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Abstract

Bias in Artificial Intelligence (AI) is a critical issue that has gained significant attention 
due to its association with discrimination and harm. Although bias has increasingly car-
ried a negative connotation in recent years, it is not inherently positive or negative. In 
AI, bias can guide models toward desired outcomes and improve generalization, but it 
can also lead to discrimination against individuals or groups based on protected charac-
teristics such as gender, race, or age, and undermine model robustness in varying con-
texts. This chapter explores the multifaceted nature of bias in AI, highlighting its ben-
efits and drawbacks. We discuss how bias can be harnessed to improve models while 
addressing its negative effects, such as perpetuating inequalities and reducing robust-
ness. The need to understand and manage bias is emphasized to ensure AI systems re-
main fair, ethical, and effective.

1	� Introduction

AI-based systems are widely used to make decisions that impact individuals and society, 
from screening job applicants to aiding healthcare diagnoses and assessing risks in bail or 
sentencing, raising concerns about potential bias and human rights issues (Ntoutsi et al., 
2020). The discriminative impact of AI-based decision-making on individuals and demo-
graphic groups characterized by protected attributes such as gender and race has already 
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been observed in various cases (West et al., 2019). For instance, the COMPAS system for 
predicting the risk of re-offending was found to assign higher risk scores to Black defen-
dants and lower scores to White defendants than their actual risk levels- an example of ra-
cial bias (Angwin et al., 2022). Similarly, Amazon’s resume scanning tool (Dastin, 2018) 
for ranking job candidates exhibited harmful gender bias by ranking candidates lower if 
their resumes included gendered terms such as “women’s” or references to women’s col-
leges. Such cases naturally raise concerns about the fairness of AI systems. As a result, the 
term “bias” is often synonymous with discrimination and carries a negative connotation in 
contemporary AI literature.

Historically, bias was described as “a leaning of the mind” representing an inclination 
away from a state of indifference.1 Over time, the term has acquired a more negative con-
notation, now defined as “an inclination of temperament or outlook, especially a personal 
and sometimes unreasoned judgement: prejudice”.2 Bias, however, is neither inherently 
good nor bad, and this applies to both humans and machines. Some human biases can be 
helpful, such as favoring healthy eating, or some biases can make us more efficient, like 
starting work early if you’re a morning person. On the other hand, biases related to preju-
dices  – favoring or discriminating against a person or group over another in an unfair 
way – are harmful and should be prohibited, such as declining a job based on gender or 
race. With respect to human bias, its many facets have been studied by many disciplines 
(Haselton et al., 2015) including psychology, ethnography, law, and so forth.

Similarly, bias in machines/AI has many facets and is neither good or bad. While most 
recent discussions on bias focus on discrimination and harmful biases toward individuals 
or groups, the concept of bias is an old concept in Machine Learning (ML), traditionally 
referring to the assumptions made by a specific model – the so-called, inductive bias – 
(Mitchell, 1997), which are necessary to enable generalization from specific instances to 
broader theories. Other biases guide models in a desired direction in the hypothesis space, 
for instance bias towards simplicity, such as Occam’s Razor, where simpler models are 
preferred over more complex ones (Domingos, 1999). However, there are also biases like 
selection bias, that can harm model robustness in new contexts, negatively impacting ma-
chine performance, even if no human instances are directly involved – such as training a 
model on data from a certain context failing to generalize across different contexts.

Rather than demonizing bias, it is crucial to acknowledge its role as a tool for steering 
AI models in desired directions, while also mitigating harmful biases that lead to discrim-
ination or degrade model performance. The goal of this work is to examine the multifac-
eted nature of bias, offering a comprehensive overview of both its beneficial and detrimen-
tal applications in AI. While a completely bias-free world may be an unrealistic goal for 
both humans and machines, mastering bias is necessary, especially for the responsible use 
of AI technology.

1 https://www.psychologytoday.com/intl/blog/hovercraft-full-eels/202009/biases-are-neither-all-
good-nor-all-bad
2 https://www.merriam-webster.com/dictionary/bias
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The rest of the paper is organized as follows: First, we provide a basic introduction of 
how machines learn. Second, we explore biases that enable ML induction. Next, we exam-
ine how biases can undermine model robustness. Afterwards, we delve into harmful biases 
that may result in discrimination and harm. Finally, we conclude with a summary of the 
key insights.

2	� How Machines Learn

In modern AI, particularly in Machine Learning (ML), computers learn from data without 
being explicitly programmed, as first articulated by (Samuel, 1959). Unlike traditional 
programming, where the solution is explicitly coded (e.g., the insertion sort algorithm; 
(Mehlhorn, 2013), ML derives solutions from patterns within the data, even when the 
exact solution is unknown or difficult to describe explicitly (e.g., recognizing a cat or de-
tecting early-stage cancer in medical images). These tasks are hard to codify manually due 
to the complexity and variability of the patterns involved, but ML models can learn intri-
cate patterns from vast amounts of data. Thus, data and learning algorithms are the essen
tial components of modern AI, enabling machines to implicitly learn and generalize from 
examples.

Learning from data encompasses different tasks, which vary depending on the level of 
supervision provided by a (human) expert during the learning process. The primary tasks 
are: supervised learning, where both data and their corresponding labels are available to 
the learner, with typical examples including classification and regression; unsupervised 
learning, where only the data are available without labels, with typical examples including 
clustering and dimensionality reduction; and reinforcement learning, where supervision is 
provided in the form of rewards rather than explicit labels for individual instances. In this 
work, we focus on supervised learning.

Supervised learning involves learning a mapping from input data to output labels based 
on a set of labelled instances (training data). The input data, typically represented as fea
ture vectors, are paired with their corresponding output labels. The goal is to learn a func-
tion or hypothesis or model that can accurately predict the output for new, unseen data. 
This function is selected from a hypothesis space, which represents the set of all possible 
models that can be learned. The choice of hypothesis space determines the type of model 
(e.g., linear models, decision trees, neural networks, support vector machines) and the 
form of the input-output mapping.

The key challenge in supervised learning is to ensure the learned model generalizes 
well to unseen data. A model that fits the training data too closely might capture noise or 
specific patterns in the training set, leading to overfitting, which results in poor perfor
mance over new instances. On the other hand, a model with a too simple hypothesis may 
fail to capture the underlying structure in the data, resulting in underfitting, where the 
model is unable to capture the complexity of the data. Finding the right model complexity 
is necessary to prevent overfitting and underfitting, and to improve generalization.
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While machines learn from data through algorithms, the choice of data, preprocessing 
methods, and the selection of algorithms or models are largely driven by human decisions, 
significantly influencing what and how machines learn, shaping their behavior and out-
comes. This applies not only to modern AI, such as ML, but also to traditional AI (Russell 
& Norvig, 2016). For instance, expert systems rely on human experts to create and update 
their knowledge base, define “if-then” rules, and interpret the system’s results. Similarly, 
informed search algorithms like A* are driven by heuristics designed by humans based on 
domain expertise, which estimate how good a particular state is for achieving a goal and 
guide the search process accordingly.

3	� Biases that Enable Machine Learning Induction

Machine Learning often involves inductive learning; induction refers to the process of in-
ferring a general model of the domain from a finite set of observations (training data). This 
also includes the search for this model/hypothesis in a large hypothesis space. Inductive 
bias refers to the set of explicit or implicit assumptions made by a learning algorithm in 
order to perform induction (Hüllermeier et al., 2013). A classic example of inductive bias 
is Occam’s Razor, which expresses a preference for simplicity: given two equally effective 
models, the simpler one should be preferred for generalization (Domingos, 1999).

Bias-free learning is futile (Mitchell, 1980), meaning that without such bias, induction 
would not be possible, as the same observations can often be generalized in various ways. As 
argued in this work, the ability of learning algorithm to generalize relies on incorporating bi-
ases that extend beyond strict consistency with the training data, including prior domain 
knowledge, preferences for simplicity, and consideration of the algorithm’s real-world appli-
cations. (Montañez et al., 2019) provide a mathematical justification for the necessity of bias 
in improving learning performance, concluding that biases are essential for better than 
chance performance. Furthermore, as emphasized in this work, these biases must be correct 
as their effectiveness depends on how well they align with the actual target being sought.

The concept of inductive bias has been central to AI since the early developments of the 
field. Early systems, like expert systems, rely on explicit, expert-defined, hard-coded rules 
(Russell & Norvig, 2016), which often encode human knowledge and its inherent biases. 
Similarly, informed search algorithms like A* utilize human-designed heuristics to guide 
their search, reflecting assumptions and preferences introduced by their designers.

Machine Learning models also incorporate biases to balance model complexity and 
generalization. Different ML algorithms come with distinct inductive biases. Below, we 
describe some popular learners and their biases; this list of biases is not exhaustive but 
aims to provide an overview of some of the underlying assumptions made by each learner:

•	 Decision Trees (DTs): A decision tree learner typically selects the first acceptable tree 
it encounters during its simple-to-complex, hill-climbing search through the space of 
possible trees. Additionally, it favors shorter trees over longer ones, in line with Oc-
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cam’s Razor, which improves generalizability. Decision trees also assume that the data 
space is partitioned into axis-parallel-hyper-rectangles (Mitchell, 1997).

•	 Naive Bayes (NBs): Naive Bayes classifiers, one of the most popular methods for prob-
abilistic induction, assume that all features are conditionally independent given the 
class label, known as the class-conditional independence assumption, enabling the 
decomposition of high-dimensional multivariate probabilities into a product. They also 
assume that all features contribute equally to predictions, ignoring potential correla-
tions between them. The probabilities are based solely on the training data, without any 
search through the weight space (Langley & Sage, 1994).

•	 k-Nearest Neighbors (k-NNs): k-NNs assume that points close to each other in the 
feature space have similar outputs (locality assumption) and that all features contribute 
equally to the distance calculation for computing the neighborhood.

•	 Neural Networks (NNs): Neural network algorithms assume that data have hierarchi-
cal structures, where simpler patterns combine to form more complex ones, and that re-
lationships between inputs and outputs can be learned through multiple layers of ab-
straction or granularity. This reflects a compositional inductive bias (Goyal & Bengio, 
2022), where the model assumes that complex tasks can be decomposed into simpler 
components, allowing it to generalize more effectively by reusing learned features 
across different contexts.

•	 Convolutional Neural Networks (CNNs): Convolutional neural networks, a specialized 
type of neural network, make additional assumptions, such as translational invariance 
(Wang & Wu, 2024), meaning they assume patterns can appear anywhere in an image. 
This assumption is implemented through convolutional layers and pooling, allowing the 
model to generalize better by recognizing features regardless of their position.

•	 Transformers: Transformers (Vaswani et al., 2017) assume that dependencies between 
inputs can be captured regardless of their position, the so-called permutation invari-
ance. This assumption is implemented through self-attention mechanisms, allowing the 
model to capture long-range dependencies and contextual relationships without relying 
on locality.

Towards Generalizable Modes: Bias-Variance Trade-Off
The bias-variance trade-off involves balancing bias, the model’s assumptions that may 
cause underfitting, and variance, how small data changes affect performance, leading to 
overfitting. High bias models make strong assumptions and may underfit the training data, 
failing to capture the underlying patterns. High variance models with little bias, may fit the 
training data too closely, capturing noise and resulting in poor generalization to new data. 
Examples of low bias, high variance models include fully grown decision trees, which can 
perfectly fit the training data but may overfit; k-NNs with small k, where the model mem-
orizes the data instances and is highly sensitive to noise and high-degree polynomial re
gression, which can fit every point in the training set but performs poorly on new data.

Techniques such as regularization (Tian & Zhang, 2022) help manage the bias-variance 
trade-off by controlling model complexity. Regularization methods like L2 regularization, 
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commonly used in neural networks (Goodfellow et al., 2016), penalize large weights, re-
ducing variance and improving generalization. Ensemble methods such as bagging and 
boosting also reduce variance in high-bias models by averaging the outputs of multiple 
weak learners, leading to a more balanced performance (Gupta et al., 2022). Understanding 
and managing the inductive biases of each model is crucial for selecting the right model 
for a given problem and designing models aligned with specific challenges, thereby en-
abling effective machine learning.

4	� Biases that Undermine Model Robustness

In the previous section, we discussed how inductive biases enable generalization by intro-
ducing assumptions that guide learning. However, biases are not limited to learning algo-
rithms. Data-related biases, arising from the way data are collected, labeled, preprocessed 
etc., can significantly undermine model robustness, that is, model’s ability to perform well 
across diverse contexts. These biases often lead to poor generalization. As the use of AI 
becomes more widespread, addressing these data-related biases becomes crucial.

Several works describe biases in specific application domains; for example, (Fabbrizzi 
et al., 2022) provide a detailed discussion of such biases in computer vision. Below, we 
describe key biases that can negatively impact a model’s robustness, with examples from 
the agriculture domain, specifically crop classification using satellite images.3

•	 Sampling or Selection bias: Sampling bias occurs when the training data is not repre-
sentative of the entire population or the real-world distribution where the model will be 
deployed. This can lead to models that perform well on the specific training set but fail 
to generalize to new, unseen data.

•	 In crop prediction, sampling bias may occur if the training data are predominantly 
sourced from a specific region or climate, leading to poor performance in other regions 
with different climate, soil, etc. characteristics. For example, a crop prediction model 
trained on data from Germany may struggle when deployed in Greece, where crops 
look different due to the warmer climate.

•	 Class imbalances: Class-imbalance bias is a specific form of sampling bias, com-
monly seen in ML. It occurs when certain classes are over-represented in the training 
data, leading to skewed predictions that favor majority class(es) and may overlook the 
minority class(es).

•	 In crop prediction, the distribution of crop types is typically heavily skewed, with many 
types falling into the long tail. If not properly addressed, the prediction rate for these 
long tail classes will be significantly lower.

3 The crop prediction application is part of a use case within the EU project STELAR. (grant agree-
ment No. 101070122), aimed at creating a knowledge data lake management system for agriculture, 
harnessing AI and big data technologies.
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•	 Label bias: Labelled data are essential for training models in supervised learning tasks, 
and the quality of these labels is crucial. Label bias, as defined by (Jiang & Nachum, 
2020), occurs when the labels systematically differ from the ground truth, often due to 
labelling errors or inconsistencies.

•	 In the crop prediction case, the satellite images are not labelled; labels are typically au-
tomatically assigned based on the EuroCrops dataset, which contains geo-referenced 
polygons of agricultural croplands from 16 countries in the European Union (EU), 
along with information on the specific crop species grown in those regions (Schneider 
et al., 2023).

•	 Measurement bias: Measurement bias occurs when data collected has inaccuracies or 
it is systematically flawed due to issues with the measurement process, leading to unre-
liable input features and affecting model performance.

•	 In agriculture, measurement bias manifests when Leaf Area Index (LAI) values from 
satellite images are impacted by cloud coverage, leading to invalid measurements, par-
ticularly during cloud-heavy periods.

•	 Domain-specific practices bias: Domain-specific biases arise when practices or as-
sumptions unique to a particular field lead to systematic errors in data collection or la-
belling, affecting model performance.

•	 In the agriculture domain, the labelling process via EuroCrops (Schneider et al., 2023) 
mentioned above, assigns fixed crop labels annually. This can lead to label bias over 
time, as it may overlook important factors like crop rotation practices, sudden disease 
or pest outbreaks, and other dynamic agricultural changes.

Towards Robust Models
Biases like those described above can hinder model generalization in real-world scenarios. 
Identifying and addressing these biases is essential for building robust models. Techniques 
such as imbalance learning to tackle class imbalances (Japkowicz & Stephen, 2002) can 
mitigate these issues. Additionally, dataset documentation, like datasheets for datasets 
(Gebru et al., 2018), provides transparency about data provenance, collection, and biases, 
helping practitioners make informed decisions and mitigate risks. However, even when it 
is not possible to completely eliminate such biases, being aware of their presence and in-
terpreting model results accordingly remains critical.

5	� How Machines Can Be Unfair: Biases that Lead 
to Discrimination and How to Mitigate Them

In the previous sections, we explored how inductive biases enable learning and generaliza-
tion and how data-related biases can undermine model robustness. Beyond impacting gen-
eralization and robustness, biases in AI systems can also lead to unfair outcomes and per-
petuate discrimination. These biases often arise from societal inequalities embedded in 
data, design choices within AI pipelines, or unintended consequences of optimization ob-

The Multifaced Nature of Bias in AI: Impact on Model Generalization, Robustness, …



238

jectives. This section first examines how AI systems can result in unfair outcomes and dis-
crimination, and then outlines fairness-aware learning approaches to mitigate these biases.

5.1	� Why Machines Discriminate: The Data and Algorithm Bias 
Behind AI Discrimination

Since AI systems rely heavily on data, the primary source of bias in AI comes from the 
data themselves. Data is typically generated by humans (e.g., social media posts) or col-
lected through systems created by humans. As a result, whatever biases exist in humans 
can be embedded into AI systems, as has been demonstrated in various cases, such as gen
der bias in word embeddings (Bolukbasi et al., 2016), racial bias in computer vision algo-
rithms (Fabbrizzi et al., 2022) and bias in large language models (Gallegos et al., 2024). 
Even worse, human biases can be amplified due to the complex sociotechnical nature of 
these systems, such as the Web (Berendt et al., 2021). Additionally, AI systems typically 
rely on complex pipelines and feedback loops that can further amplify and propagate bias, 
or even create new forms of bias such as text length bias in machine translation (Murray 
& Chiang, 2018). While this work does not aim to fully cover bias sources, interested read-
ers are referred to comprehensive surveys on bias in AI (Ntoutsi et al., 2020), including 
data type-specific surveys such as those on NLP (Blodgett et al., 2020), computer vision 
(Fabbrizzi et al., 2022), multimodal data (Adewumi et al., 2024) and application-specific 
surveys in areas like hiring (Fabris et al., 2024) and education (Baker & Hawn, 2022).

The second key component of AI systems is the learning algorithm, which is designed 
to optimize specific objectives related to the learning task (Mitchell, 1997). For instance, 
in binary supervised learning, the goal is typically to improve the separation between pos-
itive and negative classes, often modelled as minimizing empirical risk using a loss func-
tion that measures the error between predicted and actual labels. The optimization pro
blem aims to find the best model (hypothesis) that minimizes this error on the training data 
within the hypothesis space of possible models. However, traditional algorithms do not 
incorporate fairness as part of their objectives and therefore overlook the performance dis-
parities across different demographic groups.

As a result, the AI models learned reflect the complex interactions between data and al-
gorithms, which can lead to unintended “shortcuts” or biases. For example, a hiring algo-
rithm might make decisions based on gender, even if gender is not explicitly used, by rely-
ing on proxy attributes (Prince & Schwarcz, 2019). Similarly, a sentiment analysis algo-
rithm might make decisions based on group identifiers, such as race, while ignoring the 
actual context of the text (Kennedy et al., 2020).

Theses biases can lead to actual harm, which can be categorized into allocative and rep-
resentational harm (Whittaker et al., 2018). Allocative harms refer to the unfair withhold-
ing of access to services, resources, or opportunities for individuals or groups, such as pre-
dictive policing disproportionately targeting minority communities (Jones, 2020). Repre-
sentational harms occur when AI systems reproduce and amplify harmful stereotypes like 
language models reinforcing gender stereotypes in professions (Bolukbasi et al., 2016).
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5.2	� Mitigating Bias and Discrimination: Fairness-Aware 
Machine Learning

To address bias in AI systems, the field of fairness-aware learning has recently emerged, 
aiming to ensure responsible AI development. This young, interdisciplinary domain fo-
cuses on creating AI that does not discriminate on the basis of protected attributes such as 
gender and race. While bias and fairness have long been studied in fields like philosophy 
(Kelly, 2022) and law (Fredman, 2022), fairness-aware learning in AI is relatively new, 
with the seminal work of Pedreschi et al. (2008). Despite its novelty, a substantial body of 
work has already been proposed, broadly categorized into three areas (Ntoutsi et al., 2020): 
understanding bias, mitigating bias and accounting for bias, briefly described after.

5.2.1	� Understanding Bias and (Un)fairness
Research in this category explores how bias is created in society and enters sociotechnical 
systems (Berendt et al., 2021). As noted in Section 3.1, the two main sources of bias in AI 
are data and algorithms. Works in this category investigate finer mechanisms of bias creation 
and propagation (Srinivasan & Chander, 2021). Significant research focuses on how bias 
manifests in data through protected attributes (Yu et al., 2021), proxies (Yeom et al., 2018), 
or the under-/over-representation of demographic groups (Roy et al., 2022). Studies also ex-
plore bias manifestation for specific data types like images (Fabbrizzi et al., 2022), text (Gal-
legos et al., 2024), and multimodal data (Adewumi et al., 2024). Additionally, substantial 
work addresses the definition and measurement of unfairness (Verma & Rubin, 2018). Many 
fairness definitions originate from social sciences or law and are operationalized in AI 
(Hutchinson & Mitchell, 2019). However, fairness cannot be reduced to a single definition; 
it is context dependent (e.g., spatial, temporal, or application-specific) with different value 
systems requiring different mechanisms for fair decision making. Moreover, theoretical re-
sults demonstrate that multiple definitions of fairness are often mutually exclusive, making 
it impossible to satisfy all fairness criteria simultaneously (Friedler et al., 2021).

Fairness measures are broadly categorized into individual and group fairness measures 
(Verma & Rubin, 2018). Group fairness measures compare model performance between 
protected and non-protected groups. In this category belong measures such as demo-
graphic parity (Dwork et al., 2012), equalized odds (Hardt et al., 2016) and predictive rate 
parity (Zafar et al., 2017). In contrast, individual fairness measures focus on whether sim-
ilar individuals receive similar treatments from the model. Measures such as counterfac-
tual fairness (Kusner et al., 2017) belong to this category. Most fairness measures have 
been designed for binary classification tasks with a single binary protected attribute, al-
though research also extends these measures to multi-class problems, multiple protected 
attributes (Roy et  al., 2023), and other learning tasks such as clustering (Chhabra 
et al., 2021).

5.2.2	� Bias Mitigation and Debiasing Techniques
Given the importance of the topic, bias mitigation in AI systems has attracted significant 
attention. Various approaches to bias mitigation have been proposed: some focus on the 
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data (pre-processing approaches), some on the learning algorithms (in-processing ap-
proaches), and others on the learned ML models (post-processing approaches). Moreover, 
hybrid approaches, including end-to-end methods, have been proposed to address bias 
more holistically at multiple stages of the AI pipeline.

Pre-processing approaches: The intuition behind many preprocessing methods is that 
making the data “more fair” will result in a “less unfair” model. For many methods focu
sing on group fairness, the key idea is to balance the protected and non-protected groups 
in the dataset, while adhering to the design principle of minimal data interventions to re-
tain the utility of the data for the learning task. Several techniques have been proposed for 
this purpose, including: instance selection methods, where specific data points are sam-
pled to achieve balance (Kamiran et al., 2010); instance weighting methods, which adjust 
the influence of different groups by assigning weights to instances (Calders et al., 2009); 
class modification methods known as “massaging” methods, where class labels of certain 
instances are altered to reduce bias (Kamiran & Calders, 2009; Luong et al., 2011), and 
data augmentation methods that generate synthetic instances to improve dataset balance 
(Iosifidis & Ntoutsi, 2018).

Most of the pre-processing techniques are heuristic, meaning their impacts are not always 
well controlled. More principled approaches, such as those proposed by (Calmon et  al., 
2017) aim to offer a more structured and theoretically grounded framework for bias mitiga-
tion. A key advantage of these methods is their high versatility, as they are algorithm- and 
model-agnostic, allowing “de biased” datasets to be used with any learning algorithm.

In-processing approaches: The intuition behind in-processing methods is that work-
ing directly with the learning algorithm allows for better control over the model’s behav-
ior. The key idea is to explicitly incorporate the model’s discriminatory behavior into the 
objective function, aiming to achieve both predictive performance and fairness. Several 
techniques have been developed, including: regularization methods that penalize discrim-
ination within the learning process (Kamishima et  al., 2012; Zhang & Ntoutsi, 2019; 
Dwork et al., 2012; Padala & Gujar, 2020); adding fairness constraints that directly restrict 
the model’s discriminatory effects (Zafar et al., 2017); training on fair latent target labels 
(Krasanakis et al., 2018); adversarial training where an adversary attempts to predict the 
protected attribute (Zhang et al., 2018); compositional methods that decouple the groups 
and train separate models for each group (Dwork et al., 2018); and in-training distribution 
alteration in ensemble models (Iosifidis & Ntoutsi, 2019).

Several studies explicitly model a trade-off between fairness and accuracy in machine 
learning models, for instance (Padala & Gujar, 2020), as reducing discrimination can 
sometimes conflict with the goal of maximizing predictive accuracy. Other works argue 
that there is no trade-off (Dutta et al., 2020) and enforcing fairness might improve model 
accuracy on unbiased test data (Maity et al., 2020). There are also approaches that learn to 
select the objective (accuracy or fairness) to optimize at each step of the optimization pro-
cess (Roy & Ntoutsi, 2022). In-processing approaches are popular for bias mitigation, but 
are model- and algorithm-specific, requiring the development of new methods or adapta-
tions for different algorithms.
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Post-processing approaches: Post-processing approaches are applied post-hoc, after the 
model has been optimized for predictive performance. The key idea is to first train the model 
for predictive performance, as in standard ML, and then apply adjustments to improve fair-
ness. These adjustments should involve minimal interventions with the aim of preserving pre-
dictive performance while improving fairness. There are two main types of post-processing 
methods for bias mitigation: white-box approaches, which alter the model’s internal structure, 
and black-box approaches, which adjust the model’s predictions without modifying the inter-
nal workings (such as neural networks and other black-box models). White box approaches 
work with interpretable models, examples include correcting the confidence of classification 
rules (Pedreschi et al., 2019), probabilities in Naive Bayes models (Calders & Verwer, 2010) 
or the class label of leaves in decision trees (Kamiran et al., 2010). Black-box approaches 
work with black-box models and aim at post-hoc adjustment of the decision boundary. Ex-
amples include wrapping a fair classifier on top of a black-box base classifier (Agarwal et al., 
2018), promoting and demoting predictions close to the decision boundary (Kamiran et al., 
2018), and differentiating the decision boundary over groups (Hardt et al., 2016).

Post-processing methods prioritize predictive performance, with fairness considered as 
a secondary objective. Moreover, these methods are model-specific, meaning that new 
models require the development of new methods or adaptations. However, black-box ap-
proaches can still be useful in practice because we often have access only to the model’s 
outcomes, not its training process.

Hybrid approaches: Pre-processing approaches focus exclusively on the data, in-
processing approaches on the algorithm, and post-processing approaches on the model. In 
contrast, hybrid approaches address discrimination more holistically by integrating inter-
ventions across data, algorithms, and models. For instance, Hu et al. (2020) addresses bias 
and discrimination in feature representation and classification tasks using an autoencoder 
to obfuscate protected attribute information and a fairness-aware classifier. While most 
bias-mitigation approaches focus on a single protected attribute, methods also exist for ad-
dressing multi-attribute discrimination, such as those in Roy et al., 2022. The challenge 
increases as the optimization problem becomes more complex with multiple objectives, 
and multi-attribute scenarios often involve group imbalances and extreme class imbal-
ances within those groups (Roy et al., 2023; Brzezinski et al., 2024).

5.2.3	� Accounting for Bias
Methods in this category address bias either proactively or retroactively. Proactive approaches 
include bias-aware data collection (Fabbrizzi et al., 2022) like the Pilot Parliaments Bench-
mark (PPB) (Buolamwini & Gebru, 2018) dataset, which consists of photos of members from 
six national parliaments, collected to ensure a balanced representation of gender and skin 
color among the subjects. Other approaches involve documenting and describing bias, draw-
ing inspiration from methods used to document data, such as datasheets for datasets (Gebru 
et al., 2021), and machine learning models, like model cards (Mitchell et al., 2019). Various 
formalisms, including ontologies (Russo & Vidal, 2024), are employed for this purpose. Such 
a documentation is crucial as it promotes transparency and facilitates accountability.
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Retroactive approaches include explanation methods aimed at clarifying algorithmic 
decisions and revealing potential biases in decision-making. These explanations are essen
tial for assessing whether decisions are biased (Fragkathoulas et al., 2024; Deck et al., 
2023) and can be even used to debias (Cai et al., 2022; Kim et al., 2024) or correct the sys
tem (Weber et al., 2023). For instance, (Kennedy et al., 2020) uses explanations to deter-
mine if the model is oversensitive to protected attributes. If so, it applies explanation regu-
larization to ensure the model focuses on the context of these identifiers instead of the 
group identity terms.

Towards Fair AI
As AI systems are increasingly deployed in critical areas like education, healthcare, and 
employment, it is essential to address their biases, which can lead to discrimination and 
harm, to ensure these systems contribute to societal good. The field of fairness-aware lear
ning offers solutions through bias detection, mitigation tools, and proactive methods, 
which should be integrated into AI pipelines alongside necessary bias-safety checks.

It is important to note that fairness is not a fixed concept but evolves in response to 
changing societal needs (Rawls, 1971; Sen, 2009). Rapid technological advancements in 
AI, such as the emerging bias and discrimination issues in generative AI (Hacker et al., 
2024), further complicate fairness considerations. Similarly, the evolving legal landscape, 
such as the AI Act4 adds additional layers of complexity. Given that fairness is a moving 
target, continuous monitoring and ongoing adjustments, both during system design and 
after deployment, are essential to ensure AI systems remain aligned with these shifting so-
cietal, technological, and legal expectations.

6	� Conclusions

While biases are often perceived negatively for leading to unfair outcomes and discrimina-
tion, certain types of biases are crucial for induction and effective learning. In this work, 
we aimed to provide a broader perspective on biases in AI/ML models, advocating for a 
balanced view of bias as both a challenge and a tool. Biases that lead to discrimination and 
harm should be identified and mitigated, while others, such as inductive biases, are funda
mental to the learning process.

Ultimately, understanding these biases and applying the right tools to either mitigate 
them or leverage them to steer models in the “right direction” is crucial for responsible and 
effective AI development, ensuring these systems contribute positively to societal good.
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