs (L2TFMT and WB-fair)
handle discrimination gain better than accuracy-based conflict-
aware and task-grouping methods, with L2TFMT having a
slight edge over WB-fair. However, none of the competitors
achieve negative D̄G values, indicating evidence of bias
transfer even in fair-MTL. Accuracy-based conflict-aware MTL
methods like PCGrad and Recon excel in achieving positive
average knowledge gain across all experiment setups. Task-
grouping methods FAFS and TAG perform well in addressing
negative transfer on tabular data but exhibit negative knowl-
edge gain on visual data, indicating signs of negative trans-
fer. FairBranch with parameter-based grouping combines the
benefits of conflict-awareness and task-grouping, effectively
mitigating both negative and bias transfer.

FairBranch tackles negative transfer and bias transfer
better than the competitors. To highlight how FairBranch
performs against the competitors on negative transfer and bias
transfer, we illustrate in Fig. 4 the distribution of knowledge
gain (see Eq. 3) w.r.t., accuracy, and discrimination gain w.r.t.,
EP, and EO of each MTL over the tasks in each dataset. In
each of the boxes, green triangles indicate (‘> 0’ for accuracy

and ‘< 0’ for fairness) a positive/unbiased transfer, while red
triangles indicate a negative/bias transfer of knowledge. We
first note that overall FairBranch predominantly exhibits green
triangles in accuracy on all data setups, which verifies the
achievement of our goal of avoiding negative transfer. On
tabular data (Fig 4a and 4b) for both the measures EO and
EP, our performance is very close (DG(t)≈ 0) to that of STL
in all tasks, thus remaining unaffected from bias transfer. On
visual data (Fig 4c and 4d), we mostly have unbiased transfer,
achieving dense concentration of low green triangles, for both
EO and EP. But we still suffer from bias transfer in some of
the tasks on both data setups. Interestingly, even the fair-MTL
methods (L2TFMT and WB-fair) also fail to overcome this
challenge, showcasing the difficulty of bias transfer under a
large number of tasks.

Tackling negative transfer on parameter space is advan-
tageous over on output (loss) space. The gradient cor-
rection competitors (PCGrad and Recon), although better
than FairBranch on accuracy by achieving higher positive
difference, both fail to tackle bias transfer by consistently
producing many red triangles across all data setups. Task-
grouping methods (FAFS and TAG) tackle with the negative
transfer in tabular data, but collapse when dealing with a large
number of tasks in visual data setups. The finding highlights
the advantage of focusing on parameter space (like PCGrad
and Recon), rather than on actual output space (like FAFS and
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(a) CelebA gen

(b) CelebA age

Fig. 5: Accuracy and Fairness Loss Gradient Conflicts of FairBranch over Training Epochs. Each Box shows Distribution of Angle of
Conflict Observed at an Epoch. Less Densely Crowded Lower Boxes are Better.

TAG), and justifies our reason of using parameter similarity
to identify task-groups.

Fig. 6: Heatmap of Accuracy and Fairness Conflicts on CelebA gen.
Brighter colour indicates Higher number of Conflicts.

B. Accuracy and Fairness Conflicts

In this section, we aim to analyze the reasons behind the
errors observed in FairBranch in Section VI-A. Despite over-
coming the challenge of negative transfer in visual data setups,
FairBranch still suffers from bias transfer in certain tasks. Our
hypothesis suggests that while FairBranch effectively resolves
accuracy conflicts during training, it struggles to completely

eliminate fairness conflicts in certain tasks. To verify this, we
plot the distribution of accuracy and fairness conflicts in Fig. 5.

In both CelebA gen (Fig.5a) and CelebA age (Fig.5b),
FairBranch reduces both the frequency and severity of con-
flicts as training progresses. However, towards the end of
training, the accuracy conflict boxes are much smaller than
the fairness conflict boxes, consistent with our observations in
Section VI-A. We investigate whether conflict occurrence is
dominated by a few tasks, given that bias transfer is observed
in only a few tasks (cf. Fig.4c, 4d). Heatmaps of conflicts
between tasks accumulated over training epochs are plotted in
Fig6 and 7. While no task is free of either accuracy or fairness
conflicts, some task pairs exhibit fewer conflicts over multiple
epochs and at multiple layer depths during training.

An intriguing observation is that attribute prediction tasks
like ‘Attractive’ in Fig. 6 and ‘5 o Clock shadow’ in Fig. 7
have fewer accuracy conflicts but more fairness conflicts.
These pattern suggests that while such tasks contribute pos-
itively to accuracy knowledge transfer, they hinder fairness
knowledge transfer for most tasks, highlighting the complex
decision-making challenges faced by fair-MTL.

VII. CONCLUSION

We introduced the study of bias transfer and showed that
learning a fair-MTL model requires to solve the combined
problem of bias transfer to tackle discrimination and negative
transfer to tackle accuracy issues. We showed that simi-
lar to accuracy conflicts for negative transfer, bias transfer
originates from fairness conflicts between task gradients. We
proposed FairBranch, an in-processing algorithm that tackles
the problem at the level of model parameters using param-
eter similarity-based branching to alleviate negative transfer,
and with fairness loss gradients correction for reducing bias
transfer. Empirically we show that FairBranch outperforms
many state-of-the-art MTLs for both fairness and accuracy. Our
qualitative analysis points out the scalability issues of conflict
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Fig. 7: Heatmap of Accuracy and Fairness Conflicts on CelebA age.
Brighter colour indicates Higher number of Conflicts.

occurrence in fair-MTL, and highlights some open challenges
for future work.
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