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Abstract. Conventional fair graph clustering methods face two primary
challenges: i) They prioritize balanced clusters at the expense of cluster
cohesion by imposing rigid constraints, ii) Existing methods of both
individual and group-level fairness in graph partitioning mostly rely on
eigen decompositions and thus, generally lack interpretability. To address
these issues, we propose iFairNMTF, an individual Fairness Nonnegative
Matrix Tri-Factorization model with contrastive fairness regularization
that achieves balanced and cohesive clusters. By introducing fairness regu-
larization, our model allows for customizable accuracy-fairness trade-offs,
thereby enhancing user autonomy without compromising the interpretabil-
ity provided by nonnegative matrix tri-factorization. Experimental evalu-
ations on real and synthetic datasets demonstrate the superior flexibility
of iFairNMTF in achieving fairness and clustering performance.

Keywords: Fair Graph Clustering · Fair-Nonnegative Matrix Factoriza-
tion · Fair Unsupervised Learning · Individual Fairness.

1 Introduction

Graph-structured data is ubiquitous in various real-world applications including
recommender systems, e-commerce, social networks, and neural networks. Graph
clustering is essential for identifying meaningful patterns within graphs. Despite
the advancements in algorithmic fairness for supervised learning scenarios which
are mostly tailored for independent and identically distributed (i.i.d.) data [20], the
topic of fairness is less explored in the unsupervised learning domain and especially
for graphs. A motivating example comes from the educational domain [22]: how to
divide students in a classroom into smaller groups for collaborative assignments.
It is demanded to diversify group members from different genders or races while
respecting existing friendship networks and maintaining connections. Graphs
comprise non-i.i.d. data; thus, the broad literature on fairness for i.i.d. data is
generally not applicable to graphs [6]. However, some approaches mitigate bias
by converting graph data into tabular form and leveraging existing methods.
Additionally, there exist bias mitigation approaches that transform tabular data
into hypergraphs based on dataset similarities, e.g. [8].
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In the realm of fairness in i.i.d. clustering, the pioneering work of [3] introduced
balance score, a fairness measure rooted in statistical parity [7], aiming at clusters
of balanced demographic subgroups given a sensitive feature. Inspired by this
work, [13] proposed a spectral graph clustering (SC) framework promoting group
fairness that was later extended in [26] to scaled networks. However, there is not
much literature on clustering with individual fairness, which prioritizes treating
similar individuals (nodes in our context) similarly. A spectral model based on
PageRank was proposed in [12] introducing a notion of individual fairness but
for supervised node-classification tasks, whereas [27] introduces an individual-
fair model for multi-view graph clustering. Only in [10], an (unsupervised)
graph partitioning method employed an individual fairness approach which
constrains a spectral clustering with a representation graph constructed solely
based on sensitive information of individuals. SC methods are based on minimizing
either the Ratio-cut or the Normalized-cut heuristic that generally tend to
minimize the number of links pointing outside each cluster [17]. These cut-based
heuristics do not guarantee to discover the optimal graph partitioning. Thus,
incorporating (hard) fairness constraints into these rigid frameworks, which is
usually also not a trivial and straightforward process, makes achieving the optimal
solution challenging such that usually a relaxed form of the problem is being
solved as in [10, 13]. In addition, since the solution to these hard-constrained
spectral approaches is based on the eigen-decomposition of the graph, it lacks
interpretability.

To address the identified issues, we introduce a versatile fairness-aware model
for graph clustering, the so-called individually-Fair Symmetric Nonnegative
Matrix Tri-Factorization (iFairNMTF) model with contrastive regularization.
Building on the symmetric NMF [14,16], a model tailored for graph clustering,
the NMTF [21] extends its capabilities inheriting its intrinsic interpretability
through non-negativity and direct clustering, while other models require steps
like graph and/or node embedding [4,5], representation learning [25], or eigen-
decomposition [12, 13, 26] before performing the final clustering. Additionally,
NMTF provides better clustering and also introduces an explicit interpretabil-
ity factor for inter-cluster interactions. We integrate these capabilities with a
novel soft individual fairness regularization in iFairNMTF with an adjustable
parameter λ for balancing both fairness and clustering objectives. Our key con-
tributions include: i) A flexible joint learning framework with adjustable fairness
regularization, accommodating customization of fairness enforcement in relation
to clustering quality. The framework supports the linear integration of fairness
and other problem-specific constraints via a customizable cost function. ii) In-
troduction of a contrastive fairness regularization, promoting the distribution
of similar individuals across clusters based on sensitive attribute membership
while ensuring distinct representation of dissimilar individuals within each cluster.
iii) Retention of SNMF advantages, providing an interpretable data representa-
tion due to non-negativity and direct clustering. iv) Integration of an explicit
interpretability factor, exposing inter-cluster relationships. v) Extensive experi-
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ments demonstrating the efficacy of our model with soft-fairness constraints and
emphasizing the significance of the adjustable trade-off optimization.

To the best of our knowledge, our proposed joint learning contrastive frame-
work is the first attempt to integrate an NMF model into a fairness-aware learning
framework. The rest of this paper is organized as follows: In Section 2, we review
related work. Our method is introduced in Section 3. The experimental evaluation
is presented in Section 4. Conclusions and outlook are discussed in Section 5.

2 Background and Related Works

Problem Formulation Let us assume an undirected graph G = (V,E) where
V = {v1, v2, . . . , vn} is the set of n nodes and E ⊆ V ×V is the set of edges. The
adjacency matrix A ∈ Rn×n encodes the edge information; the existence or non-
existence of an edge between two nodes vi, vj is modeled as aij = 1 and aij = 0,
respectively. Also, we assume no self-loops (edge connecting a node to itself), so
aii = 0 for all i ∈ [n]. Let us further assume that the set of vertices constitutes
m disjoint groups identified based on a sensitive attribute e.g., gender or race,
such that V = ∪̇s∈[m]Vs. The goal is to find a non-overlapping clustering of V
into k ≥ 2 clusters V = {C1∪̇ . . . ∪̇Ck} which is subject to individual fairness.

Individual Fairness Individual fairness primarily formalized in [7] identifies a
model f to be fair if, for any pair of inputs vi, vj which are sufficiently close (as
per an appropriate metric), the model outputs f(vi), f(vj) should also be close
(as per another appropriate metric). In other terms, pairwise node distances in the
input space and output space should satisfy the Lipschitz continuity Condition.
Specifically, it requires the distance of any node pairs in the output space to
be smaller or equal to their corresponding distance in the input space (usually
re-scaled by a scalar). Given a pair of nodes vi and vj , the Lipschitz condition is:

D(f(vi), f(vj)) ≤ L · d(vi, vj) (1)

where f(·) is the predictive model producing the node-level outputs (e.g., embed-
dings). D(·, ·) and d(·, ·) are the distance metrics of output and input space and
L is the Lipschitz constant that re-scales the input distance between nodes vi, vj .
In order to measure individual fairness based on L, [29] proposed consistency on
non-graph data with the intuition to measure the average distance of the output
between each individual and its k-nearest neighbors such that:

1− 1

n · k

n∑
i=1

∣∣∣f(xi)−
∑

j∈kNN(xi)

f(xj)
∣∣∣ (2)

where f(xi) is the probabilistic classification output for node features xi of node
vi and kNN() is the neighborhood of node vi. In general, a larger average distance
indicates a lower level of individual fairness.



4 S. Ghodsi et al.

Individual Fairness for Graph Clustering The notion of individual fairness
in graph mining [6] can be divided into three categories by application: i) node
pair distance-based fairness, ii) node ranking-based fairness, and iii) individual
fairness in graph clustering. The core idea in the first category is the investigation
of achieving individual fairness in node representation and node embedding
problems based on pairwise node distances. For example, in [15] a notion of
consistency is proposed based on a similarity matrix S that characterizes node
similarity in input space and can be derived from node attributes, graph topology,
or domain experts. Moreover, in [12] a measure is proposed that calculates the
similarity-weighted output discrepancy between nodes to measure unfairness.
This metric calculates the weighted sum of pairwise node distance in the output
space, where the weighting score is the pairwise node similarity. Hence for any
graph mining algorithm, a smaller value of the similarity-weighted discrepancy
typically implies a higher level of individual fairness.

The second category aims to achieve individual fairness by establishing node
rankings. This involves creating two ranking lists in the input and output space,
R1 and R2 based on a pairwise similarity matrix S in the input space. The
satisfaction of individual fairness is determined by the alignment of these ranking
lists, ensuring that R1 and R2 are identical for each individual [5].

The third category which remains relatively less explored and is the focus
of our work, surveys individual-level fairness for graph clustering. In essence,
if all neighbors of each node in a graph, are proportionally distributed to each
cluster, individual fairness is then fulfilled [9]. One of the pioneering recent works
in this direction is the work of Gupta, et.al., [10] according to which a clustering
algorithm satisfies individual fairness for node vi if:

|{vj : Ai,j = 1 ∧ vj ∈ Ck}|
|Ck|

=
|{vj : Ai,j = 1}|

|V |
(3)

for all clusters Ck. The key intuition is that for each node, the ratio occupied by
its one-hop neighbors in its cluster should be the same as the ratio occupied by
its one-hop neighbors in the entire population (i.e. the main graph).

3 The iFairNMTF Model

Inspired by the individual fairness of [10], we propose a novel individual fairness
regularization for graph clustering. It constitutes a contrastive graph regulariza-
tion that incorporates positive and negative elements, signifying the attraction
and repulsion of individuals towards their similar and dissimilar neighbors, based
on a sensitive (node) attribute. By integrating this regularization into a flexible
clustering framework, we introduce a unique individually Fair Non-negative
Matrix Tri-Factorization joint learning model (iFairNMTF).

3.1 The iFairNMTF Model Formulation

Symmetric NMF (SNMF) [14] is an extension of the traditional NMF that
transforms it into a versatile graph clustering model. This model factorizes an
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adjacency matrix A ∈ Rn×n
+ and is based on the assumption that similar samples

(Aij > 0) should have similar representations (hih
⊤
j > 0) and dissimilar samples

(Aij = 0) should have opposite representations (hih
⊤
j = 0), where H can be

interpreted as the node-to-cluster membership matrix. More formally:

min
H≥0
∥A−HH⊤∥2F , (4)

An extended form of the SNMF is the SNM-Tri-Factorization [21] (we omit
the "S" and refer NMTF hereafter) which has been tailored to address graph
clustering tasks [1,11]. It takes into account the cluster-cluster interactions matrix
using an additional factor W such that, Aij ≈ h(i)Wh(j)⊤. More formally:

min
H,W≥0

∥A−HWH⊤∥2F , (5)

where W can be interpreted as the cluster interactions. We build upon this
model and extend it into an individual fairness joint learning framework using a
contrastive regularization. More formally:

min
H,W≥0

∥A−HWH⊤∥2F + λRC(H), (6)

Schematically, the model block diagram is illustrated in Figure 1. The left term
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Fig. 1: Schematic representation of the iFairNMTF model with contrastive regularization.

comes from Equation (5) and RC(H) is a contrastive regularization constraining
the cluster indicator H relatively adjusted by the magnitude of a flexible λ
parameter ensuring its alignment with group demographics. The contrastive term
C = P −N consists of a positive and a negative component:

Ni,j =

{
1, if gi = gj

0, otherwise.
Pi,j =

{
1, if gi ̸= gj

0, otherwise.
(7)

Nij = Nij/

n∑
r=1

Nir, Pij = Pij/

n∑
r=1

Pir,
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which can be enforced to apply the attraction of different demographic groups
into the same cluster, and repulsion of same-group members to ensure diversity
of their distribution into different clusters according to Equation (8):

min
H

RC =

n∑
i=1

n∑
j=1

∥h(i) − h(j)∥2Cij = Tr(H⊤LH). (8)

where L = D −C is the graph Laplacian and Dii =
∑n

j=1 Cij . By adding the
contrastive regularization RC to the NMTF (5), we derive the final objective
function (loss function) of iFairNMTF, L = LF + λRC as follow:

min
H,W≥0

∥A−HWH⊤∥2F + λTr(H⊤LH), (9)

The objective function in Equation (9) is a combination, trading-off between
the clustering loss and the constrastive regularization term to ensure individual
fairness. The hyper-parameter λ ∈ [0,+∞) controls the compromise between
clustering performance and fairness. Smaller λ implies a higher importance of the
clustering performance and prompts the model to prioritize generating strong
and cohesive clusters. Conversely, a higher λ prioritizes fairness, prompting the
model to create diversified clusters that fairly represent groups of Vs.

3.2 The iFairNMTF Model Optimization

In this section, we focus on solving the iFairNMTF model. The objective function
in Equation (9) is a fourth-order non-convex function with respect to the entries
of H and has multiple local minima. For these types of problems, it is difficult
to find a global minimum; thus a good convergence property we can expect is
that every limit point is a stationary point. Therefore, we adopt multiplicative
updating rules to update the membership matrix H and introduce two Lagrangian
multiplier matrices of Θ, and Φ to enforce the nonnegative constraints on H,
and W respectively, resulting in the following equivalent objective function:

min
H,W

L = ∥A−HWH⊤∥2F + λTr(H⊤LH)− Tr(Θ⊤H)− Tr(Φ⊤W ),

which can be further rewritten as follows:

min
H,W

L =Tr(A⊤A− 2A⊤HWH⊤ +HW⊤H⊤HWH⊤)

+ λTr(H⊤LH)− Tr(Θ⊤H)− Tr(Φ⊤W ). (10)

The partial derivative of L with respect to H is

∂L

∂H
=− 2A⊤HW − 2AHW⊤ + 2HW⊤H⊤HW (11)

+ 2HWH⊤HW⊤ + 2λLH −Θ.
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Algorithm 1 Individual Fair Nonnegative Matrix Tri-Factorization (iFairNMTF)
Input: adjacency matrix A, group set g, latent factor k, trade-off parameter λ;
Output: cluster assignment M ;
1: Construct the contrastive graph C according to (7);
2: while convergence not reached do
3: Update cluster-membership matrix H according to (13);
4: Update cluster-interaction matrix W according to (16);
5: end while
6: Calculate cluster assignment Mi ← argmax(h(i)),∀i ∈ {1, . . ., n}
7: return cluster-membership matrix H and cluster-interaction matrix W ;

By setting the partial derivative ∂L
∂H to 0, we have:

Θ = −2A⊤HW − 2AHW⊤ + 2HW⊤H⊤HW + 2HWH⊤HW⊤ + 2λLH.
(12)

From the Karush-Kuhn-Tucker complementary slackness conditions (KKT),
we obtain H ⊙Θ = 0 where ⊙ denotes the element-wise product. This is the
fixed point equation that the solution must satisfy at convergence. By solving
this equation, we derive the following updating rule for H:

H ←H ⊙
( A⊤HW +AHW⊤ + λL−H

HW⊤H⊤HW +HWH⊤HW⊤ + λL+H

) 1
4

. (13)

To guarantee the nonnegativity, we separate the positive and negative elements
as L = L+ −L−. Similarly, we differentiate L with respect to W such that:

∂L

∂W
= −2H⊤AH + 2H⊤HWH⊤H −Φ (14)

By setting the partial derivative ∂L
∂W to 0, we obtain Φ as:

Φ = −2H⊤AH + 2H⊤HWH⊤H. (15)

From the complementary slackness KKT conditions we obtain W ⊙Φ = 0.
This is another fixed point equation that the solution must satisfy at convergence.
Finally, by solving this equation, we derive the following updating rule for W :

W ←W ⊙ H⊤AH

H⊤HWH⊤H
. (16)

4 Experimental Evaluation

4.1 Experimental Setup

Datasets In the paper, six real-world and three synthetic networks are used for
benchmarking the performance of the proposed method against competitors. Our
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synthetic networks are generated according to a generalized Stochastic Block
Model (SBM) [13] with equal-sized clusters |Cl| = n/k and groups |Vs| = n/g
randomly distributed among the clusters. We generate three SBM networks of
2K, 5K, and 10K nodes with k = 5 clusters and g = 5 groups. Real datasets
include three high school friendship networks [18]: Facebook, Friendship, and
Contact-Diaries which represent connections among a group of French high school
students. DrugNet [28] is a network encoding acquaintanceship between drug
users in Hartford, CT. LastFMNet [24] contains mutual follower relations among
users of Last.fm, a recommendation-based online radio and music community
in Asia. Lastly, NBA is a network containing relationships between around 400
NBA basketball players [4]. A detailed description of both real and synthetic
datasets, as well as instructions on generating the SBM networks are provided in
the supplementary material4. Likewise for dataset statistics including size and
number of sensitive groups and also details on cleaning the real datasets.
Competitors We compare iFairNMTF with four state-of-the-art graph cluster-
ing methods, namely, with two group-fair models: i) Fair-SC [13], and its scalable
version (ii) sFair-SC ) [26], iii) an individual-fairness model (iFair-SC ) [10] and
iv) a deep graph neural network (DMoN ) [25]. The three former models are
fairness-aware and have been already discussed. The latter model is one of the
very few DNNs developed for pure graph-partitioning problems, but does not
consider fairness. This model extends the general graph neural network (GNN)
architecture into a deep modularity optimization GNN. It operates on attributed
graphs, thus we pass the sensitive attribute as node-attribute to it. The number
of layers and learning rate are set according to the official source code provided
by the authors (layers = 64 or 512 for small and large networks, α = 0.001). The
number of epochs for DMoN and our method is 500. To produce reliable results,
all experiments are averaged over 10 independent runs.
Evaluation measures We use accuracy for measuring clustering assignment
quality on synthetic networks. For real-world networks, since the ground truth
cluster structures are unknown, we use Newman’s modularity (Q) measure [2,19]
which analyzes the homogeneity of clusters by calculating the proportion of
internal links in each cluster for a given partitioning compared to the expected
proportion of edges in a null graph with the same degree distribution. Modularity
is preferable over cut-based measures due to its robustness against imbalanced
cluster sizes. We measure the fairness of clustering in terms of the popular aver-
age balance (B) measure [13,26]: B = 1

k

∑k
l=1 Balance(Cl), where Balance(Cl)

calculates the minimum group proportion of Cl according to Equation (17):

Balance(Cl) = min
s̸=s′∈[m]

|Vs ∩ Cl|
|Vs′ ∩ Cl|

, (17)

where l ∈ [1, k] iterates over all the k clusters and Vs identifies each sensitive
group of the sensitive attribute. The minimum balance of each cluster can range
between [0, 1], thus their average also ranges between [0, 1].

4 Link to supplemental file and source codes: Github.com/SiamakGhodsi/iFairNMTF

https://github.com/SiamakGhodsi/iFairNMTF
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Parameters Our model has an adjustable hyper-parameter λ to trade-off between
the degree of fairness and clustering efficiency (Equation (9)). The range of λ
includes 50 values from [0, 100] with a median of 3 for small and from [0, 3500]
for large datasets (must be set separately for each dataset.). The effect of λ is
discussed in Section 4.3. The trade-off parameter λ can be set based on user
preferences between fairness and clustering quality. A practical way is to select
the best value according to the intersection point of B and Q, see Figure 3.

4.2 Clustering Quality vs Fairness

In real datasets, the ground truth partitioning of the networks is unknown,
therefore we report the performance for various number of clusters. Figure 2
illustrates the comparison of our method’s results in terms of Q (clustering
quality/ modularity) and B (fairness/balance) with those of other models on two
datasets, for various numbers of clusters. Dataset balance, highlighted by the
yellow dashed line, identifies the proportion of the smallest to the largest group
of the sensitive attribute, calculated according to Equation (17). For iFairNMTF,
the best λ values for each k are used. They are selected based on the intersection
of Q and B charts as in Figure 3: λ = 2 for DrugNet, and λ = 100 for LastFM.

Fig. 2: Performance comparison w.r.t. clustering quality/modularity Q and cluster fairness B (higher
values are better for both measures) on DrugNet, and LastFM for different number of clusters
k ∈ [2, 10]. k = 10 is the convergence point of all models.

As we can see from this figure, our model outperforms the SC-based models in
terms of both measures on both datasets. It reports a lower clustering quality Q
on LastFM than DMoN which is a neural model primarily focusing on identifying
the most modular partitioning of the graph through modularity optimization.
DMoN’s Q outcomes reveal varied patterns on LastFM and DrugNet, attributed
to differences in network size and density. Neural models typically excel in data-
intensive learning cycles, yielding better performance on larger datasets. For
instance, LastFM, a substantially larger graph with 5k nodes and 20k edges,
showcases this advantage compared to the 200-node DrugNet. However, in terms
of fairness, DMoN fails to generate diverse clusters w.r.t. the sensitive attribute,
as evidenced by low balance (B). In contrast, our model consistently achieves well-
distributed clusters, boasting the highest balance scores among all competitors.

Next, we compare all the models, on all the datasets with a fixed number
of clusters k = 5, the median of our selected number of clusters. The results
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are presented in Table 1. We distinguish between real and SBM networks based
on the measurable accuracy of partitioning quality in SBM networks, where
ground-truth clusters are known. Additionally, we present the average modularity
(Q) and balance (B) across all clusters for real datasets.

Table 1: Results illustrating modularity (Q) and average balance (B) of real networks, and accuracy
(Acc) and average balance (B) results on SBM networks for k = 5 clusters.(Bold-underline) and
underline indicate best and second best B results. Best Q, Acc are highlighted with boldfaced gray .

Network FairSC sFairSC iFairSC DMoN iFairNMTF

B Q B Q B Q B Q B Q

Diaries 0.708 0.612 0.809 0.684 0.699 0.647 0.263 0.145 0.648 0.640
Facebook 0.327 0.449 0.602 0.500 0.330 0.448 0.268 0.048 0.514 0.509
Friendship 0.391 0.483 0.485 0.627 0.374 0.392 0.183 0.140 0.631 0.669
DrugNet 0.052 0.263 0.052 0.270 0.061 0.263 0.000 0.326 0.124 0.588
NBA 0.083 0.000 0.323 0.113 0.072 0.000 0.036 0.057 0.286 0.150
LastFM 0.065 0.003 0.056 0.035 0.066 0.002 0.000 0.526 0.069 0.600

B Acc B Acc B Acc B Acc B Acc
SBM-2K 0.575 0.588 – – 0 0.799 – – 0.953 0.958
SBM-5K 0.995 0.998 – – 0 0.799 – – 0.941 0.962
SBM-10K 0.999 0.999 – – 0 0.600 – – 1 1

The results on real networks indicate the superiority of our proposed iFairN-
MTF model while reporting the best Q values on 5/6 (meaning 5 out of 6)
datasets and 3/6 w.r.t. B. Similarly, on SBM networks iFairNMTF stands the
best with 2/3 best accuracy and balance scores. It is worth noting that, in the
SBM experiment, DMoN and sFairSC failed to deliver the required number of
clusters resulting in empty clusters implying inconsistency in accuracy calculation
since the cluster assignments need to be masked to be comparable to true labels.

4.3 Parameter Analysis

This section studies the effect of the λ hyper-parameter on the iFairNMTF
model’s performance in terms of Q and B for k = 5 clusters in comparison with
the performance of other models. In this experiment, we also provide the results
of the vanilla SC and vanilla NMTF (the same as iFairNMTF with λ = 0) models.
The results are illustrated in Figure 3. Based on the results, a comparably good
value for the λ parameter can be selected in the intersection of the two measures.
These twin charts provide a nice opportunity to visualize the distribution of
results and make it easy to select. For instance, values in the range [0.1, 4] for
Drugnet and [55, 200] for LastFM are suggested. It gives the end-user a desirable
autonomy and depends on the user’s demands on how to select values for this
parameter. Consider that, since LastFM is a much larger network than Drugnet,
we increase the range of λ with 100 values from 0 to λ = 5000. Complementary
results can be found in the supplementary material (see footnote 4).
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Fig. 3: Parameter λ analysis of the iFairNMTF on Drugnet and LastFM-Net datasets with k = 5 in
terms of Q and B for λ ∈ [0, 100]. Solid lines depict modularity and dashed lines represent balance.
Only the behavior of FairSNMF depends on λ.

4.4 Interpretability Analysis

In this section, in addition to the inherent model interpretability through the
direct clustering given by the H factor, we investigate the explicitly interpretable
intermediary factor W ∈ Rk×k

+ of the iFairNMTF model introduced in Equa-
tion (5). This factor is a symmetric square matrix consisting of non-negative
scores representing the strength of cluster-cluster interactions. Diagonal elements
reflect intra-cluster connectivity such that the score for dense clusters is expected
to be higher. An illustrative example of a graph with 40 nodes distributed between
4 clusters and an imbalanced group distribution of 35% (square shape) to 65%
(triangle shape) is shown in Figure 4. We apply Algorithm 1 to this graph with
λ = 1, and the model identifies the true clusters. Entries corresponding to clusters
like I−II, which have no interactions (no links) together, are assigned a value of
0. Furthermore, the score for clusters IV−I is notably lower compared to IV−II,
reflecting the difference in the number of connecting links between these clusters.

I

II III

IV
 I II III IV 

I 2.9 0 4E-12 7E-13 

II 0 1.10 5E-08 5E-04 

III 4E-12 5E-08 2.74 0 

IV 7E-13 5E-04 0 1.91 

Fig. 4: Interpretability of W factor for a 40-node graph divided to 4 clusters. Shapes indicate groups.
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5 Conclusion and Outlook

In this paper, we introduce the iFairNMTF model, an individually fair flexi-
ble approach for graph clustering that takes sensitive (node) attributes into
account. iFairNMTF modifies the NMTF model’s objective function by incor-
porating a contrastive penalty term, ensuring that clustering outcomes align
with sensitive demographic information and thereby promoting individually fair
cluster representations through the attraction and repulsion advantage of the
proposed contrastive regularization term. The trade-off regularization parameter
λ empowers users to customize the balance between clustering performance and
fairness based on their specific needs. Our experiments on both real and synthetic
datasets demonstrate that adjusting the trade-off parameter allows for achieving
a desired equilibrium between maximizing clustering cohesion and promoting
fairness. Promising directions for future research include exploring multi-objective
techniques to effectively balance fairness and cohesion objectives, particularly in
complex, multi-dimensional discrimination scenarios [23]. Additionally, developing
NMF tailored for group fairness, with an emphasis on integrating both individual
and group notions into algorithmic design. Finally, evaluating fair clustering
methods, esp. for individual fairness remains an ongoing challenge.
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