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Part 0: On the terminology of bias
The helpful, the problematic, and the harmful
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Bias: A multifaced concept

• Original meaning (1828)
• “a leaning of the mind”, “to lean or incline from a state of 

indifference, to a particular object or course” 

• Modern definition (2024) 
• “an inclination of temperament or outlook - especially a 

personal and sometimes unreasoned 
judgment : PREJUDICE”

• Overloaded term: used in multiple contexts and 
referring to both preference (e.g., favoring a choice) and 
prejudice (e.g., unfair judgment). Applied to both 
humans and machines

• Bias is not inherently negative; its implications depend 
on context.

• In contemporary AI literature, bias is often synonymous 
with discrimination and unfairness
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https://webstersdictionary1828.com/Dictionary/bias
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• Human biases: Cognitive shortcuts (heuristics) and 
subconscious judgements that shape how 
individuals perceive information and make 
decisions.

• Examples: confirmation bias, recency bias, framing 
bias, etc.

• Societal biases: Systemic, cultural, or institutional 
patterns that shape how groups of people are 
perceived, treated, or represented

• Examples: racial bias, gender bias, ethnocentric 
bias, etc.

• Machine biases: Systematic errors in AI systems’ 
outputs, stemming from biased data, model 
assumptions, or deployment context.

• Examples: discriminatory predictions, performance 
degradation in different contexts, etc.
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Human, societal and machine biases

https://en.wikipedia.org/wiki/Cognitive_bias


Bias is not inherently good or bad
the same holds for humans and machines

• Bias is a neutral concept. 

• In both humans and machines, bias can be 
• Helpful: help us and machines to focus, generalize and make decisions efficiently

• Example: Preference for healthy food based on past outcomes; starting work early if you are a 
morning person 

• Problematic: reduces performance due to e.g., wrong assumptions
• Example: assuming recent news is more important (recency bias)

• Harmful → leads to unfair or discriminatory outcomes
• Example: judging someone’s competence based on gender or race
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Ntoutsi, E., (2025). The multifaceted nature of bias in AI: Impact on model generalization, robustness, and fairness.. In B. Schäffer & F. R. Lieder (Eds.), 
Künstliche Intelligenz in Gesellschaft, Bildung und Arbeitswelt – Eine interdisziplinäre Betrachtung. Springer. 

https://link.springer.com/book/9783658485214
https://link.springer.com/book/9783658485214
https://link.springer.com/book/9783658485214


Helpful biases in machines: 
steering & control

Biases that can help guide or steer the 
machine towards desired outcomes
• Inductive bias: Explicit or implicit assumptions 

made by a learning algorithm to perform 
induction (Hüllermeier et al 2013), e.g.:

• Axis-aligned cuts in DTs
• Locality assumption in KNNs
• Class-conditional independence in NBs
• Compositional inductive bias in NNs

• Heuristics in traditional AI
• E.g., straight line distance (SLD) heuristic in 

search (e.g., A*)
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https://link.springer.com/rwe/10.1007/978-1-4419-9863-7_927
https://link.springer.com/rwe/10.1007/978-1-4419-9863-7_927


Problematic biases in machines: 
reducing performance

Biases that affect model generalization and lead 
to limited performance in new or changing 
contexts

Common sources of problematic biases:

• Unrepresentative training data: 
• the model learns from an incomplete or skewed 

sample

• Distribution shifts over time or between domains
• The real world looks different from the training world

- Misleading or incorrect associations in the data
- E.g., source tag present ~ class

7
Clever Hans effect

Overfitting on gray cats, failing to generalize to white cats

AIDA AICET 2025: Bias & Fairness in AI Systems

https://www.nature.com/articles/s41467-019-08987-4
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Harmful biases in machines: 
leading to discrimination and unfairness

Biases that may lead to discriminatory 
outcomes and harm

• Decisions influenced by protected attributes 
(e.g., gender, race, age, sexual orientation)
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Bias in machines is just the tip of the iceberg: 
Bias doesn't start or end with AI

• Bias doesn't start or end with AI: it flows from 
humans to machines and back, shaped by data, 
decisions, and deployment.

• Bias is much more than the statistical and 
computation bias that we can “easily” measure 
and fix

• What is needed is a broader socio-technical 
perspective linking AI systems to the values and 
structures of the societies they operate in.
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Schwartz, R., Vassilev, A., Greene, K., Perine, L., Burt., A. (2022). Towards a Standard for Identifying and Managing Bias in Artificial 
Intelligence. NIST Special Publication 1270
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Part 1: Reality check - Is fairness in AI a real problem?
Examining real-world harms from AI systems
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AI systems in high-stake domains

• Healthcare: diagnosis, personalized treatment

• Finance: credit scoring, loan approval, fraud detection

• Education: university admissions, personalized learning

• Employment: hiring, promotion, performance evaluation

• Justice: predictive policing, recidivism prediction

• Public services: welfare allocation, identity verification

• ….
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Facial recognition bias
Computer Vision works well on average, but not equally well for everyone

• State of the art facial recognition systems (used e.g., in autonomous driving, surveillance) 
recognize better white males than black women (racial and gender bias)1
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Auditing five face recognition technologies. The Gender Shades

1Source: https://www.nytimes.com/2016/06/26/opinion/sunday/artificial-intelligences-white-guy-problem.html

• Training data imbalance may lead to biased recognition rates
• Artificial Intelligence’s White Guy Problem1

• “If a system is trained on photos of people who are overwhelmingly 
white, it will have a harder time recognizing nonwhite faces.” 
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http://gendershades.org/overview.html


COMPAS recidivism prediction
exhibits bias towards African-Americans

• COMPAS tool (US) for predicting a defendant’s risk of committing another crime predicted1 
higher risks of recidivism for black defendants (and lower for white defendants) than their 
actual risk (racial bias1)
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1Source: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

• Historical bias may lead to biased prediction rates
•  “Bias in the future as a result of bias in the past?” 
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https://medium.com/@lamdaa/compas-unfair-algorithm-812702ed6a6a


Service delivery discrimination
Amazon same-day delivery excluded predominantly Black neighborhoods

• Bloomberg1 compared Amazon same-day delivery areas with U.S. 
Census data. In 6 major cities, ZIP codes with predominantly Black 
population were excluded from the service (racial bias).

• Efficiency-driven optimization may lead to bias
• Amazon claimed that race was not used explicitly in their model. 
• ZIP codes were excluded based on cost and efficiency 

considerations
• proportion of Prime members in the area 
• distance from the nearest Amazon warehouse
• Example: Boston’s Roxbury was excluded because of not enough Prime 

members and/or too far from a warehouse.

1Source: https://www.bloomberg.com/graphics/2016-amazon-same-day/

14AIDA AICET 2025: Bias & Fairness in AI Systems



Bias in generative AI
Harmful and biased text generated by ChatGPT

• LLMs like ChatGPT are trained on massive datasets

• These models can unintentionally generate harmful stereotypes, toxic language, and biased 
outputs (e.g., gender and racial discrimination)

15

• Learning from biased content may lead to biased generation
• They learn to mimic what they see, including societal biases
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censorship and safety filters apply [Noels et al, 2025]

https://arxiv.org/abs/2504.03803


Types of harms as a result of AI bias

• Allocative harms
• When decision-making systems in criminal justice, health care, 

etc. are discriminatory, they create allocative harms, which are 
caused when a system withholds certain groups an opportunity 
or a resource. 

• Representational harms
• When systems reinforce the subordination of some groups 

along the lines of identity—race, class, gender, etc., they create 
stereotype perpetuation and cultural denigration.
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news, social media, 
hate speech, 
disinformation, 
surveillance

banking, education, 
hiring, compensation …

K. Crawford (2017). The Trouble with Bias, NIPS 2017 Keynote 
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Fairness matters!
It is not just a feature it is essential for responsible AI systems

• Without fairness, AI systems risk causing real-world harm

• Fairness as a core principle of Responsible AI
• Embedded in global AI ethics frameworks (e.g., EU AI Act, OECD, IEEE, UNESCO).
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Part 2: Why can AI systems discriminate?
Understanding the structural roots of bias in data-driven systems
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Back to basics: How machines learn
A better phrasing would be: How we teach the machines

• ML “gives computers the ability to learn without being explicitly programmed” (Arthur 
Samuel, 1959)
• We don’t codify the solution. We don’t even know it!

• Data as experience & the learning algorithm, which uncovers patterns from it, are the 
keys.
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Learning 
Algorithms

Models

Models

(semi)Automatic decision 
making

Data
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Data is not neutral

• AI-systems rely on data generated by humans (UGC) or collected via systems 
designed by humans.  

• As a result, human biases:
• enter these systems through design, usage, and labeling.

• “Bias in AI is a mirror of our culture”

• can be amplified by complex sociotechnical systems, such as the Web.
e.g., filter bubble creation (Baeza-Yates, 2018)

• can be reinforced through feedback loops and pipelines.
• e.g., an example from the EU project STELAR

20

Source
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Bias in AI is a mirror of our culture
https://cacm.acm.org/research/bias-on-the-web-2/
https://cacm.acm.org/research/bias-on-the-web-2/
https://cacm.acm.org/research/bias-on-the-web-2/
https://cacm.acm.org/research/bias-on-the-web-2/
https://stelar-project.eu/
https://www.instagram.com/p/DJ5CpPFi9w-/?img_index=2


Learning algorithms ignore fairness

• AI-systems rely on learning algorithms 
that typically optimize predefined 
performance objectives such as:
• Accuracy in predictive tasks 
• Reconstruction error in generative tasks

• Fairness is not part of the learning 
objectives
• It is not encoded in standard loss functions.
• Performance across different demographic 

groups is not accessed.

• As a result, discrimination often goes 
unnoticed, since group-level disparities 
are neither measured nor reported.

• E.g., a model may achieve high overall accuracy 
yet place all women in the negative side of the 
decision boundary (→100% rejection). 
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males
females

Traditional decision boundary  (linear 
classifier) optimized for accuracy among 
candidate linear classifiers.
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Learned shortcuts & Proxy discrimination

• Models, are the results of complex interactions between data 
and learning algorithms.
• They often rely on “shortcuts”: quick-to-learn patterns that help 

optimize objectives, e.g., snow background to detect a wolf

• Due to bias in data and learning algorithms, models may pick the 
“wrong” shortcuts leading to unintentional discrimination.
• Example: A hiring model might learn to prefer male candidates, 

even without explicitly using gender, through attributes pointing to 
gender (e.g., names)

• Proxy attributes: Attributes that correlate with protected 
characteristics
• Zip code as a proxy for race (recall Amazon use case)
• Name and hobbies as a proxy for gender 

• These shortcuts are not explicitly programmed; they emerge 
from data.
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Source
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https://www.ere.net/articles/without-adult-supervision-ai-cant-tell-the-wolves-from-the-huskies


Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step.
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Harini Suresh, John Guttag, A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle, EAAMO, 2021
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Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step
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Harini Suresh, John Guttag, A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle, EAAMO, 2021

Historical bias: when data reflect existing social inequalities
For example, in census data, men are overrepresented in some professions like IT. 
Or historically text depicts nurses as women.
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Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step
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Representation bias: Certain groups are under-represented in the data, or are sampled in an uneven and biased way.
The task does not match the existing data 
(e.g., face or location images)
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Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step
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Representation bias: Certain groups are under-represented in the data, or are sampled in an uneven and biased way.
The task does not match the existing data 
(e.g., face or location images)
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Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step
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Measurement bias: 
The way we measure certain features or target variables is oversimplified, inconsistent, or inaccurate. 
(e.g., COMPAS)
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https://dl.acm.org/doi/fullHtml/10.1145/3465416.3483305


Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step

28
Harini Suresh, John Guttag, A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle, EAAMO, 2021

Learning bias: 
Optimize specific metrics in models that boost bias
E.g., optimizing model compactness focuses on the frequent cases.
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https://dl.acm.org/doi/fullHtml/10.1145/3465416.3483305


Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step

29
Harini Suresh, John Guttag, A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle, EAAMO, 2021

Aggregation bias: 
Treating all data in the same way, ignoring special cases
E.g., offensive words in some setting may be acceptable in another.
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https://dl.acm.org/doi/fullHtml/10.1145/3465416.3483305


Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step
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Evaluation bias: 
Use benchmarks that are not representative of reality.
E.g., image benchmarks with faces.
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https://dl.acm.org/doi/fullHtml/10.1145/3465416.3483305


Algorithmic bias has many facets

• The AI pipelines consist of multiple steps, & specific type of bias can emerge at any step
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Deployment bias: 
Use model output in an unintended way.
E.g., use recidivism risk for determining sentence length.
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AI systems can be unfair and it’s no surprise

• Bias and discrimination in AI systems are not accidental,  they are a consequence of 
how AI is built.
• Data can be biased reflecting human and societal inequalities.
• Learning algorithms optimize for accuracy or utility, not fairness.
• Models exploit shortcuts, and these can go wrong.

• The complexity of AI pipelines cannot be ignored. 
• Bias manifests in many – from collection and representation to evaluation and deployment. 
• Even small design choices at any step matter.
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Part 3: How can we mitigate unfairness in AI systems?
A primer on Fairness-aware Machine Learning
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What is Fairness-aware Machine Learning?

• A young*, fast evolving, multidisciplinary field focused on building AI systems that do not discriminate 
based on protected attributes such as gender, race, or disability.

• Fairness in AI  is a new concern, fairness as a human concern is not 
• A long-standing topic in many other disciplines, including Philosophy, Law, Psychology, and Economics. 

Ntoutsi et al (2020), Bias in data-driven artificial intelligence systems—An introductory survey", WIREs Data Mining and Knowledge Discovery.
34

* Seminal paper by Pedreschi et al. (2008), Discrimination-aware data mining, KDD
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https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1356
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The fairness-aware learning pipeline

• To build fairness-aware AI, at a minimum, we must make the following key decisions:
• What to protect?

• Identify protected or sensitive attributes

• What is fair?
• Define what fairness means operationally

• How to intervene?
• Choose  a strategy to mitigate bias 

• How to evaluate?
• Measure fairness and trade-offs with other objectives (e.g., accuracy)
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What to protect: Protected attributes and groups

• What are protected attributes?
• Attributes legally or ethically recognized as requiring protection from discrimination.
• Common examples: gender, race/ethnicity, age, disability, religion, national origin, sexual 

orientation.
• Protected attributes are context-dependent (e.g., domain specific).

• How are groups defined?
• Based on the values of a protected attribute
• Common simplification: treating attributes as binary (e.g., male/female, white/non-white)

• Protected vs non-protected groups
• Typically, one value is treated as protected, the other non-protected

• This is also context-dependent: e.g., females may be protected in IT hiring, males in early 
childhood education
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What is fair? Algorithmic fairness

• A deeply philosophical question with no clear answer 
• Equality: treat everyone the same → equal treatment
• Equity: treat everyone according to their needs → equal results
• Justice: no barriers

• Algorithmic fairness ~ Lack of discrimination: an algorithm should not be influenced 
by protected attributes, such as  gender, religion, age, sexual orientation, race

•  Definitions of fairness
• Individual fairness: Similar individuals should be treated in a similar manner 

• Harder to define and attain

• Group fairness: Groups of individuals defined according to their protected attributes should 
be treated similarly/fairly.

• Easier to define, better understood
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Operational definitions of fairness

• Demographic (or statistical) parity

• Equal opportunity

• Equalized odds

• Conditional statistical parity

• Treatment equality

• Test fairness

• Fairness through awareness

• Fairness through unawareness

• Counterfactual fairness

• Diversity

• Representational harms

38

Narayanan (2018). “21 fairness definitions and their politics”. ACM FAT* 2018 tutorial
Verma and Rubin (). “Fairness definitions explained”, ACM/IEEE Workshop on Software Fairness

group fairness

individual fairness

other definitions

Protected (e.g., females) and non-protected  
(e.g., males) groups should be treated similarly.

Similar individuals should be treated 
similarly
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https://fairware.cs.umass.edu/papers/Verma.pdf


Individual fairness

• Principle: Similar individuals should be treated similarly 
by the model 

• Example: A male and a female candidate with similar qualifications 
should receive the same hiring decision.

• This requires:
• a distance d() between individuals in the input space 
• a distance D() in the output space

• Challenges: 
• Defining similarity in the input space

• How we define a meaningful similarity metric?
• Which features matter, how to weight them?
• Is such a notion of similarity socially/legally acceptable?

• Ensuring similar treatment in output space
• How can we define D()?
• Even small changes in input can lead to large output 

changes
• Can we enforce a Lipschitz condition?

39

Dwork et al, “Fairness through awareness”. ITCS 2012: 214-226

AIDA AICET 2025: Bias & Fairness in AI Systems

D(M(x),M(y)

https://dl.acm.org/doi/10.1145/2090236.2090255


Group Fairness

•Notation 
• Instances are partitioned into groups G ={g ഥ, g}: protected (e.g. females), non-protected (e.g., 

males)
• Class label Y={1,0}: 1=accepted, 0=rejected
• Predicted class label ෨𝑌

• Group fairness measures
• Focus on predictions across the groups 

• Do both groups receive favorable predictions at similar rates? → e.g., statistical parity

• Also consider the ground-truth 
• Are errors evenly distributed across groups? → e.g., equal opportunity, equalized odds
•Which errors should we focus on? → e.g., TPRs, FPRs

40

F1 F2 G Y ෨𝑌

User1 F11 f12 female accepted rejected

User2 f21 male rejected

… … … … …

Usern fn1 male accepted accepted 
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Measuring (un)fairness: popular group measures

Dwork et al, 2012

Hardt et al, 2016

• Statistical parity [Dwork et al, 2012]: Both protected and non-protected groups should have 
equal probability of receiving the favorable outcome

𝑃 ෡Y = + G = g = 𝑃 ෡Y = + G = തg

• Example: A loan model should approve the same percentage of male and female applicants, 
regardless of whether they are truly qualified.

• Equal opportunity: Both protected and non-protected groups should have equal true positive 
rates (TPRs)

𝑃 ෠𝑌 = + Y = +, 𝐺 = 𝑔 = 𝑃 ෠𝑌 = + Y = +, 𝐺 = ҧ𝑔

• Example: Among applicants who are truly qualified, males and females should have the same chance 
of getting hired.

• Equalized Odds [Hardt et al, 2016]: equal TPRs and false positive rates (FPRs) for both groups
• Example: In credit card fraud detection, the model should detect fraud (TPs) and avoid false alarms 

(FPs) at equal rates across males and females to prevent discrimination in card blocking or 
investigation
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https://papers.neurips.cc/paper/6374-equality-of-opportunity-in-supervised-learning.pdf


How to intervene? Bias mitigation strategies

• Goal: tackling bias in different stages of AI-decision making

42
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Bias mitigation: pre-processing approaches

• Intuition: Making the data “more fair” will lead to a “less unfair” model

• Design principle: Use minimal data interventions to preserve data utility for the learning task

• Intervention levels: 
• population level, class level, feature level, whole representation

• Examples of techniques:
• Instance selection (sampling): e.g., (Kamiran & Calders, 2010) (Kamiran & Calders, 2012)
• Instance weighting: e.g., (Calders, Kamiran, & Pechenizkiy, 2009)
• Instance class modification (massaging): e.g., (Kamiran & Calders, 2009),(Luong, Ruggieri, & Turini, 2011)
• Synthetic instance generation: e.g., (Iosifidis & Ntoutsi, 2018) (Panagiotou et al, 2024)

+ Can be used with any downstream model 

- Most methods are heuristics and the impact of the interventions is not well controlled
• More principled methods exist e.g., (Calmon et al, 2017)
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https://ieeexplore.ieee.org/document/5694053/
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https://arxiv.org/pdf/2409.05215
https://arxiv.org/abs/1704.03354


Bias mitigation: pre-processing approaches
Example: Instance class modification (massaging)

• Core idea: Change the class label of carefully selected instances to reduce bias (Kamiran & Calders, 2009). 
• Selection is guided by a ranker which ranks the individuals by their probability to receive the favorable outcome (e.g., 

getting hired)
• Select instances near the decision boundary

• Flip negative to positive for the protected group 

• Flip positive to negative, for the non-protected group

• The number of label flips (massaged instances) is determined by the adopted fairness measure (statistical parity)
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Bias mitigation: in-processing approaches

• Intuition: Working directly with the learning algorithm offers greater control over fairness behavior

• Core idea: Explicitly integrate fairness objectives into the learning process

• Design principle: “Balance” predictive- with fairness-performance

• Examples of techniques:
• Fairness regularization: e.g., (Kamiran et al, 2010),(Kamishima et al, 2012), (Dwork et al, 2012) (Zhang & Ntoutsi, 

2019, Padala and Gujar, 2021)
• Fairness constraints: e.g., (Zafar et al, 2017)
• Training on latent target labels: e.g., (Krasanakis et al, 2018)
• In-training altering of data distribution: e.g., (Iosifidis & Ntoutsi, 2019)
• Learn how to teach multi-fairness: e.g., (Roy and Ntoutsi, 2022)

• …

+ Often more effective than pre-processing

- Learner-specific approaches
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Bias mitigation: in-processing approaches
Example: modify the learning objective

• Core idea: Combine fairness and accuracy into a single loss function & learn a model that 
optimizes the overall loss

• This allows direct control over the balance between predictive performance and fairness
• For instance, FNNC (Padala and Gujar, 2021)
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typical accuracy loss, authors use 
cross-entropy loss 

fairness loss, authors use the robust log-loss 
which focuses on the worst-case log loss

λ: a weight parameter determining the fairness-
accuracy trade off (set via hyper-parameter tuning)
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Bias mitigation: post-processing approaches

• Intuition: Start with a trained model optimized for predictive performance

• Core idea: Apply fairness adjustments after training, without changing the data or learning 
algorithm

• Design principle: Minimal interventions to improve fairness while preserving predictive 
performance

• Examples of techniques:
• Adjust confidence scores: e.g., (Pedreschi et al, 2009), (Calders & Verwer, 2010) 
• Relabel class outputs: e.g., (Kamiran et al, 2010)
• Shift decision boundaries: e.g., (Kamiran et al, 2018), (Hardt et al, 2016)
• Wrap a fair classifier on top of a black-box model: e.g., (Agarwal et al, 2018)
• …

+ No changes to the data or training

- Often model-specific
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Bias mitigation: post-processing approaches
Example: Shift the decision boundary

• Core idea: After training a classifier to optimize predictive performance (left), adjust the decision 
boundary to satisfy a fairness criterion (right)
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Image credit: Vasileios Iosifidis
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Bias mitigation: Hybrid approaches

• Combining methods can lead to stronger or more robust fairness outcomes.

• Core idea: Leverage the strengths of multiple mitigation types (e.g., pre-processing + in-processing, or in-
processing + post-processing or end-to-end) 

• Example: FairNN (Hu et al, 2020), jointly learn a fair representation and a fair classifier
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Fair representation learning: 
Regularized autoencoder; the KL-
divergence constraint forces the 
representation to be fair. 

Fair classification: 
Fairness regularization; the loss is 
tweaked towards fairness through 
the Eq.Odds. Regularization term
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Accountability in AI: from fair design to auditable outcomes

• Algorithmic accountability refers to the assignment of responsibility for how an algorithm is 
developed and its impact on society (Kaplan et al, 2019).

• Approaches related to bias and fairness in AI
• Proactive (design time): 

• Bias-aware data collection (e.g., Web, crowdsourcing)

• Bias modeling (e.g., using ontologies or knowledge bases)

• Transparency tools:

• Datasheets for dataset reporting (Gebru et al., 2021)

• Model cards for model reporting (Mitchell et al., 2019)

• Retroactive (audit time):

• Explainable AI (XAI): Understanding model outcomes

• Used to audit and/or correct deployed systems (Schramowski et al, 2020).
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Two documents classified as hate speech by a fine-
tuned BERT classifier. Group identifiers are underlined.
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The Competitive Landscape of Open-Source AI Fairness Testing | SolasAI

We have some tools – let’s use them!

• Fairness-aware machine learning provides a growing set of tools for detecting, measuring, and 
mitigating bias in AI systems.

• These tools include:
• Metrics to evaluate group and individual fairness
• Bias mitigation methods at all stages: pre-, in- and post-processing, hybrid
• Toolkits & libraries (e.g., AIF360, Fairlearn, FairBench, MMM-Fair)

• They are not perfect:
• Often built for simplified settings (e.g., binary attributes, batch learning)
• May involve trade-offs and hidden assumptions
• Require critical thinking and domain awareness
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Fairlearn: A toolkit for assessing and improving fairness in AI - Microsoft  Research

Logo

FairBench
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Part 4: Why achieving fairness is hard?
Limitations of existing solutions and deep tensions
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Oversimplified identity modeling
Simplified group definitions can erase human experiences

• We saw how protected attributes (e.g., gender) are used to define protected vs non-
protected groups (e.g., female vs. male).

• Often group definitions are oversimplified e.g., during data collection, or during 
preprocessing, for technical convenience.

• Common simplifications: treating attributes as binary categories:
• Gender → male/female → excludes non-binary or fluid identities
• Race → white/non-white → ignores multiracial complexity
• Age → young/old → reduces a continuous variable to a binary one

• Risks of simplification:
• Erases key human experiences
• Can lead to misleading fairness metrics or interventions.
• Increases the risk of misinterpreting results and societal impact

• Representation also matters (how ML models “see” data shapes fairness):
• Encoding bias (Mougan et al, 2023) 
• Feature-type bias (Panagiotou et al, 2024)
• Modality bias (Swati et al, 2024)
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Le Quy et al, “A survey on datasets for fairness-aware machine learning", WIREs Data Mining and Knowledge Discovery, 2022.
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Oversimplified identity modeling
Human identities are multi-dimensional

• Individuals belong to multiple groups simultaneously (e.g., black 
women > 50)
→ Unfairness may emerge due to a combination of dimensions

• Fairness on individual dimensions is not enough
• Fairness gerrymandering (Kearns et al, 2018):  Appearing fair on race or 

gender can still hide bias against e.g., Black women.
• Challenges of intersectional fairness

• Data scarcity in small subgroups (Le Quy et, 22, Roy et al, 22)
• e.g., 555 Black Young Female instances vs 22,856 White Old Male instances

• Extreme class-imbalance within subgroups
• e.g., Class-Imbalance Ratio (CIR) 1:61 vs e.g., 1:1.6 or 1:3

• Key dilemmas
• How much finer can we go? Till what points subgroups can be defined? 
• Who defines valid subgroups?
• What’s the right comparison baseline (the most vulnerable subgroup 

[Ghosh et al, 2022], the overall population [Kearns et al, 18], …)?
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Image source

Roy et al, 2023. “Multi-dimensional discrimination in law and machine learning - A comparative overview”, ACM FAccT, 2023

Adult income prediction dataset

AIDA AICET 2025: Bias & Fairness in AI Systems

https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1452
https://link.springer.com/chapter/10.1007/978-3-031-18840-4_21
https://proceedings.mlr.press/v142/ghosh21a/ghosh21a.pdf
https://arxiv.org/abs/1711.05144
https://philosophicaldisquisitions.blogspot.com/2019/05/discrimination-and-fairness-in-design.html
https://dl.acm.org/doi/10.1145/3593013.3593979
https://dl.acm.org/doi/10.1145/3593013.3593979
https://dl.acm.org/doi/10.1145/3593013.3593979
https://dl.acm.org/doi/10.1145/3593013.3593979
https://dl.acm.org/doi/10.1145/3593013.3593979
https://archive.ics.uci.edu/ml/datasets/adult


Impossibility of fairness
Fairness in ML involves both mathematical and sociotechnical trade-offs

• Mathematical impossibility of fairness (Kleinberg et al, 2017; 
Chouldechova, 2017)
• (Some) fairness metrics are mutually incompatible and cannot be 

satisfied simultaneously (except in trivial cases)
• Trade-offs are inevitable (improving one may harm another)
➔ We must choose which fairness definition to prioritize based on 
context and goals.

• Conceptual impossibility (Selbst et al., 2019)
• Formal fairness definitions require abstraction and simplification.
• But fairness is socially situated, it depends on context, history, power, 

and values.
➔ No definition is value neutral or universally correct 
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Fairness vs accuracy tradeoff
Challenging the assumption that fairness must come at the cost of performance

• Common viewpoint: Improving fairness often reduces accuracy → conflicting goals

• Dutta et al. (2019) argue that this trade-off may be a symptom of data inequality 
• the accuracy–fairness trade-off often observed in practice may stem from differences in 

data quality or informativeness between groups (e.g., due to noisier representations for the 
unprivileged group due to historic differences in representation, opportunity, etc)

• If separability (i.e., how well groups can be distinguished) differs between groups,
even the best classifiers will be inherently unfair and attempts to enforce fairness may 
reduce accuracy for one or both the groups.

• Proposed solution: active data collection to reduce differences in separability across 
groups.
• The trade-off may not be inevitable,  it may be fixable with better, fairer data.
• But optimizing for both fairness and accuracy requires careful design
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Understanding the complex solution space
We need approaches that can balance multiple, sometimes conflicting learning goals

• Fairness in AI naturally involves many tensions and objectives
• Improving fairness for one identity may worsen fairness for another (conflicting fairness objectives).

• Joint consideration of identity dimensions is necessary to avoid fairness gerrymandering.

• (Sub)groups have distinct vulnerabilities and needs (e.g., data  scarcity).
• Impossibility of fairness: (Some) fairness metrics are mutually incompatible and cannot be satisfied 

simultaneously.
• Also: fairness is not the only objective. AI systems must also consider privacy, adversarial robustness, 

etc. requirements [Ramanak et al, 2024].

• We need to look at the multi-objective space (through e.g., MOO) 
• Balance multiple, often competing, fairness-aware learning goals.
• Optimize multiple objectives simultaneously without collapsing them into a single loss
• Preserve independence between goals (e.g., accuracy vs fairness)
• Yield a Pareto frontier of best achievable trade-offs
• Balance fairness across multiple subgroups and metrics

57AIDA AICET 2025: Bias & Fairness in AI Systems

https://github.com/arjunroyihrpa/MMM_fair

https://arxiv.org/pdf/2407.03864


Wrapping up

• Bias doesn't start or end with AI: it flows from humans to machines and back, shaped by data, 
decisions, and deployment,

• Fairness-aware ML goes beyond optimizing metrics and models.
• It requires understanding how bias propagates through data and models and making informed context-sensitive 

decisions at every stage.

• Key design questions:
• What to protect: Which attributes, identities, and intersectional groups matter in your setting?
• What to optimize: Which fairness definition aligns with your values, goals, and domain needs?
• How to intervene: Pre-, in-, or post-processing? or, a hybrid approach?
• How to balance (competing) goals: between accuracy and fairness, or fairness different across groups?

• This is not an easy problem. But we have no choice!
• Fairness in AI cannot be fully automated or universally defined.
• It involves inherent trade-offs and requires ethical, context-sensitive decisions
• Addressing fairness means engaging with affected communities and social values, not just optimizing 

formulas.
• Fairness is an evolving target: what’s considered “fair” may change over time and across cultures

• → Fairness-aware learning is a continuous task
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Try out: mmm-fair Library

Multi-attribute, Multi-objective, Multi-definition aware fair classifiers 

• A package of boosting based multi-fair 
classifiers that promotes learning fairness-
aware predictions under class-imbalance.

 Multi-attribute
 Multi-objective
 MAMMOth Workflow integration 
 Produces various pareto plots 
 User can update the model 

https://github.com/arjunroyihrpa/MMM_fair

MMM-fair: Roy et al, 2022

https://github.com/arjunroyihrpa/MMM_fair
https://arxiv.org/pdf/2104.13312
https://arxiv.org/pdf/2104.13312


Try out: effector

XAI for tabular data

• An eXplainable AI package for tabular data

 global and regional effect plots
 model agnostic - can explain any underlying ML model
 easily integration with popular ML libraries
 fast, for both global and regional methods
 a large collection of global and regional effects methods

https://xai-effector.github.io/



Thank you for your attention! 

• Contact me:
• eirini.ntoutsi@unibw.de
• https://www.unibw.de/aiml
• https://aiml-research.github.io/
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