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Abstract—Ensuring fairness in machine learning remains a
significant challenge, as models often inherit biases from their
training data. Generative models have recently emerged as a
promising approach to mitigate bias at the data level while
preserving utility. However, many rely on deep architectures,
despite evidence that simpler models can be highly effective
for tabular data. In this work, we introduce TABFAIRGDT, a
novel method for generating fair synthetic tabular data using
autoregressive decision trees. To enforce fairness, we propose
a soft leaf resampling technique that adjusts decision tree
outputs to reduce bias while preserving predictive performance.
Our approach is non-parametric, effectively capturing complex
relationships between mixed feature types, without relying on
assumptions about the underlying data distributions. We evaluate
TABFAIRGDT on benchmark fairness datasets and demonstrate
that it outperforms state-of-the-art (SOTA) deep generative
models, achieving better fairness-utility trade-off for downstream
tasks, as well as higher synthetic data quality. Moreover, our
method is lightweight, highly efficient, and CPU-compatible,
requiring no data pre-processing. Remarkably, TABFAIRGDT
achieves a 72% average speedup over the fastest SOTA baseline
across various dataset sizes, and can generate fair synthetic data
for medium-sized datasets (10 features, 10K samples) in just one
second on a standard CPU, making it an ideal solution for real-
world fairness-sensitive applications.

Index Terms—Fair Synthetic Data, Generative Modeling, Au-
toregressive Generation, Decision Trees, Non-parametric Models.

I. INTRODUCTION

Machine learning (ML) models are increasingly deployed in
critical sectors like finance, healthcare, and education. How-
ever, these models often showcase bias towards individuals or
specific demographic groups based on sensitive attributes such
as race, gender, age, or socio-economic status. Such biases can
arise from various sources [1], including historical discrim-
ination, data collection methodologies [2], and algorithmic
biases, where design choices within the algorithm, such as the
optimization function, introduce bias despite unbiased input
data. One potential discriminatory outcome is group (un-)
fairness, where certain demographic groups receive biased
predictions. This occurs when the model systematically favors

or disadvantages certain groups based on sensitive attributes.
As a result, ensuring fairness in ML models is essential, and
a substantial body of literature has been devoted to addressing
this issue, ranging from basic philosophical frameworks [3]
to technical solutions, typically categorized into pre-, in-,
and, post-processing approaches, proposing interventions for
fairness at the data-, algorithm-, or model-level, respectively
[4]. We focus on approaches that address fairness at the data
level, particularly for tabular data, which is the most prevalent
data type in real-world applications [5].

Fairness at the data level involves modifying the training
data “towards fairness” before feeding them to an ML algo-
rithm. The notion of fair data is defined in various ways in
the literature, depending on the specific application or context.
Most often, it is framed as achieving statistical parity with
respect to a known sensitive attribute and a specific target
variable [6], [7]. However, alternative definitions exist, such
as, counterfactual fairness [8], e-fairness, when fairness is
pursued without a specific downstream target [9], or even
in situations where sensitive attributes are not observed [3].
To achieve fair data, various pre-processing approaches have
been used, by transforming, reweighting, massaging class
labels [10], or augmenting data to mitigate bias, ensuring
that sensitive attributes do not unfairly influence predictions.
While traditional augmentation techniques, such as oversam-
pling [11]-[13] or reweighting, adjust the existing dataset,
generative models [6], [14] offer a more advanced alternative
by synthesizing entirely new data that adheres to fairness
constraints, preserving statistical properties while reducing
bias. Most such methods rely on deep architectures, often
leading to longer computational times, even when using GPUs.
However, simpler models have proven to remain effective for
tabular data generation, while requiring fewer resources in
terms of both time and computational power [12], [13].

In this work, we focus on generating fair synthetic data,
following a common assumption in synthetic data generation
for fairness [6], [7], [11], [15], where both the sensitive
attribute and the target attribute are observed. The goal is to
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generate fair data that (i) preserves the statistical properties
of the original data (ii) eliminates discrimination, and (iii)
maintains utility on the downstream task. To achieve this,
we propose TABFAIRGDT (Zabular Fair Generative Decision
Trees). Our approach follows an autoregressive framework,
generating attributes sequentially using decision trees (DTs).
To ensure fairness, we incorporate a fair leaf resampling
algorithm in the final step when generating the target attribute.
This intervention enforces statistical independence between the
target and the sensitive attribute in the generated data while
preserving the underlying attribute distributions. TABFAIRGDT
is a non-parametric approach, making no assumptions about
the distributions of attributes, and needs no pre-processing,
making it ideal for mixed tabular data, which are common
in this domain [16]. Our method is simple yet highly effec-
tive, consistently maintaining utility, measured by downstream
ROC AUC performance, and data quality, while significantly
improving fairness, assessed by downstream statistical parity.
Experimental evaluation on fairness benchmark datasets con-
firms that TABFAIRGDT achieves superior results compared
to existing approaches. Furthermore, it is efficient due to
the use of DTs, generating fair synthetic data for medium-
sized datasets in just one second on a standard computer. Our
approach is also lightweight and CPU-compatible, eliminating
the need for specialized hardware. All these advantages make
TABFAIRGDT ideal for real-world applications. We provide a
codebase” to reproduce all experiments.

In summary, the contributions of this work are the following:

o We introduce TABFAIRGDT, a novel fair synthetic data
generation method using an autoregressive decision tree
(DT) framework. It is efficient and non-parametric, re-
quiring no pre-processing or specialized hardware.

o We propose a fair leaf resampling algorithm to enforce
fairness while preserving data quality and utility.

o TABFARGDT outperforms existing approaches in
fairness-utility tradeoff, improving fairness by ~ 50% on
average while preserving high predictive score.

e Our method avoids generating sensitive attribute-specific
out-of-distribution samples, making it suitable for real-
world critical applications like healthcare.

II. RELATED WORK

Recent years have seen an increase in contributions tackling
fairness issues in machine learning. Metrics to measure (un-
)fairness can be divided [17] into group and individual fairness.
Methods to address (un-)fairness, on the other hand, can be
divided into pre-processing, in-processing, and post-processing
[4]. Our method falls into the category of pre-processing meth-
ods, generating fair synthetic data that subsequently can be
used for creating models adhering to group fairness. Although
there are multiple ways to evaluate fairness, we follow related
work for fair synthetic data generation, primarily reporting on
statistical parity [6], [7], [11], [15], measuring the difference
in positive outcome rate between the sensitive attribute groups

*TABFAIRGDT code: github.com/Panagiotou/TABFAIRGDT

(c.f. Section IV-D for a formal definition). Hereafter, we
analyze works relevant to our method, focusing on generative
models for tabular data and their fairness-aware variations.
Furthermore, since our method is tree-based, we provide an
overview of fair DTs.

Generative Models for Tabular Data: Generative models
have been used for different data types, from images to text and
audio, including tabular data. One family of methods adapts
deep learning architectures from other domains for tabular
data. For example, CTGAN and TVAE [18] use Generative
Adversarial Networks (GANs) and Variational Auto-Encoders
to generate tabular data. More recently, diffusion-based mod-
els have outperformed them by reversing a gradual noising
process to reconstruct tabular data, either directly in input
space [19] or via latent diffusion [20]. Other categories of
methods exist that do not specifically rely on deep learning
architectures. For instance, by approximating the joint distri-
bution of tabular data using n-way marginals [21], estimating
densities through random forests [22], or employing distance-
based interpolation [23]. In [24], a generative model utilizing
Classification and Regression Trees (CART) is introduced for
sequential column-wise data generation. Our method builds
upon this approach by integrating fairness constraints.

Fair Generative Models for Tabular Data: Methods that in-
troduce fair generative models are closely related to our work.
Most approaches follow a two-step process: first, training a
deep generative model, such as TabFairGAN [6] and CuTS
[15], and then fine-tuning it for fairness using a regularized
loss function. Similarly, TabularARGN [7], [14], commercially
developed by Mostly AI', uses a deep autoregressive model
and optimizes for fairness only when generating the target
variable. PreFair [25] utilizes marginals and a causal model
to achieve fairness. Finally, some methods focus on fair data
augmentation for the underrepresented groups [12], [13], [26].
Most of these approaches build upon SMOTE [23], such as
FSMOTE [11]. These fair data generators serve as baselines
in our evaluation, and are described in detail in Section IV-C.
Fair Decision Trees: Our work closely relates to fairness-
aware DTs, which incorporate fairness constraints into the
DT induction process. Seminal work by [27] introduced two
strategies: (i) fair splitting criteria, which modify the tree
construction process to enforce fairness during split selec-
tion, and (ii) leaf relabeling, which adjusts leaf labels post-
construction to enhance fairness. Their study concluded that
leaf relabeling was the most effective of the two strategies.
Subsequently, [28] integrated a fair splitting criterion within
Hoeffding trees to ensure fairness in streaming data. More
recently, [29] used a fair splitting criterion to facilitate fairness-
aware representation learning. Our approach draws inspiration
specifically from the leaf-relabeling strategy and employs a
fair leaf-relabeling method to generate fair synthetic data.
Although we also experimented with the fair splitting criterion,
we found that it introduced substantial structural changes to
the DT, compromising data utility.

Thttps://mostly.ai/
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III. TABFAIRGDT: FAST FAIR TABULAR DATA
GENERATION USING AUTOREGRESSIVE DECISION TREES

An overview of our approach is shown in Figure 1. Our
method consists of two main components: an autoregressive
tree-based generation step (Section III-B), and a fairness-
utility tradeoff-aware generation step (Section III-C). Before
presenting the components in detail, we first present the
problem formulation in Section III-A.

A. Problem Formulation

Let D be a dataset defined as D C X x S x Y where
X = Xy x X; x --- x X, represents n numerical or
categorical features, S is a sensitive attribute, and Y is the
target attribute. Following common practice in fairness-aware
learning methods and datasets [16], we assume that both
S €{0,1} and Y € {0,1} are binary variables. For example,
S could represent sex € {male, female}*, and Y could
represent income € {low, high}.

The goal of fair generative Al, as defined in the relevant
literature [6], [7], [15], is to learn a generative model based on
D, capable of generating a synthetic dataset DCXx8xY
that satisfies the following desiderata/requirements:

R1 - Data quality: the generated data should approximate
the original data, i.e., X~Xand S~S.

R2 - Fairness control: the target should be statistically
independent of the sensitive attribute, i.e., Yy LS.

R3 - Utility preservation: the utility of the data for the
downstream task should be preserved, i.e., ¥ ~ P(Y|X).

To achieve R1 (data quality), features are generated in an
autoregressive fashion, where each feature is conditioned on
the previously generated features (Section III-B). R2 (fairness
control) and R3 (utility preservation) are often in conflict [30],
as statistical dependencies frequently exist between the sen-
sitive attribute S and the target variable Y in the original
dataset. Enforcing fairness (R2) by reducing or removing
these dependencies can limit the model’s ability to preserve
predictive performance (R3), thereby leading to an inherent
trade-off between fairness and utility. We adress this trade-off
through a fairness-aware target generation (Section III-C).

B. Autoregressive Tree-based Generation

The autoregressive synthetic data generation process can
be formulated as sampling from a sequence of estimated
conditional distributions, where each variable’s synthetic value
depends on the previously generated synthetic values. Given
the dataset features Xo, Xy, -+, X,, we formally define the
process as follows ([14], [24], [31]):

Xo ~ Py(Xo)
X1~ P (X, | Xo)
Xo ~ Py(Xo | X1, Xo)

*Sex is considered binary in the datasets, not as a reflection of broader
societal views.

Algorithm 1 Decision Tree-based Synthetic Data Generation

Input X_;, real values for previous features; X; real
values for current feature j; X_; synthetic values for
previous features.

Output e ; synthetic values for feature j.

i) Fitting:

: Train decision tree Tree(X<;) — X,

. Initialize probability dictionary P <+ {}

: for each leaf ¢ in T'ree do ( Y
t(X,;=x,; .

pe(Xj\Xq € 6) = % \ T; € Xj in ¢

Pl < pe(X;|X<; € £) > Store out probs per leaf

: end for

ii) Sampling:

7: Initialize dictionary ZD < {{ — [ ]|{ € Tree}

8: for each index 4 in {1,2,...,|X;|} do > Loop over all
samples

9: T X<j M

10: Find leaf ¢ = Tree(&)

11 ID[(] - ID[¢ U {i} > Store indices of X_; per leaf

12: end for

130 X« []
14: for each leaf ¢ in 7D do .
15: idxs <— ID[¢] v Get all indices of X; in each leaf

16: n < length(idxs)

17: X;lidxs] < sample(P[(], n)
samples from py
18: end for

19: Return X;

> Draw n synthetic

The autoregressive process generates each feature X, j €
{0, ..., n} sequentially, conditioned on prior synthetic values.
Similarly, the sensitive attribute S is generated, given all other
columns X, ie. S ~ Ps(S | X). To model the conditional
probabilities P; for a feature X; we use DTs due to their
efficiency, flexibility, and ability to handle diverse data types (
[24]). The iterative per-feature generation process consists of
two phases: fitting and sampling (c.f. Algorithm 1):

(i) Fitting phase: For a feature X;, a DT is trained to map

X<, to X, storing the probability output distribution for
each leaf in a dictionary P, effectively estimating P; (X |
X<;) (cf. Algorithm 1 line 5).
Sampling phase: Synthetic data of the previous columns
X<j is passed through the tree, and samples are drawn
from P based on leaf assignments, to generate the next
synthetic column X j (c.f. Algorithm 1 line 17).

(ii)

The same fitting-sampling approach is used to generate all
columns X ;> except for the first feature, Xo, which is sampled
at random from X, since there are no previous synthetic val-
ues to generate from. This autoregressive generation process
ensures the quality of data generation (R1).

Discussion on the autoregressive generation process:
TaBFAIRGDT employs DTs at its core due to their simplicity,
efficiency, and non-parametric nature, i.e. making no assump-
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Fig. 1: Overview of the synthetic data generation in TABFAIRGDT.

tion on the underlying data distribution (as previously explored
in [24]). In the context of fair data generation, simpler models
have been shown to outperform more complex, generative
approaches [12], [13]. Our generation process proceeds in
the original order of features as present in the dataset. As
shown in Section V-C, the feature generation order does not
significantly impact the results. Our autoregressive approach
assumes correlations between certain features, as observed
in real datasets. If all features are fully independent, the
applicability of our approach would be limited, although such
datasets are rarely useful in practice.

C. Fairness-Aware Target Generation

In the previous section, we described the autoregressive gen-
eration process using DTs, highlighting its flexibility, which
allows to generate the sensitive attribute S after all other
attributes have been produced. Moreover, it allows enforc-
ing fairness constraints exclusively at the final step, when
generating the target variable, ensuring fairness control (R2)
and utility preservation (R3). Enforcing fairness earlier in the
generation process may lead to out-of-distribution samples as
observed in our experiments (c.f. Section V-B). Such devia-
tions directly reduce data quality (R1) and can be particularly
problematic in high-stakes domains such as healthcare, where
data fidelity is critical. Imposing fairness constraints only in
the final step has also been supported by recent literature,
including [7], [14], which apply such constraints exclusively
during target generation in deep autoregressive frameworks.

Our goal is to generate fair data by ensuring statistical parity
in downstream tasks. In this work, we focus on statistical
parity as our fairness criterion, acknowledging that fairness
is inherently domain-specific and that the appropriate fairness
measure should be selected accordingly®. Specifically, we

2In future work, we plan to incorporate alternative fairness notions.

generate the synthetic target variable Y so that a model’s
predictions Y4, satisfy statistical parity:

P(YpTed = 1‘S = 0) = P(Ypred - 1|S = 1)

To achieve this, we build upon the fair leaf relabeling ap-
proach [27], a post-processing bias mitigation technique that
modifies a DT by performing hard relabeling of its leaf nodes
to reduce discrimination. We extend this idea by introducing a
novel soft resampling procedure that probabilistically samples
Y based on a fairness-aware adjustment of the leaf predictions.
Unlike hard relabeling, our approach, explained hereafter,
enables smoother control over the fairness-utility trade-off.
Fair leaf resampling: Using the final tree fitted on X to
predict Y (T'reey (X)), we obtain a set of predicted labels
Y;. The discrimination and accuracy of the tree are defined
as, disc := P(Y; = 1|S = 0) — P(Y; = 1|S = 1) and
acc := P(Y; = Y). For each leaf node ¢ in the tree, which
currently predicts y; € {0,1}, we can estimate the potential
impact on the total discrimination and accuracy of the tree,
if the leaf’s label were flipped to y; = 1 — y; as: Adiscy =
Plyy=1S=0,X € /) = P(y, =1|S =1,X € (), and
Aaccy = Py #Y,X €0).

Thus, the task of producing a fair tree can be formulated
as an optimization problem: find a subset of leaf nodes £
whose relabeling, under a discrimination threshold thrg;sc =
0, minimizes the overall discrimination (fairness control - R2)
while incurring a minimal loss in accuracy (utility preservation
- R3). Formally, the fair resampling objective is:

mﬁln <— Z AaCCg>
el
with new_disc(£) := disc + Z Adiscy < thrgc
el
As proven in [27], finding £ can be reduced to a KNAP-
SACK problem, allowing the use of a greedy algorithm (Al-
gorithm 2-i), based on the discrimination-to-accuracy ratio of



Algorithm 2 Fair Leaf Resampling

Input Tree, A (fairness/utility tradeoff), thrg;sc = 0

Output Fair Tree
probabilities py

> Tree with fair leaf sampling

i) Greedy leaf search

C ={l e Tree| Adisc, < 0}

relabeling

L£L={}

while new_disc(L) > thrys. do
best, := argmazce . (discy/accy)
L < L Ubest,

end while

> Leaf candidates for

—_

AN A~

ii) Resampling

7: for £ € L do

8: pe < pe* (1 —A)+ (1 —pg) * A > Set new sampling
probabilities for leaf

9: end for

10: Return T'ree

each leaf. However, when generating synthetic data from the
leaves, we do not use the leaf’s labels y;; instead, we sample
from the output probability distribution p,; (Algorithm 1 line
17). Therefore, for each leaf in £, instead of performing a hard
relabeling, we compute adjusted sampling probabilities that
reflect a trade-off between fairness and utility (Algorithm 2-
ii). This trade-off is governed by a user-defined parameter
A € [0,1], commonly used in fair data generation. For
example, consider a selected leaf ¢ € £) with original output
probabilities: p, = {y; = 1:0.8,y; = 0: 0.2}. For a complete
switch (A = 1.0), the new probabilities will be: p, = {y; =
1:0.0,y; = 0: 1.0}. For a softer adjustment (A = 0.3), the
new probabilities will be: p, = {y; =1:0.62,3, = 0: 0.38}.
Adjusted probabilities are then used to generate the target Y.

To conclude, our fairness-aware target generation method
selectively resamples a greedily chosen subset of DT leaves
using a soft adjustment mechanism that balances fairness
(R2) and utility (R3). This contrasts with approaches such
as TabularARGN which apply adjustments across the entire
probability distribution and all subgroups, potentially impact-
ing data utility more broadly.

IV. EXPERIMENTS
A. Experimental Setup

To ensure robustness, we perform 3-fold data splits, thus
having 66% of the data for training and 33% for testing
on unseen real data. These splits are performed at the very
beginning of the pipeline, meaning that, for each fold, all
generative models are learned on 66% of the whole data and
that the real data test set for the current split remains unseen,
even during the generation. We found that variability across
different splits was much more significant than variability from
repeating generative runs within a split, so we use one run per
split and report average results with standard deviation across

TABLE I: Dataset characteristics.

Dataset Num. Num. Feat.  Sensitive Target Class
Samples (Num/Cat) Attribute S Y
sex income
ég;‘i]t“ 45k 4/8 <50K >50K
SHE female  28.80% / 3.69%
male  46.41% / 21.09%
sex occupation level
uieh 60k /11 low _high
female 33.71% / 16.39%
male 18.68% / 31.21%
marital-st. deposit
I?Ailr;]lieting 40k n : B e
married 61.14% / 6.88%
non-married 27.19% / 4.77%
sex income
gglls)us 95k 731 low  high
female 50.81% / 1.21%
male  43.42% / 4.54%
sex income
égﬁ-l 19k 2/7 . low high
emale 32.5% / 13.74%
male  23.78% / 29.96%
sex income
AT ok 2 e Sy high
emale 34.08% / 14.31%
male  26.17% / 25.42%

the three folds. Furthermore, splits are kept the same for all
generative methods, ensuring that all models have been trained
and tested on the same real data.

As stated before, TABFAIRGDT uses the original order of
features from the given dataset except when mentioned oth-
erwise. For downstream evaluation, we use LightGBM [32],
a SOTA gradient boosting model for tabular data classifica-
tion, though results remain consistent with other classifiers
(not reported due to space constraints). Runtime experiments
are conducted on a CPU for our approach, while methods
supporting GPU acceleration are run on a GPU. Our hard-
ware specifications include a 12th Gen Intel(R) Core(TM) 19
processor CPU and an Nvidia GeForce RTX 3080 Ti GPU.

B. Datasets

For our experimental evaluation, we selected six publicly
available tabular datasets based on relevant surveys [16], [33]
that identify datasets suitable for fairness assessment. We list
the characteristics of all datasets in Table I, such as the total
number of samples, the number of numerical and categorical
features, as well as the distribution of the four subgroups de-
fined by the sensitive attribute, and the target. It is important to
mention that the Dutch Census dataset consists exclusively of
categorical features. Additionally, the KDD Census dataset is
the largest in our experiments, containing the highest number
of samples. It is primarily composed of categorical features
and exhibits a significant class imbalance, which makes it the
most skewed dataset considered for the experiments. The last
two datasets, namely ACS-I Utah and Alabama, are derived
from the new Adult dataset [34]. These states were selected by



ranking all states, with an adequate number of samples, based
on the difference in positive outcome rates between sensitive
groups.

C. Baseline Competitors

We compare TABFAIRGDT with the following state-of-the-
art (SOTA) fair generative methods, along with one data
augmentation technique. Like our approach, all these methods
aim to optimize for downstream statistical parity. We do not
compare against tabular data generators that solely optimize
for utility, as they do not incorporate fairness objectives.
TabularARGN [14] is a recent, commercially developed,
SOTA deep autoregressive method. It first discretizes all fea-
tures before training the autoregressive model using a random
order for the features of each batch. This allows conditional
generation, where one or more features may be fixed to given
values, and the model generates the remaining feature values.
Like our approach, fairness is enforced only at the final step
during target generation [7], by aligning the full conditional
distributions across sensitive groups. In contrast, our method
applies minimal and localized interventions, targeting only a
subset of leaves selected greedily by our resampling algorithm.
TabFairGAN [6] is a deep method based on GANS, incorpo-
rating fairness in the training process, which is done in two
phases. First, the model undergoes normal training to learn the
original data distribution, then the loss function is modified to
incorporate fairness, optimizing for statistical parity.

CuTS [15] is another deep approach developed to be a
customizable generator. Training is performed in two phases:
the model is pre-trained to generate data that closely matches
the distribution of the real samples, and then a second, user-
defined, objective is used to fine-tune the model. Various
objectives can be used in the second phase, including fairness,
which is relevant to our work, e.g., statistical parity.
FSMOTE [35] is a SMOTE-based [23] data augmentation
method that augments minority subgroups from the target and
the sensitive attribute to address class and group imbalance.
PreFair [25] uses a deep architecture to generate private and
fair data. It leverages differential privacy and causal fairness
constraints to prevent unjust causal relationships between the
sensitive attribute and the target.

D. Metrics

We evaluate the generated data by measuring (i) utility,
i.e. the predictive performance for a downstream task (R3),
(ii) fairness, in terms of statistical parity for the downstream
task (R2), and (iii) data quality, in terms of distribution and
similarity between real and fake samples (R1).

Utility: We train a classifier on the synthetic data f(X) — Y,
and evaluate on real unseen test data, measuring the ROC AUC
score of the predictions Yj,¢q.

Fairness: We use the same trained classifier and real test data
to evaluate for fairness, by comparing the conditional proba-
bilities between subgroups of S in the test set. Specifically,
we measure statistical parity, defined as:

Stat. Par. := P(Ypreq = 1|S =0) — P(Ypreq = 1|5 = 1)

Our goal is to minimize this difference, ensuring that the pre-
dicted positive outcome rates are the same across subgroups.
Data quality: First, we train a classifier on D U D to
distinguish between real and synthetic samples. The quality
of the generated data is then evaluated using the ROC AUC
score, which serves as a detection metric. Ideally, we aim for
a detection score (Det. Sc.) close to 0.5, indicating that the
classifier struggles to differentiate between real and synthetic
samples. Furthermore, we study the overall quality of the gen-
erated data by comparing their statistical distribution with the
original samples. We use the Kolmogorov-Smirnov (KS) score
to evaluate this with continuous features, which computes the
maximal difference between the cumulative density functions
of the real and synthetic data, and the Total Variation (TV)
score for categorical features, which compares the probabilities
for all the categorical values of a feature. In addition, we
consider precision, recall [36], density, and coverage [37]
scores. All four of these metrics use neighborhood spheres
computed using the closest data point. Precision (Prec.) gets
how many of the synthetic data fall in at least one real sphere,
while recall (Rec.) computes the inverse, how many real data
fall in at least one synthetic sphere. Density (Dens.) is a
variation of precision to take outliers into account. It computes
how many of the real spheres a synthetic point appears in.
Finally, coverage (Cov.) is a variation of recall and calculates
the fraction of the real neighborhood spheres that contain a
synthetic data point. As these last four metrics may be fooled
by generated samples being duplicates of the real ones, we
also consider the median Distance to Closest Record (DCR)
[38]. This metric uses nearest neighbors to compute the ratio
between median distances from generated samples to real
neighboring samples and from the real samples to their own
nearest neighbors. DCR ranges from 0 and is unbounded from
above, with values smaller than 1 indicating that the generated
data are closer to the real ones, while larger values indicate
generated data further away from the real samples.

V. RESULTS

We begin by examining the fairness-utility tradeoff (require-
ments R2-R3 described in Section III-A). Specifically, we
compare our method, TABFAIRGDT, to training on the real
data, and to two competing deep models, TabularARGN and
TabFairGAN, both of which also incorporate a fairness-utility
tradeoff parameter A\ € [0,1]. Figure 2 showcases how this
tradeoff parameter affects both utility (ROC AUC) and fairness
(Stat. Par.). All three methods perform mostly as anticipated,
balancing utility retention with a reduction in discrimination as
A increases. However, TabFairGAN fails for the KDD Census
and Bank Marketing datasets, which are higher-dimensional,
and highly class-imbalanced (see Section IV-B). In fact, it
results in worse fairness compared to training on real data, as
shown in Table IV. Consequently, we exclude its plot for these
datasets. We highlight that, even in this highly imbalanced
case, our method can improve fairness with a minor loss
in utility. Additionally, for the Dutch census dataset, which
consists solely of discrete features, TABFAIRGDT is the only
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Fig. 2: Impact of the fairness-utility tradeoff parameter A on model performance across all datasets. As A increases, models

prioritize fairness, often at the expense of utility.

TABLE II: Percentile difference of utility and fairness com-
pared to training on real data, for all methods, averaged across
all datasets. Methods that fail in at least one dataset are

indicated in red.

Utility Fairness

Method ROC AUC 1 Stat. Par. |

TABFAIRGDT -1.85% + 047% -48.41% + 12.03%
TabularARGN -1.87% =+ 0.56% -42.28% + 17.17%
TabFairGAN -9.53% + 7.15% +26.47% + 13257%
CuTS -5.57% + 4.55% -44.59% + 23.69%
FSMOTE -0.50% =+ 0.12% -24.58% + 538%
PreFair -15.71% + 3.19% -66.55% + 14.40%

method that achieves a notable fairness improvement, while
loosing only 2% of utility. This further demonstrates the
advantage of our method’s non-parametric approach, which
offers greater flexibility and can handle discrete features with
no need for pre-processing. For the remainder of our results,
we set the utility-tradeoff hyperparameter to A 1 (for
optimal fairness) for all methods.

Table II provides a summary of our results, averaged across
all datasets, in terms of percentile utility loss and fairness
improvement, compared to training on real data. The more
detailed per-dataset results are presented in Table IV. To
ensure a fair comparison, the aggregated results of Table II

exclude failed cases, i.e. where a method results in a utility
loss greater than 30% or fails to improve statistical parity
relative to real data. We highlight in red the methods that
fail on at least one dataset. From the results, we observe that
our method, TABFAIRRGDT, leads to a major improvement in
fairness, reducing statistical parity by almost 50% on average,
while losing less than 2% in utility. Moreover, TABFAIRGDT
is more consistent across datasets, with a standard deviation
of only 12% for fairness, compared to much higher variability
observed in other methods. TabFairGAN, in particular, shows
exceptionally high standard deviation, indicating inconsistent
performance across datasets. This suggests its effectiveness
is highly sensitive to dataset characteristics, limiting practi-
cal reliability. Furthermore, our method, together with Tabu-
larARGN, are the only ones that succeed in producing realistic
and fair synthetic data for all datasets. Although PreFair per-
forms good for fairness, it also results in large drops in utility.
Notably, as observed in Table IV, our method is the only
one that succeeds in improving fairness for the Dutch Census
dataset, which has only categorical features. We attribute this
success to our non-parametric modeling approach.

We continue our evaluation by focusing on generated data
quality (requirement R1). As reported in Table III, our method
is the clear winner, achieving a detection score of only 0.54%.
For the other metrics, TABFAIRGDT demonstrates optimal



TABLE III: Results for data quality metrics averaged across all datasets

Method Det. Sc. =~ 0.50 KS 1 TV 1 Precision T Recall T Density T Coverage T DCR =~ 1.00
TABFAIRGDT 0.54 +o0 0.83+04  0.99 +o00 0.82 +02 0.82 +o02 0.79 +o3 0.82 +o02 1.02 +oo
TabularARGN 0.60 +o0 0.82 +o4  0.98 +o0 0.81 +o2 0.84 +o2 0.73 +o3 0.81 +o2 1.27 +o2
TabFairGAN 0.83 +o1 0.75 +o4  0.96 +o0 0.61 +o3 0.71 +o3 0.48 +o3 0.57 +o3 244 +1.4
CuTS 1.00 +o0 0.49 o3  0.62 +o4 0.28 +o4 0.31 +os 0.24 +o4 0.27 +o4 18.21 4250
FSMOTE 0.64 +oi 0.77 +o4  0.95 +o0 0.83 +o2 0.82 +o2 0.76 +o3 0.79 +o2 1.08 +o2
PreFair 0.93 +o1 0.71 04 0.97 +o0 0.55 +o2 0.77 +o2 0.34 +o2 0.44 +o2 4.40 +21

TABLE IV: Results per dataset for all methods. Failures are
indicated in red color.

Method ROC AUC 1 Stat. Par. | ROC AUC 1 Stat. Par. |
Adult Dutch Census
Real Data 0.926 + 0001 0.178 + 0007 0.896 + 0003 0.188 + 0.005
TABFAIRGDT | 0.906 + 0002 0.078 +0000 0.873 + 0003 0.062 + 0.004
TabularARGN | 0.901 + 0003 0.071 +0007 0.887 +0003 0.144 + 0.004
TabFairGAN 0.830 + 0011 0.043 + 0025 0.883 +0003 0.163 + 0.005
CuTS 0.905 + 0003 0.145 + 0006 0.500 =+ 0.000 -
FSMOTE 0.919 +o0001 0.225 + 0003 0.893 0003 0.153 + 0.008
PreFair 0.760 + o012 0.057 o012 0.804 +0003 0.105 + 0001
Bank Marketing KDD Census
Real Data 0.931 + 0001 0.038 +0003 0.948 + 0001 0.046 + 0.002
TABFAIRGDT | 0.919 + 0003 0.025 + 0001 0.935 + 0001  0.020 + 0.002
TabularARGN | 0911 +0001 0.019 + 0003 0.934 + 0002 0.035 + 0002
TabFairGAN 0.716 + 0012 0.071 o007 0.827 £ 0028 0.181 + 0.036
CuTS 0.896 + 0001 0.016 + 0004 0.925 + 0002 0.008 + 0.001
FSMOTE 0.919 + 0003 0.051 +0003 0.937 0001 0.060 =+ o0.001
PreFair 0.511 + 0017 - 0.613 + o118 -
ACS-I Utah ACS-I Alabama
Real Data 0.889 + 0004 0.196 + 0008 0.857 +o0001 0.111 + 0.005
TABFAIRGDT | 0.870 + 0007 0.128 + 0014 0.844 + 0003 0.066 + 0.014
TabularARGN | 0.874 +000s 0.136 + 0014 0.838 + 0003 0.038 + 0.008
TabFairGAN 0.840 + 0024 0.086 + 0062 0.822 40005 0.025 + 0.004
CuTS 0.845 + 0008 0.148 + 0043 0.733 £ 0020 0.069 + 0.052
FSMOTE 0.885 +000s 0.150 + 0010 0.851 +o0001 0.076 + o010
PreFair 0.729 + 0041 0.032 £ 00290 0.715 £ 0020 0.033 + 0011

scores and generally surpasses the other deep models. Fur-
thermore, the average DCR score of 1.02 indicates that the
synthetic data are as close to real samples as real samples are
to each other, showing no signs of overfitting (which would
correspond to a DCR below 1). We attribute these strong data
quality results to the use of DTs, which effectively capture
the structure of the training data, enabling the generation of
synthetic data that closely aligns with the original distribution.
Additionally, our method requires no pre-processing, unlike
TabularARGN, which relies on discretization and rare-feature
handling that can impact quality on certain datasets.

The results of our method can be summarized by con-
sidering the three requirements of fair synthetic data, listed
in Section III-A. First, TABFAIRGDT can generate data that
closely match the original samples, as shown by the metrics for
data quality in Table IIT (R1). Next, our method shows strong
performance in reducing statistical parity for all datasets (Table
IT and Table IV), progressing towards statistical independence
between the target and the sensitive attribute (R2). Finally,
TaBFAIRGDT achieves this performance while having a minor
impact on utility scores, as shown in Table II (R3). Our
method thus meets all three requirements needed to obtain fair
synthetic data while using simple DTs. Moreover, it performs
on average better and is more efficient than deep approaches

TABLE V: Computational runtime for fitting, sampling, and
total time (in seconds)

(a) For all methods on a dataset of 10 features and 10k samples

Method Fitting  Sampling Total
TABFAIRGDT 0.81 0.25 1.05

TabularARGN 10.72 0.12 10.84
TabFairGAN 71.74 0.008 71.75
CuTS 882.44 0.20 882.65
FSMOTE 0.018 29.17 29.19
PreFair 0.005 45.49 45.5

(b) For TABFAIRGDT vs TabularARGN on varying dataset sizes

Dataset size TABFAIRGDT TabularARGN
Num. Feat. Num. Samp. Fit. Samp. Tot. Fit. Samp. Tot.
1k 0.15  0.06 0.21 | 10.88 0.09 10.97
10 10k 081 0.25 1.05 | 10.72 0.12 10.84
50k 384 1.04 488 | 27.18 0.33 2751
1k 276  1.03 3.79 | 36.75 0.75 37.50
100 10k 14.27 370 1797 | 36.37 115 37.52
50k 70.11 15.88 85.99 | 126.71 3.25 129.96
1k 3343 1848 51.91 [206.90 9.38 216.28
500 10k 167.08 4329 210.37 | 580.68 13.78 594.46
50k 897.80 174.12 1071.92(2936.21 31.74 2967.95
Average speedup (%) 77 +16 -188+147 472419

that also meet requirements, such as TabularARGN, without
the need for specialized hardware.

A. Computational Runtimes

Our method is not only effective but also highly efficient
and lightweight, operating entirely on the CPU. We evaluate
all approaches on a medium-sized synthetic dataset with 10
features and 10k instances and report fitting, sampling, and
total runtime in Table Va. To ensure a fair comparison, we
utilize GPU acceleration for methods that support it. Our
results show that TABFAIRGDT achieves the fastest total time,
generating synthetic data in one second, followed by Tabu-
larARGN. Given that TabularARGN is a commercially devel-
oped product where efficiency is a priority, it incorporates an
early stopping criterion during the fitting phase. Consequently,
we select TabularARGN as the primary benchmark for further
comparisons across varying dataset sizes, increasing both the
number of features and instances, presented in Table Vb. Once
again, our method consistently demonstrates the lowest total
time, outperforming TabularARGN by an average of 72%.
This advantage is primarily due to our highly efficient fitting
process, which enables parallel tree construction. Notably, fast
fitting can be particularly valuable in real-world scenarios
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Fig. 3: Per-group feature distributions of real vs. synthetic data for the relationship attribute of the Adult census dataset. Areas
with synthetic OOD samples are highlighted in red. Our method TABFAIRGDT does not produce any OOD samples.
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Fig. 4: Effect of column ordering in TABFAIRGDT on the utility-

such as continuous model retraining during deployment, where
low-latency updates are critical. However, as the dataset size
increases, our method experiences slower sampling times due
to the inherently sequential nature of the generation process.

B. Generation of Out-Of-Distribution Samples

We analyze data from all methods to detect sensitive
attribute-specific out-of-distribution (OOD) samples. Using the
Adult census dataset as an example, we examine the rela-
tionship feature by comparing real and synthetic distributions,
per-group, in Figure 3. Notably, real data does not con-
tain instances where {sex=Male, rel.=Wife} or {sex=Female,
rel.=Husband }. However, all baseline generative models intro-
duce such OOD synthetic samples. Specifically, GAN-based
methods TabFairGAN, CuTS, and PreFair, which first train a
deep generative model and then fine-tune for fairness, generate
a significant number of these instances. TabularARGN, despite
using autoregressive modeling with fairness constraints ap-
plied only at the final step, also produces such samples, likely
due to its random feature reordering. In contrast, our approach
prevents this by generating S only after X is fully synthesized,
and enforces fairness only for the target generation, not for
features X ;. This prevents sampling from a distribution where
X; L S, thus respecting real-world constraints and avoid-
ing unrealistic feature combinations. Interestingly, FSMOTE
also avoids this problem by generating synthetic samples via
neighborhood-based interpolation.

Such OOD feature combinations might improve fairness by
confusing downstream classifiers, but can be problematic in
critical domains like healthcare. We argue that in scenarios
involving subgroup-specific medical conditions (e.g., preg-
nancy, testicular cancer, etc.), it is crucial to ensure fairness
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fairness tradeoff. Standard deviations were removed for clarity.

without introducing OOD samples, especially when making
the synthetic data publicly available.

C. Impact of Feature Ordering in TABFAIRGDT

Due to its autoregressive architecture at both fitting and
generating times, one could argue that the order in which
the features are considered may impact the results obtained
with TABFAIRGDT. The experiment in this subsection analyzes
this factor by examining five possible orders: 1. the original
order of the features in the dataset, 2, 3. ascending/descending
order based on the correlation between the features and the
target (Asc./Desc. Y), and 4, 5. ascending/descending order
based on the correlation between the features and the protected
attribute (Asc./Desc. S). Figure 4 shows that all feature orders
produce nearly identical results, with no statistically significant
differences observed. This trend was consistent across other
datasets, and no meaningful changes were found in data qual-
ity metrics, so they are omitted here. We conclude that feature
order does not affect the results obtained with TABFAIRGDT.

VI. CONCLUSION AND FUTURE WORK

We introduced TABFAIRGDT, a method for generating
fair synthetic data using autoregressive DTs. TaBFAIRGDT
produces realistic data, mitigates discrimination in down-
stream tasks, and maintains strong predictive performance.
Our method combines the simplicity and efficiency of DTs,
outperforming deep generative models in terms of data qual-
ity, utility, and fairness. Furthermore, TABFAIRRGDT is up to
72% faster on average, generating fair data for medium-sized
datasets in just one second on a standard CPU.

Future work includes extending our framework to support
additional fairness definitions, intersectional fairness, regres-



sion tasks, and continuous sensitive attributes, as well as
exploring hyperparameters, such as tree depth, to examine how
over/under-fitting influences fairness and data quality. We also
plan to use dataset similarity measures, e.g., the DT-partition-
based approach in [39], to assess synthetic data quality, and the
impact of fairness thresholds on the generated distributions.
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